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Abstract

Novel spatially restricted genetic manipulations can be used to assess contributions made by synaptic plasticity to learning and
memory, not just selectively within the hippocampus, but even within specific hippocampal subfields. Here we generated genetically
modified mice (NR1DDG mice) exhibiting complete loss of the NR1 subunit of the N-methyl-d-aspartate receptor specifically in the
granule cells of the dentate gyrus. There was no evidence of any reduction in NR1 subunit levels in any of the other hippocampal
subfields, or elsewhere in the brain. NR1DDG mice displayed severely impaired long-term potentiation (LTP) in both medial and lateral
perforant path inputs to the dentate gyrus, whereas LTP was unchanged in CA3-to-CA1 cell synapses in hippocampal slices.
Behavioural assessment of NR1DDG mice revealed a spatial working memory impairment on a three-from-six radial arm maze task
despite normal hippocampus-dependent spatial reference memory acquisition and performance of the same task. This behavioural
phenotype resembles that of NR1DCA3 mice but differs from that of NR1DCA1 mice which do show a spatial reference memory deficit,
consistent with the idea of subfield-specific contributions to hippocampal information processing. Furthermore, this pattern of
selective functional loss and sparing is the same as previously observed with the global GluR-A l-a-amino-3-hydroxy-5-methyl-
4-isoxazelopropionate receptor subunit knockout, a mutation which blocks the expression of hippocampal LTP. The present results
show that dissociations between spatial working memory and spatial reference memory can be induced by disrupting synaptic
plasticity specifically and exclusively within the dentate gyrus subfield of the hippocampal formation.

Introduction

Lesion studies have repeatedly implicated the hippocampus in spatial
learning (O’Keefe & Nadel, 1978; Morris et al., 1982). The dentate
gyrus (DG) is a key input node for the hippocampal formation.
Perforant path fibres originating in entorhinal cortex provide a major
source of highly processed sensory information to DG granule cells.
Selective, fibre-sparing, colchicine lesions of the DG, like complete
hippocampal lesions, result in robust impairments of both spatial
working memory (SWM) and spatial reference memory (SRM;
Sutherland et al., 1983; McNaughton et al., 1989; Xavier et al.,
1999). For example, DG lesions dramatically increase both SRM and
SWM errors on a four-from-eight radial maze task (Jeltsch et al.,
2001).

N-methyl-d-aspartate receptor (NMDAR)-dependent long-term
potentiation (LTP) is an experimental model of synaptic plasticity

and is widely hypothesized to be the neural mechanism that underlies
hippocampus-dependent spatial memory (Martin et al., 2000). Early
evidence supporting this hypothesis came from pharmacological
studies. Intracerebroventricular (i.c.v.) infusion of the NMDA antag-
onist AP5 impaired acquisition of the fixed location, hidden platform,
SRM watermaze task and blocked LTP at perforant path–granule cell
synapses in the DG (Morris et al., 1986). Indeed, the behavioural
impairment was strongly correlated with the magnitude of LTP
blockade in the DG measured in vivo in the same animals that had
undergone watermaze testing (Davis et al., 1992).
Concerns have nonetheless been raised regarding the possibility that

extra-hippocampal sensorimotor side-effects of the i.c.v. drug treat-
ment might contribute to the behavioural impairment (e.g. Keith &
Rudy, 1990; Cain et al., 1996). Furthermore, subsequent studies
showed that rats treated with NMDA antagonists could acquire the
SRM watermaze task, despite a lack of perforant path LTP, provided
they had received prior, drug-free pre-training (Bannerman et al.,
1995; Saucier & Cain, 1995). By contrast, NMDA antagonists
produce robust and reliable SWM impairments even after task-specific
pre-training (e.g. Tonkiss & Rawlins, 1991; Steele & Morris, 1999),
suggesting potentially important differences between the substrates
supporting SRM and SWM (Bannerman et al., 2006).
The development of genetically modified mice has greatly facili-

