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Simple Summary: Long non-coding RNAs (lncRNAs) can be detected in a liquid biopsy. We herein
discussed the origin, methods of detection, measurement and potential functions of lncRNAs in
blood. Furthermore, we used a systematic literature search to identify thirteen circulating lncRNAs
whose expression was associated with bone tumor and we examined their impacts on clinical
decision-making in the management of osteosarcoma.

Abstract: Circulating cell-free nucleic acids recently became attractive targets to develop non-invasive
diagnostic tools for cancer detection. Along with DNA and mRNAs, transcripts lacking coding
potential (non-coding RNAs, ncRNAs) directly involved in the process of tumor pathogenesis have
been recently detected in liquid biopsies. Interestingly, circulating ncRNAs exhibit specific expression
patterns associated with cancer and suggest their role as novel biomarkers. However, the potential
of circulating long ncRNAs (c-lncRNAs) to be markers in osteosarcoma (OS) is still elusive. In this
study we performed a systematic review to identify thirteen c-lncRNAs whose altered expression in
blood associate with OS. We herein discuss the potential impact that these c-lncRNAs may have on
clinical decision-making in the management of OS. Overall, we aimed to provide novel insights that
can contribute to the development of future precision medicine in oncology.

Keywords: liquid biopsy; circulating long non-coding RNA; osteosarcoma; biomarkers

1. Introduction

Osteosarcoma (OS) is a highly aggressive malignant bone tumor, frequently occurring
in children and adolescents with an annual incidence of over three per million world-
wide [1–3]. OS represents different pathological entities based on clinical, radiological, and
histopathological features. For instance, based on histopathological features, osteosarcoma
can be classified into distinct subtypes with the osteoblastic, chondroblastic, and fibroblastic
OS, respectively, being the most common [4].

Nowadays, various clinical practices for OS have been notably implemented, including
chemotherapy, radiotherapy, surgery, and targeted therapy; yet, the prognosis for OS still
remains poor [5,6]. In fact, approximately 20% of patients showed clinical metastasis at
presentation, with a 5-year survival rate less than 30% [7]. For this reason, OS strongly
demands reliable, non-invasive, and clinically useful biomarkers.
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In contrast to conventional biopsy, the liquid biopsy of tumor components in blood
represents a simple and rapid test, easily performed, and requiring a small amount of
sample (usually 10–15 mL of blood). Presently, however, the usefulness of alkaline phos-
phatase (ALP) and lactate dehydrogenase (LDH) as laboratory markers for OS is still
considered controversial [8,9]. Likewise, studies have shown that programmed cell death 1
ligand-1 (PD-L1) and bone resorption markers, such as b-isomerized C-terminal telopep-
tides (b-CTx) and total procollagen type 1 amino-terminal propetide (tP1NP), still require
more investigation before being able to conclude their potential value as biomarkers for
OS [6,10–12].

Recently, circulating biomarkers, such as circulating tumor cells (CTCs) and different
forms of circulating-free and extracellular vesicle/platelet-encapsulated non-coding RNA,
including microRNA (miRNA) and long non-coding RNA (lncRNA), have emerged as
novel promising diagnostic, prognostic, or predictive biomarkers in the clinical manage-
ment of patients with OS [13–18].

Although CTCs may provide tumor-specific genomic, transcriptomic, and proteomic
information, their analysis requires a large volume of fresh blood and it is laborious and
expensive. On the other hands, the use of circulating ncRNAs, in spite of some obvious
limitations, is more accessible, cheaper, and has shown potential as a precision medicine
biomarker [19]. Early studies on circulating RNAs focused on the relevance of miRNAs.
However, the current search for novel OS biomarkers has possibly shifted to lncRNAs due
to their relative abundance and higher stability with respect to miRNAs [14].

Interestingly, a number of circulating lncRNAs, whose expression in liquid biopsy
correlate with that of cancer tissues, have emerged as novel diagnostic or prognostic
markers for several types of cancer [20–23]. However, the role of circulating lncRNAs as
biomarker for OS is still elusive. In this study, we performed a systematic review to identify,
evaluate, and summarize the findings of all relevant studies about circulating lncRNAs that
associate with OS progression. We aimed to investigate whether circulating lncRNAs can
be employed as novel biomarkers in OS from early cancer detection to therapy selection
and cancer patient monitoring during the course of disease.

2. Long Non-Coding RNA Structures and Functions

LncRNAs are conventionally classified as transcripts longer than 200 nt with no or low
coding potential [24–26]. Similar to protein-coding transcripts, the transcription of lncRNAs
is dependent on histone-modification-mediated regulation, and lncRNA’s transcripts are
processed by the canonical spliceosome machinery. Overall, lncRNA genes show fewer
exons than mRNAs, and appear to be under a weaker selective pressure during evolution.
Moreover, some lncRNAs are expressed at levels lower than those of mRNAs and in a
more tissue- and cell-specific manner, while others are known to be fairly abundant and
are expressed in diverse cell types, such as the “house-keeping” genes [27].

Of tens of thousands of metazoan lncRNAs discovered from cDNA libraries and
RNAseq data by high throughput transcriptome projects, only a handful of lncRNAs have
been functionally characterized. The investigations on this small cohort of lncRNAs have
demonstrated that these noncoding transcripts can serve as scaffolds or guides to regulate
protein–protein or protein–DNA interactions [28–31] or can modulate post-translational
modification of nonhistone proteins [32]. Moreover, lncRNAs are capable of controlling
microRNAs (miRNAs) [33–35], and function as enhancers to influence gene transcription,
when transcribed from the enhancer regions (enhancer RNA) [36–38] or their neighboring
loci (noncoding RNA activator) [39,40].

Several lines of evidence have shown that lncRNAs are capable of influencing different
cellular functions that are critical to tumorigenesis, such as cell proliferation, differentiation,
migration, immune response, and apoptosis [41–47]. Furthermore, lncRNAs have been
found to act as tumor suppressors or oncogenes [48–51], and, of note, a number of lncRNAs
have been reported to be significantly deregulated in tumors [52–55].
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3. Origin of Circulating lncRNAs

The precise mechanism of lncRNAs release into the extracellular environment is not
completely understood. Hypotheses have arisen that tumor cells, cancer-adjacent normal
cells, immune cells, and other blood cells may all release lncRNAs [56,57], as shown in
Figure 1. A few studies reported that lncRNAs can be encapsulated into membrane vesicles,
such as exosomes or microvesicles (EV), prior to being secreted extracellularly. In such a
conformation, the circulating lncRNAs have shown a higher degree stability, probably due
to EVs offering protection against the nuclease-mediated degradation that may occur in
the extracellular space and in body fluids [20,58,59] (Figure 1). On the other hand, other
studies have suggested that the secretion pathway of lncRNAs may also occur in a similar
manner to that for miRNAs. As such, lncRNAs might also be released into body fluids in
an EV-independent fashion as complexes with high-density lipoproteins (HDLs) or protein
Argonaute 2 (AGO2) [60] (Figure 1).
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Figure 1. The origin of circulating lncRNAs. Two major sources of circulating lncRNAs have been
postulated so far. LncRNAs can be encapsulated in extracellular vesicles (EV), predominantly
exosomes. On the other hand, lncRNAs can also be released from live cells in an EV-independent
fashion, thus, similar to circulating miRNAs, circulating lncRNAs might be detected in complexes
with protein or high-density lipoproteins (HDL). The latter mechanism is likely to offer = circulating
lncRNAs less protection against ribonucleases that are normally present in the extracellular space and
body fluids. Created by Servier Medical Art (http://smart.servier.com/ (accessed on 15 May 2021)),
licensed under Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/
licenses/by/3.0/ (accessed on 15 May 2021)).

The hypothesis of an EV-independent mechanism for lncRNAs secretion might seem
less likely given the high abundance of ribonucleases in serum, plasma, and other bodily
fluids that can dramatically affect the stability of lncRNAs in the extracellular environment.
However, one can speculate that circulating lncRNAs can be capable of resisting the RNase
activity through modifications such as methylation, adenylation, and uridylation [61] or
via the formation of higher order structures [62].

4. Detection Methods of Circulating lncRNAs

Difference sources of liquid biopsy (i.e., whole blood, plasma, serum, urine, and gastric
juice) can be used to quantify circulating lncRNAs. However, due to the possibility of
blood cell RNA contamination, whole blood is the less recommended option so far [63]. In

http://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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addition, EDTA-anticoagulant collecting tubes have been suggested to be more suitable for
the analysis of circulating lncRNAs [57]. Of note, some studies have found that lncRNAs
remained stable in plasma even under multiple cycles of freeze–thaw, incubation at 45 ◦C,
or storage at room temperature for as long as 24 h [56].

Overall, the methods to extract circulating lncRNAs can be divided into two major
groups: guanidine/phenol/chloroform-based and column-based protocols. The column-
based method is currently considered more reliable, since organic and phenolic contami-
nants in TRIzol-based methods might invalidate results [64].