tated the study of LTP-like processes in memory. Novel, spatially
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restricted genetic manipulations now allow mutations to be targeted
selectively to a specific brain region, thus permitting the contribution
made by synaptic plasticity to learning to be assessed, not only
selectively within the hippocampus but also within specific hippo-
campal subfields. We have, for the first time, generated genetically
modified mice (NR1DDG mice) exhibiting complete loss of the NR1
subunit of the NMDAR, specifically in the granule cells of the DG. We
simultaneously assessed the contribution of NMDAR-dependent
synaptic plasticity in perforant path–granule cell synapses to both
SWM and SRM using a three-from-six radial arm maze task. We have
previously used this task to demonstrate impaired SWM but intact
SRM in mice lacking the GluR-A (GluR1) l-a-amino-3-hydroxy-
5-methyl-4-isoxazelopropionate (AMPA) receptor subunit (Schmitt
et al., 2003). This mutation disrupts the normal expression of
hippocampal LTP in adult mice (Zamanillo et al., 1999; Hoffman
et al., 2002; Jensen et al., 2003).

Methods

Generation of NR1DDG mice

Mice with (loxP5171) (Lee & Saito, 1998) flanking NR1 gene (Grin1)
exons 11–18 (NR12lox ⁄ 2lox mice) were generated by gene targeting in
embryonic stem (ES) cells. The vector for NR1 gene targeting was
constructed from genomic 129 ⁄ Sv mouse strain DNA with a similar
strategy as the NR1 gene targeting vector used previously (Single et al.,
2000). One loxP5171 element was inserted into theHindIII site in intron
10 of the NR1 gene by which this site was destroyed for diagnostic
purposes. A loxP5171 flanked PGK promoter driven neomycin
phosphotransferase gene (PGKneo) as a positive selection marker
cassette harbouring a diagnostic EcoRI site at its 5¢ border (pLoxPneo-
2.5171, modified from plasmid pLoxPneo-1) (Nagy et al., 1998) was
inserted in-sense into an artificial XhoI site in intron 18 of theNR1 gene.
To enable the discrimination of the mutant allele from the wild-type
allele during expression analysis at the mRNA level, four silent
mutations that correspond to the homologous rat sequence (Jerecic et al.,
2001) were introduced by PCR mutagenesis into each of four adjacent
codons that encode part of theM1 segment on exon 14. For linearization,
the pUC19 gene targeting vector backbone was modified to yield a
uniqueNotI site at the 5¢ border of the genomic construct. The final gene
targeting vector (pNR13lox) comprised 3.5-kb 5¢ and 8-kb 3¢ homolog-
ous NR1 gene sequences relative to the selection marker cassette, of
which 0.9 kb 5¢ to the loxP5171 element in intron 10 serve as the short
recombinogenic arm. About 40 lg of NotI linearized gene targeting
vector was electroporated [Bio-Rad Gene Pulser (Hercules, CA, USA),
240 V, 500 mF, 107 cells] into mouse R1 ES cells as described (Nagy
et al., 1993) and G418 resistant cells (250 lg ⁄ mLG418) were screened
for homologous recombination events using PCR with primer
N1in10do5 (5¢-CCCTGGCTATTCTCCCATAGG-3¢) located in intron
10 5¢ to the gene targeting vector sequences in intron 10 and primer
N1in10LOXup2 (5¢-CGAAGTTATGCAGCTTATACATTC-3¢) lo-
cated in intron 10 on the 5¢ border of the loxP5171 element in intron
10, yielding a PCR product of 956 bp for the homologous recombina-
tion event. The integrity of the recombined region was verified by
sequencing. The PGKneo selection marker was selectively removed
from the NR13lox allele by transient Cre (cause of recombination
enzyme)-recombinase expression upon electroporation of the recom-
binant ES cells with moderate amounts (10 lg) of Cre-recombinase
encoding plasmid pMC-Cre-recombinase (Gu et al., 1993). The desired
removal was identified by PCR with primer N1ex18do1 (5¢-CTGGGA-
CTCAGCTGTGCTGG-3¢) located on exon 18 5¢ to the loxP5171
element in intron 18 and primer N1in18up1 (5¢-AGGGGAGGCAACA-