Regarding the measuring and normalization methods, some studies have suggested
that the use of an equal volume of input RNA sample may be more accurate than an equal
amounts of RNA measured using a NanoDrop spectrophotometer since many diseases,
including cancer, may indeed release an higher degree of RNAs into body fluids than
healthy control groups, leading to a significantly higher level of circulating RNA in cancer
patients that causes misleading results [64].

To date, quantitative real-time PCR (qRT-PCR) is still considered the gold standard for
quantitative expression analysis of lncRNAs, including circulating lncRNAs [65]. Microar-
rays and whole transcriptome analysis (RNA-seq) still have limited uses in this field. In
fact, the high throughput potential of microarrays relies on a reference database of targets,
which in the case of circulating lncRNAs, is still very limited [21]; the RNA-seq requires
huge amounts of starting RNA samples. Additionally, RNA-seq is currently expensive
and needs special equipment and/or expert bioinformaticians [64], whereas, the targeted-
approach of qRT-PCR is still more accessible, and saves money and time. Accordingly,
qRT-PCR can be divided into relative and absolute analyses. In relative quantification
methods, the choice of endogenous controls is critical to properly normalize the expression
levels. In this regard, it must be noted that no systematic evaluation of reference genes for
serum lncRNA has yet been reported, posing some limitations for the relative qRT-PCR
method in the analysis of lncRNAs from a liquid biopsy.

5. A Systematic Literature Search Identifies Thirteen Circulating lncRNAs with High
Diagnostic Sensitivity in OS

To identify all the circulating lncRNAs whose expression has been reportedly as-
sociated with OS, either onset or progression, we ruled out a study in accordance with
the preferred guidelines for reporting items for systematic reviews and meta-analyses
(PRISMA) [66]. The study protocol of this systematic review was prospectively registered at
the international prospective register of systematic review, PROSPERO (CRD42021250424).
Briefly, a computerized literature search was performed in PubMed, Embase, and Scopus
(last search: May 2021) using the terms “long non coding RNA” or “long untranslated
RNA” or “lncRNA” and osteosarcoma and “liquid biopsy” or “serum” or “blood” or
“plasma” AND “diagnostic” or “prognosis” or “prognostic” or “survival” or “metastasis”.
We further applied inclusion and exclusion criteria as described in the registered protocol.

As a result, a total of 14 studies were identified (Figure 2) to describe the transcript
abundance of 13 circulating lncRNAs in OS patients with respect to healthy controls [67–80].
Information pertaining to the methods employed for lncRNA extraction, measurement,
and normalization along with their diagnostic and prognostic values were extracted and
are listed in Table 1.

To investigate the diagnostic and/or prognostic values of circulating lncRNAs, all
the studies enrolled a number of patients and controls in a 1:1 ratio (62 ± 28 participants,
mean ± SD), with a total of 873 OS patients who underwent liquid biopsy analysis for the
detection of specific circulating lncRNAs, from 2015 to 2021. Altogether, at the time of OS
diagnosis, an increase in ATB, EPEL, FAL1, FGD5-AS1, HNF1A-AS1, LINC01278, LINC01354,
MALAT1, TUG1, UCA1 and a decline in HAND2-AS1 and NEF lncRNA expression levels
were recorded in patient blood specimens with respect to controls.
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Figure 2. Flow diagram of preferred reporting items for systematic reviews and meta-analyses
(PRISMA) of this systematic review.

Briefly, all studies except that of Jiang (2020) [70] reported the diagnostic value of
circulating lncRNAs, while only three studies investigated whether the expression level of
circulating lncRNAs change along with disease status of OS patients (pre-operative and
post-operative) (Cai 2017 [73], Ma 2015 [80], Wang 2017 [72]). Correlation between the
abundance of circulating lncRNAs and survival rate was also measured in five studies
(Chen 2018 [68], Huo 2017 [78], Sheng 2019 [74], Song 2020 [79], and Zhang 2021 [69]
(Table 1)). Of note, a positive correlation between the transcript levels measured in the
bloodstream and OS tissue was found.

Overall, we noticed that serum, either fresh or frozen, was the most common liquid
biopsy to study circulating lncRNAs. Primarily, total RNA was extracted using TRIzol
reagent and was analyzed using quantitative real-time polymerase chain reaction (RT-
qPCR). The abundance of circulating lncRNAs was normalized with respect to either
GAPDH (six studies) or β-actin (five studies) housekeeping transcript levels (Table 1).

Different statistical methodologies were applied for assessing the relationship between
the clinicopathological parameters of patients and the abundance of certain circulating
lncRNAs. Overall, receiver–operating characteristic (ROC) curves were used to evaluate
the performance of each lncRNA to discriminate OS patients from controls (reported as
area under the curve (AUC), in Table 1). All 13 lncRNAs identified in liquid biopsy showed
high diagnostic potential with the long intergenic non-coding RNA LINC01278 being the
best performer (AUC = 0.945; 95% CI = 0.908–0.982, p value <0.001) (Zhang 2021 [69]).
Furthermore, three studies reported the diagnostic power of circulating HNF1A-AS1 (Cai
2017 [73]), FAL1 (Wang 2017 [72]) and MALAT1 (Huo 2017 [77]) lncRNAs to be more
effective than alkaline phosphatase (ALP) in distinguishing osteosarcoma from healthy
individuals. Notably, Huo (2017 [77]) showed that combined detection of MALAT1 and
alkaline phosphatase (ALP) significantly increased diagnostic sensitivity (Table 1).
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Table 1. Characteristic of the included studies.

Study lncRNA

Sample Cohort Methods Diagnostic Value Prognostic Value

Type Storage OS CTRL EXCT MSRM NRML Pre-SX Post-SX Post-SX +
Chemo Relapse SRVL

Cai 2017 [73] HNF1A-AS1 serum n.r 75
24 bone
tumour;
21 HC

n.r. RT-qPCR n.r.

AUC = 0.845
95% CI 0.759–0.910

p value = n.r.
sensitivity = 87.2%
specificity =88.9%

↑ OS vs.
HC p <

0.01

↑ OS vs.
HC

p < 0.01

←→ OS
vs. HC
←→ OS
vs. BT

p value =
n.r

↑ vs.
Post-S

p < 0.01
n.r.

Chen 2018 [68] EPEL serum LN2 39 42 TRIzol RT-qPCR β-actin

AUC = 0.8817
95% CI

0.8111–0.9523, p <
0.0001

sensitivity = n.r.
specificity = n.r.

↑ OS vs.
HC p <

0.05
n.r. n.r. n.r.

↑ expr
> ↓

SRVL

Chen 2019 [76] HAND2-AS1 serum LN2 48 44 n.r. RT-qPCR β-actin

AUC = 0.8685
95% CI

0.7989–0.9382
p < 0.0001

sensitivity = n.r.
specificity = n.r.

↓ OS vs.
HC p <

0.05
n.r. n.r. n.r. n.r.

Han 2017 [77] ATB serum −80
◦C 60 60 TRIzol RT-qPCR β-actin

AUC = 0.9236
95% CI

0.8756–0.9716
p value = n.r.

sensitivity = 83.33%
specificity = 90%

↑ OS vs.
HC p <
0.0001

n.r. n.r. n.r. n.r.

Huo 2017 [78] MALAT1 serum n.r. 46 40 TRIzol RT-qPCR n.r.

AUC = 0.834
95% CI 0.738–0.906

p. value = n.r.
sensitivity = 80.43%
specificity = 72.50%

↑ OS vs.
HC p <
0.001

n.r. n.r. n.r.
↑ expr

> ↓
SRVL

Jiang 2020 [70] LINC01354 blood LN2 30 30 n.r. RT-qPCR n.r. n.r.
↑ OS vs.
HC p <

0.01
n.r. n.r. n.r. n.r.

Ma 2015 [80] TUG1 plasma −80
◦C 134

36 benign
tumour;
40 HC

TRIzol
LS RT-qPCR GAPDH

AUC = 0.849
95% CI = n.r.

p < 0.001
sensitivity = n.r.
specificity = n.r.

↑ OS vs.
HC p <
0.001)

↑ Pre-S vs
Post-S p <

0.001

↑ newly
diagnosed
vs. post-S
p < 0.001

←→
newly

diagnosed
vs.

relapse
p = 0.632)

n.r.

Sheng 2019 [74] TUG1 plasma n.r. 40 40 TRIzol RT-qPCR β-actin

AUC = 0.9447
95% CI

0.8943–0.9960 p <
0.0001

sensitivity = n.r.
specificity = n.r.

↑ OS vs.
HC p <

0.05
n.r. n.r. n.r.

↑ expr
> ↓

SRVL

Song 2020 [79] FGD5-AS1 serum n.r. 97 100 TRIzol RT-qPCR GAPDH

AUC = 0.893
95% CI = n.r.
p value = n.r.

sensitivity = n.r.
specificity = n.r.