CTGTGGAC-3¢) located in intron 18 3¢ to the loxP5171 element
in intron 18, yielding PCR products of 455 bp for the wild-type
NR1 allele and 500 bp for the mutant NR12lox allele. Successful
homologous recombination and PGKneo cassette removal was further
verified via EcoRI Southern blot analysis using a 830-bp AvrII-EcoRV
rat NR1 cDNA fragment (Single et al., 2000) as a probe. Correctly
targeted ES cells were injected into mouse blastocysts (C57Bl ⁄ 6) and
the resulting chimeric animals were bred with C57Bl ⁄ 6 mice leading to
positive heterozygous offspring with a mendelian distribution of the
NR12lox allele. TheNR12lox allele was monitored via PCR genotyping of
genomic DNA from tail tip biopsies using primers N1ex18do 1 and
N1in18up1 (see above). Mice homozygous for the targeted NR1 allele
were called NR12lox. Expression levels of the mutant NR12lox allele and
the wild-type allele were comparable in heterozygous mice as estimated
from the peak heights of the four discriminative silent mutations on exon
14 in the sequence chromatograms of RT-PCR products. Moreover,
Western blot analysis of forebrain protein revealed no difference inNR1
subunit expression in C57Bl ⁄ 6 mice and NR12lox mice.
To inactivate functionally the floxed NR12lox alleles by Cre recomb-

inase specifically in DG granule cells, we employed NR12lox mice
(Shimshek et al., 2006) and the transgenes from transgenic mouse lines
TGCN10–itTA and TGLC1 (Fig. 1A). Mice from the line TGLC1 encode a
bidirectional tTA-dependent responder gene cassette containing tTA
responsive minigenes for Cre recombinase and the firefly luciferase
(Schonig et al., 2002). Mice from mouse line TGCN10–itTA contain a tTA
transgene, which is specifically expressed inDGgranular cells and some
CA1 pyramidal neurons. The Cre-recombinase expression and Cre-
recombinase activity patterns of TGCN10–itTA and TGLC1 have been
described previously (Krestel et al., 2004). For the histological,
electrophysiological and behavioural analysis of DG-specific NMDAR
depletion we produced sizeable cohorts of NR12lox mice transgenic for
transgenes of TGCN10–itTA and TGLC1 (NR1DDG mice), along with
NR12lox littermates lacking the transgenes of eitherTGCN10–itTA orTGLC1

referred to herein as control mice.
Molecular and biochemical experiments with mice were performed

according to the institutional guidelines at the animal facility of
the Max Planck Institute for Medical Research. Genetic manipulations
of mouse embryos were licensed by the ‘Regierungspräsidium
Karlsruhe’ (37-9185.81 ⁄ 35 ⁄ 97).

In situ hybridization

In situ hybridizations were performed as described previously (Jerecic
et al., 2001). Mice were anaesthetized with CO2 and killed by cervical
dislocation; the brains were removed and frozen on dry ice immedi-
ately. Horizontal 15 lm cryostat sections were mounted on slides and
antisense oligonucleotide NR1ratis (5¢-GAACTGACAGT-
CCTACTAGCAACCACAGTGTGCTC-3¢) was used for monitoring
the expression of the NR12lox allele. The oligonucleotides were
3¢-endlabelled with terminal deoxynucleotide transferase and [a-35S]-
dATP. Cryostat sections were hybridized overnight at 42 �C in 50%
formamide, 0.6 m NaCl, 0.06 m sodium citrate (4 · SSC), 10%
dextran sulphate with 1 pg ⁄ mL probe. Sections were washed in
1 · SSC at 60 �C for 20 min and exposed to Kodak XAR-5 films
(Sigma-Aldrich Chemie, Steinheim, Germany).

Immunohistochemistry

Immunohistochemistry was performed as described previously (Jerecic
et al., 2001; Krestel et al., 2004). In brief, coronal sections (100 lm)
were stained with primary antibodies anti-NMDAR1 (1 : 2000 poly-
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clonal, Chemicon, Temecula, CA, USA), anti-Cre (1 : 8000, poly-
clonal, BabCO, Berkley, CA, USA), and peroxidase coupled secondary
antibodies (1 : 600, Vector, Burlingame, CA, USA). Antibody-treated
brain slices were stained with DAB (Sigma-Aldrich Chemie). DAB-
developed slices were then mounted on slides, air-dried, covered with
cover slips using eu-kitt (O. Kindler, Freiburg, Germany) and finally
imaged with a Zeiss microscope.