↑ OS vs.
HC p <

0.05
n.r. n.r. n.r.

↑ expr
> ↓

SRVL

Wang 2017 [72] FAL1 serum n.r. 42 n.r. TRIzol RT-qPCR GAPDH

AUC = 0.839
95% CI 0.772–0.951

p value = n.r.
sensitivities = 87.2%
specificities = 89.1%

↑ OS vs.
HC p <

0.01

↑ OS vs.
HC

p < 0.01

←→ OS
vs. HC
←→ OS
vs. bBT
p >0.05

↑ OS vs.
Post-S +
Chemo
p < 0.01

n.r.

Wen 2017 [67] UCA1 serum n.r. 85 74 TRIzol RT-qPCR GAPDH

AUC = 0.831
95% CI 0.746–0.916

p value = n.r.
sensitivities = 87.2%
specificities = 89.1%

↑ OS vs.
HC p <

0.01
n.r. n.r. n.r. n.r.

Yang 2019 [75] NEF plasma n.r. 49 42 TRIzol RT-qPCR β-actin

AUC = 0.9176,
95% CI

0.8629–0.9724
p value = n.r.

sensitivities = n.r.
specificities = n.r.

↓ OS vs.
HC p <

0.05
n.r. n.r. n.r. n.r.

Zhang 2021 [69] LINC01278 serum fresh 66 66 TRIzol RT-qPCR GAPDH

AUC = 0.945
95% CI =

0.908–0.982
p value <0.001

sensitivity = 90.91%
specificity = 88.00%

↑ OS vs.
HC p <

0.01
n.r. n.r. n.r.

↓ expr
> ↑

SRVL

Zhao 2019 [71] LINK-A plasma n.r. 62 48 RNAzol RT-qPCR GAPDH

(metastatic cases)
AUC = 0.9141,

95% CI
0.8511−0.9771 p <

0.0001
sensitivity = n.r.
specificity = n.r.

↑ OS vs.
HC p <

0.05
n.r. n.r. n.r. n.r.

Abbreviations: AUC—area under the curve (from receiver operating characteristic—ROC curve); BT—bone tumor; bBT—benign bone
tumor; chemo—chemotherapy; CTRL—control; EXCT—extraction; expr—expression (lncRNA abundance); HC—healthy control; MSRM—
measurement; n.r.—not reported; NRML—normalization; OS—osteosarcoma; RT-qPCR—real-time quantitative polymerase chain reaction;
SRVL—survival; SX—surgery.

The expression levels of HNF1A-AS1, TUG1, and FAL1 were the only ones to be mon-
itored during the course of disease so far. Notably, both studies showed an augmentation
of lncRNA expression to be associated with relapse.
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Finally, an increase of EPEL (Chen 2019 [76]), MALAT1 (Huo 2019 [77]), TUG1 (Sheng
2019 [74]), and FGD5-AS1 (Song 2020 [79]) or a decline in LINC01278 (Zhang 2021 [69])
levels, respectively were found to be associated with a poor prognosis in OS.

6. Circulating lncRNAs Associating with OS Show High Degree of Heterogeneity

Genome browsers for research in comparative genomics, evolution, sequence varia-
tion, and transcriptional regulation were used to further identify additional information
with respect to the thirteen retrieved lncRNAs. Results were extracted and are listed in
Table 2.

Here, we found that the majority of the circulating lncRNAs that have been studied for
their potential as biomarkers for OS, so far, are very large (above 2000 nucleotides (nt)) with
a complex transcriptional organization that produces several different splicing variants
(SVs). The longest lncRNA identified was MALAT1, of which the primary sequence is
8779 nt and produces three SVs, while HAND2-AS1 shows the most varied transcriptional
regulation, being the gene with the largest number of exons in the group, producing eleven
SVs (Table 2). In contrast, FAL1 is the shortest lncRNA (566 nt) consisting of only one
SV. Notably, whether only specific SVs are sorted in the secretory pathway to reach the
bloodstream is still unknown.

The sub-cellular localization of retrieved lncRNAs was also studied and an interesting
picture emerged: not only were cytoplasmic-located lncRNAs found in the bloodstream
(ATB, HNF1A-AS1, LINC01278, LINC01354, LINK-A, UCA1), but also the nuclear-limited
EPEL, FAL1, FGD5-AS1, MALAT1 and NEF. Additionally, the lncRNAs, HAND2-AS1 and
TUG1, were detected in both cellular compartments, as shown by fluorescence in situ
hybridization (FISH) [81–84].

Although the molecular mechanism to produce circulating lncRNAs is still poorly
characterized and their biological significance remains elusive, the secretion of circulating
cytoplasmic lncRNAs (cc-lncRNAs) is thought to be similar to that underlying miRNA ex-
port, which is based on active secretion mediated by membrane-bound vesicles or through
a vesicle-free RNA-binding protein dependent pathway [60,85,86]. Instead, circulating
nuclear lncRNAs (cn-lncRNAs) might primarily originate from the passive leakage of dead
cells. In this scenario, ATB, HNF1A-AS1, LINC01278, LINC01354, LINK-A and UCA1 could
play active roles in cell-to-cell communication that might be relevant to disease progression
and be worth future investigation.

The presence of a poly-adenylation (A) tail has been documented only for six of the
above-mentioned lncRNAs. In fact, evidence shows that EPEL, HAND2-AS1, TUG1, UCA1
carry sequence motifs recognized by the RNA cleavage complex, while ATB and MALAT1
do not present any typical signal [82,87–89].

Finally, three major classes of lncRNAs have been identified in OS patient blood,
including four antisense (EPEL, FGD5-AS1, HAND2-AS1, HNF1A-AS1), three competi-
tive endogenous RNAs (ceRNAs) (ATB, LINC01278, LINK-A) and three scaffolds (FAL1,
LINC01354, MALAT1). Furthermore, studies have shown that NEF and TUG1 can serve
both as a scaffold and ceRNAs [90–94] (Table 2). However, whether similar modes of action
are retained by circulating lncRNAs upon contact with any recipient cells is yet unknown.
In fact, studies have primarily focused on the potential role of circulating lncRNAs as
biomarkers of human diseases, irrespective of their contribution to the pathology. Investi-
gations on this matter would extend our understanding of the biological significance of
circulating lncRNAs in OS and other human diseases.
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Table 2. Characteristics of the retrieved OS-associated circulating lncRNAs.

lncRNA Gene
Name Chr. Position Class Exons SV Transcript Length

(nt) *

Sub-Cell
Localization

**
Poly(A) Orthologs MOA in OS Other Disease

Annotation ***

ATB AL589182.3 14q11.2 ceRNA 3 1 2144 cytoplasm negative unk

ATB upregulates ZEB1 and ZEB2
expression and promotes OS growth

in vivo in an miR-200s dependent
manner

HCC [95]; NSCLC
[96]; CRC [97,98];
ESCC [99]; GBM

[100]; RCC [101] GC
[102]

EPEL TENM3-
AS1 4q34.3 antisense 5 2 5306; 3353 nucleus positive none

EPEL promotes the migration and
invasion of OS cells by upregulating

ROCK1
GC [103]; LC [87]

FAL1 FALEC 1q21.2 scaffold 2 1 566 nucleus unk none FAL1 promotes G2/M transition and
regulates EMT, p21, Wnt signaling

OC [104]; CIN [105];
EC [106]; HCC [107];

PC [108]

FGD5-AS1 FGD5-AS1 3p25.1 antisense 6 5 3805; 3531 nucleus unk none FGD5-AS1 targets mir320b to promote
invasion and EMT ability.

NB [109]; ESCC
[110]

HAND2-
AS1

HAND2-
AS1 4q34.1 antisense 10 11 5156; 743 cytoplasm,

exosome positive hand2-os1
(Mm)

HAND2-AS1 negatively regulates the
expression level of GLUT1 leading to a

decline in glucose uptake

EC [111]; CRC [112];
CM [113]; HCC

[114]; NSCLC [115]

HNF1A-
AS1

HNF1A-
AS1 12q24.31 antisense 1 1 2455 cytoplasm unk none

HNF1A-AS1 negatively regulates
miR-32-5-p and the Wnt/β-catenin

pathway.

HCC [116,117];
ESCC [118] NSCLC
[119,120]; UBC [121];
CRC [122,123]; GBM

[124]

LINC01278 LINC01278 Xq11.1 ceRNA 5 6 3006; 831 cytoplasm unk none

LINC01278 suppresses the proliferation
and apoptosis of OS cells through
mediating miR-134-5p/KRAS axis;

LINC01278 sponges the miR133a-3p
leading to a positive regulation of

PTHR1.