Electrophysiological assessment of NR1DDG mice

Experiments were performed on hippocampal slices prepared from
adult (2–4 months old) NR1DDG mice and wild-type control mice. The
animals were killed with an overdose of desflurane anaesthetic
(Suprane, Baxter AS, Oslo, Norway) and the brains were removed and
cooled in artificial cerebrospinal fluid (ACSF, 0–4 �C, bubbled with
95% O2 ⁄ 5% CO2, pH 7.4) containing (in mm): 124 NaCl, 2 KCl, 1.25
KH2PO4, 2 MgSO4, 1 CaCl2, 26 NaHCO3 and 12 glucose. Transverse

slices (400 lm) were cut from the middle portion of each hippocam-
pus with a vibroslicer and placed in a humidified interface chamber at
30 ± 1 �C and perfused with ACSF containing 2 mm CaCl2. In order
to enhance the induction of LTP in the DG, we partially blocked
GABAA-mediated inhibition with (–)-bicuculline methochloride
(6 lm; Tocris Cookson Ltd, Bristol, UK). The resulting hyperexcit-
ability was counteracted by increasing the concentration of Ca2+ and
Mg2+ to 4 mm in accordance with earlier reports (Wigström &
Gustafsson, 1983, 1985). In some experiments 50 lm dl-2-amino-
5-phosphonopentanoic acid (DL-AP5; Sigma-Aldrich, Oslo, Norway)
was present during the experiments in order to block NMDAR-
mediated synaptic plasticity (see Supplementary material).
Orthodromic synaptic stimuli (50 ls, < 300 lA, 0.1 Hz) were

delivered alternately through two tungsten electrodes, either with one
situated in the stratum radiatum and another in the stratum oriens of
the CA1 region, or with electrodes in the outer and middle molecular
layer of the upper blade of the dentate area. Extracellular synaptic

Fig. 1. Depletion of functional NMDAR in NR1DDG mice. (A) Genetic elements used for cell-specific NR1 gene deletion. Expression of itTA from the
CamK2A ⁄ Grin2c hybrid promoter (transgene from line TGCN10–itTA) drives Cre-recombinase expression by activation of the bidirectional Ptetbi promoter of the
luciferase ⁄ Cre tet-responder (transgene from line TGLC1). Cre-recombinase excises the loxP (black triangle) flanked exons 11–18 (boxes) of the gene-targeted
modified NR12lox alleles. Exons encoding membrane regions 1–3 (TM1–3) are given in black. In cells with active Cre the NR12lox alleles are converted to NR11lox

alleles. (B) In situ hybridization of littermate control animals (left) and DG-specific NR1 deletion mice (NR1DDG) (right) with NR1-specific probe. The lower panels
give a zoom of the hippocampus from the respective upper panels (scale bars: 1 mm). (C) Cre immunohistochemistry (top panels) of littermate NR12lox (control,
left) and NR1DDG mice (right) and with anti-NMDAR1 antibody (bottom panels) (scale bar: 1 mm).
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responses were monitored by two glass electrodes (filled with ACSF)
placed in the corresponding synaptic layers. After obtaining stable
synaptic responses in both pathways (0.1 Hz stimulation) for at least
10–15 min, one pathway was tetanized (100 Hz, 1 s) while the other
served as a non-tetanized control pathway. The tetanic stimulation
strength was just above the threshold for generation of a population
spike in response to a single test stimulus.
Synaptic efficacy was assessed by measuring the slope of the field

EPSP (fEPSP) in the middle third of its rising phase. Six consecutive
responses (1 min) were averaged and normalized to the mean value
recorded 1–4 min prior to tetanic stimulation. Data were pooled across
animals of the same genotype and are presented as mean ± SEM. The
difference between tetanized and non-tetanized pathways was statis-
tically evaluated by a Student’s paired, two-tailed t-test, and when
comparing LTP levels between control and NR1DDG mice we used a
linear mixed model analysis.
Electrophysiological experiments were conducted according to the

Norwegian Animal Welfare Act and the European Union’s Directive
86 ⁄ 609 ⁄ EEC. Efforts were made to minimize the number of animals
used.