HCC [125]; TC [126]

LINC01354 LINC01354 1q42.2 scaffold 3 1 944 cytoplasm unk none
LINC01354 promote OS cell EMT and

invasion through up-regulating integrin
β1

CRC [127]

LINK-A LINC01139 1q43 ceRNA 2 1 1540 cytoplasm unk none LINK-A positively regulates HIF1α to
drive metastasis HCC [128]; OC [129]

MALAT1 LINC00047 11q13.1 scaffold 2 3 8779; 8,302 nucleus negative Malat1 (Mm)

MALAT1 sponges a number of miRNAs
to regulate a plethora of cellular targets;
scaffold EZH2 to suppress E-cadherin

expression

several cancers
reviewed in

[130–132]

NEF LINC01384 20p11.21 ceRNA 3 1 675 nucleus unk unk NEF reduces the expression of
miRNA-21

HCC [92]; GC [133];
NSCLC [134]; SCLC

[135]; GBM [136]

TUG1 LINC00080 22q12.2 scaffold,
ceRNA 4 8 7653; 5260 cytoplasm,

nucleus positive tug1 (Mm);
Tug1 (Rn)

TUG1 positively regulates AKT
signaling, miR-140-5p/PFN2 axis and

RUNX2; TUG1 positively regulates
HIF-1α via silencing of miR-143-5p;

TUG1 sponges the miR153

several cancers
reviewed in [137]

UCA1 LINC00178 19p13.12 ceRNA 3 1 2314 cytoplasm positive none

UCA1 sponges miR-513b-5p leading to
an upregulation of E2F5 and Cyclin E;

UCA1 silences the PTEN/AKT signaling
pathway

several diseases
reviewed in

[138,139]

Abbreviations: ceRNA—competing endogenous RNA; CIN—cervical cancer; CM—cardiomyopathies; CRC—colorectal cancer; EC—
endometrial cancer; EMT—epithelial-mesenchymal transition; ESCC—esophageal squamous cell carcinoma; GBM—glioma; GC—gastric
cancer; HCC—hepatocellular carcinoma; LC—lung cancer; Mm—Mus musculus; MOA—mode of action; NB—neuroblastoma; NSCLC—
non-small cell lung cancer; OC—ovarian cancer; OS—osteosarcoma; PC—prostate cancer; RCC—renal carcinoma; Rn—Rattus norvegicus;
SCLC—small cell lung cancer; SV—splice variants; TC—thyroid carcinoma; UBC—urinary bladder cancer; unk—unknown; * the longest
and the shortest SVs are reported. Full review of SV lengths can be found at ensembl.org. ** The subcellular localizations are derived
from experimental evidence and/or database annotations, as reported in PubMed, Embase, Scopus and genecards.org. *** Only studies
employing human tissues to prove lncRNA causality are shown. Studies reporting a predicted disease-lncRNA association or uncertain
causality have been excluded.

7. The lncRNAs-miRNAs Crosstalk Is Critical for the Biological Activities of
Osteosarcoma Cells

Regardless the lncRNA’s presence in the bloodstream, which is relevant to address
their potential as markers of OS, evidence of how the thirteen retrieved lncRNAs are
involved in OS were also researched and is listed in Table 2. This information might be
helpful to further address hypotheses regarding the roles of circulating lncRNAs in the
oncogenesis of bone. Despite all the lncRNAs identified herein being previously associated
with several other cancer types (Table 2), the mode of how they behave in OS to drive or
contribute to pathogenesis remains poorly characterized.

When the thirteen lncRNAs were pooled together and qualitatively analyzed, a
lncRNA–miRNAs regulatory axis emerged as the most prominent network associating
with the OS pathogenic mechanism, with ATB, FGD5, HNF1A-AS1, LINC01278, MALAT1,
NEF, TUG1 and UCA1 lncRNAs being reported for their ability to sponge miRNAs that
affect a plethora of cellular targets critical in malignancy (Table 2). Interestingly, according
to the available data, the regulation of gene expression by a competitive endogenous RNA
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(ceRNA) mechanism is indeed emerging as a leading lncRNA function in OS, as well as in a
remarkable number of other types of cancer (Table 2) (reviewed in [140,141]). For instance,
MALAT1 regulates osteosarcoma progression and facilitates lung metastasis by targeting
several miRNA families [142–144], promotes thyroid cancer progression by regulating
miR-204 [145], and leads to chemoresistance in hepatocellular carcinoma by sponging
miR-140-5p [146]. A total of 17 miRNAs have been identified to be downregulated by
MALAT1 in a fashion that is critical to drive OS, such as miR-202 [144], miR-206 [142], and
miR-26a-5p [147] to mention a few.

Moreover, the ability of EPEL, FAL1, HAND2-AS1, HNF1A-AS1, LINC01354, LINK-A,
MALAT1 and UCA1 lncRNAs to modulate the abundance of transcriptional factors, struc-
tural proteins, or to affect key cellular pathways, such as Wnt/β-catenin and PTEN/AKT,
have been also described [68,70–72,78,115,148,149]. In this regard, Wnt signaling emerged
as most regulated by the retrieved circulating lncRNAs. However, whether the regulation
of such targets is similarly driven by lncRNAs–miRNAs crosstalk or involves a more com-
plex network is still unknown. Nonetheless, due to the large flexibility to form a variety
of different complexes, either with proteins or nucleic acids, it is not surprising that a
lncRNA can play different roles at once. For instance, in vitro and in vivo experiments
highlighted MALAT1 and UCA1’s capabilities to either regulate miRNA expression or
scaffold transcriptional regulators in bone oncogenesis [78,150–152].

8. Concluding Remarks

The role of lncRNAs in OS tumor development has only recently been investigated,
yet several studies have shown that the deregulation of a number of lncRNAs influence the
occurrence and progression of osteosarcoma, as reviewed in [153].

Many of these lncRNAs proved to have a detectable expression levels in either serum
or plasma samples, making them promising biomarker candidates for non-invasive diag-
nostics. However, the clinical application of the so-called circulating lncRNAs in OS remain
elusive. We herein systematically searched, summarized, and discussed all the studies to
show the relationship between circulating lncRNA expression levels and OS that can be
helpful to address future intervention of circulating lncRNAs in OS management.

The expression levels of thirteen circulating lncRNAs consistently correlated with
those measured in OS tissues and have a high potential diagnostic value. In particular, dys-
regulation of seven lncRNAs (EPEL, FGD5-AS1, FAL1, HNF1A-AS1, LINC01278, MALAT1
and TUG1) that can be detected in OS blood also coincide with the clinical stage of the
disease, metastatic progression or survival, and, above all, with therapeutic response.

Nonetheless, there is still a long way to go to adopt circulating lncRNA in OS clinical
practice. In fact, all circulating lncRNAs in OS have only been reported in a single study
with the exception of TUG1, therefore there is a need for systematic validation studies that
investigate multiple lncRNAs with well-characterized and diverse patient samples. In
other terms, the research cohort size should be bigger and selection bias should be reduced
as much as possible.

This study also highlights a few other critical points that future investigations should
consider to support the exploitation of circulating lncRNAs in the management of OS. For
instance, blood preparation and endogenous controls in qRT-PCR analysis of circulating
lncRNAs still require a standardization methodology. The choice of anticoagulant, the
volume required for sample collection, and the temperature for storing the samples need
to be more uniform to keep the analysis among different groups consistent. Controversial
results might arise through the use of different quantitative standards in qRT-PCR. In this
regard, a recent study identified the lncRNA RP11-204K16.1, XLOC_012542, and U6 small
nuclear RNA as the most stable reference genes for circulating lncRNA analysis in serum
for cervical cancer patients [154]. Similarly, a set of these reference genes should be further
identified for the quantitative analysis of circulating lncRNAs in OS.

In summary, this study acknowledges both the pros and cons of the use of circulating
lncRNAs as biomarkers for OS. The low degree of invasiveness, affordability and time
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saving procedures make a few circulating lncRNAs, whose expression coincide with the
clinical stage of the disease, promising novel biomarkers to add to current clinical practices
for the management of OS. However, the lack of standard methodologies and current small
sample size still pose a high risk of bias and strongly limit their use.

Several studies have discovered that lncRNAs play critical regulatory roles in the
formation of micrometastases through modulating specific signaling pathways in cancer
cells [155,156]. Furthermore, the early detection of abnormal expression levels of several
serum lncRNAs was linked to the late onset of metastases [157]. As a result, repeated
serum lncRNA samples may aid in the detection of micrometastasis, which is only partially
detectable using traditional diagnostic approaches. Therefore, along with their application
as OS biomarkers, circulating lncRNAs might also be novel candidate targets. In fact, the
presence of lncRNAs originating from tumor tissues in the bloodstream strongly suggests a
role in cell-to-cell communication that might be relevant to oncogenesis. However, limited
studies have been done in this field so far, which mainly point out a role in angiogenesis
promotion [158] or in the modulation of how the surrounding cells respond to circulating
miRNAs [159].

Overall, the functions of circulating lncRNAs are still unknown. Understanding the
mechanisms to regulate the expression levels of circulating lncRNAs might provide new
clues on the oncogenesis of OS and new tools in translational medicine
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