Behavioural assessment of NR1DDG mice

Subjects

All behavioural testing was conducted with experimentally naı̈ve, age-
matched, male transgenic mice and littermates. The cohort consisted
of NR1DDG mice (n ¼ 8), heterozygous NR12lox ⁄ TGLC1 mice
(n ¼ 12) and heterozygous NR12lox ⁄ TGCN10–itTA mice (n ¼ 4). As
the behavioural performance of the two groups of heterozygous mice
was indistinguishable, their data were combined forming a single
control group (control; n ¼ 16). All mice were first subjected to a
battery of tests assessing sensorimotor function and emotionality (see
Supplementary material).

Assessment of spatial memory on the radial maze

Spatial memory was assessed using a six-arm radial maze which was
made of wood and painted grey (Schmitt et al., 2003). Each arm
(60 · 7 cm) was surrounded by a 1 cm raised edge and extended from
a circular central platform (18 cm diameter). At the end of each arm
was a stainless steel food well. Mice were rewarded with 0.1 mL
sweetened, condensed milk (diluted 50 : 50 with water). The maze
was elevated 80 cm above the floor in a well-lit laboratory
(6.3 · 2.7 m) which contained various extra-maze cues (e.g. laborat-
ory equipment, stools, bench, posters). The central platform was
surrounded by a transparent Perspex cylinder (18 cm diameter, 30 cm
high). At the entrance to each arm of the maze was a Perspex door
(6 cm wide, 7 cm high) which could be controlled by the experimen-
ter using a series of strings.
Mice were maintained on a restricted feeding schedule at 85% of

their free-feeding weights. The mice were first habituated to drinking
sweetened, condensed milk on two arms of an elevated Y-maze (Reisel
et al., 2002) in their colony holding room (i.e. not the testing room).
Once all the mice were running freely on the Y-maze and readily
consuming the milk rewards, testing on the radial arm maze began.

Spatial reference memory acquisition

Mice were first trained to discriminate between baited and non-baited
arms on a radial maze task in which the same three out of six arms
were always baited. The three baited arms were allocated such that
two of these arms were adjacent and the third was between two non-
rewarded arms (e.g. arms 1, 2 and 4). Different combinations of arms

were used as far as possible, although the arm allocations were
counterbalanced across groups. At the start of a trial, a mouse was
placed individually on the central platform. Mice were allowed to
explore freely and consume all the milk rewards available. During this
acquisition phase, Perspex doors prevented mice from re-entering an
arm that they had already visited on that trial (Schmitt et al., 2003). All
the doors were closed each time the mouse returned to the central
platform, and confined the mouse there for 5 s until the next choice.
Once an arm had been visited, its door remained closed for subsequent
choices. Thus, all six doors were open for the first choice, five for the
second choice, four for the third choice, and so on. Using this testing
procedure it was not possible for the mice to make working memory
errors. This provides a pure test of SRM acquisition, and is dependent
upon the hippocampus (Schmitt et al., 2003). SRM errors were
defined as entries into arms that were never baited (maximum of three
errors per trial). The maze was rotated periodically to prevent the mice
from using intra-maze cues to solve the task. Mice received 32 trials in
total. Data were arranged in eight blocks of four trials for analysis. By
this stage all of the animals had acquired the SRM component of the
task and were making very few, if any, errors.

Simultaneous assessment of spatial working and reference memory

The SWM component of the task was then introduced. The mice
received a further 24 trials (with an inter-choice interval of 5 s) in
which the same three out of six arms were baited, but now they were
no longer prevented from re-entering a previously chosen arm. The
doors were solely used to retain the animals on the central platform
between choices. SWM errors were scored when a mouse entered an
arm that had already been visited on that trial. SRM errors were scored
as before. The effect of increasing the retention interval between
successive choices was then assessed (Tonkiss & Rawlins, 1991;
Steele & Morris, 1999; Lee & Kesner, 2002). The minimum amount of
time that the animal spent on the central platform between choices
with all doors closed was increased from 5 to 15 s and a further 24
trials were conducted.

Data analysis

Each type of memory error (SRM and SWM) was analysed
separately. The data were analysed in blocks of four trials. Where
the assumptions of normality and equal variance were met, data were
analysed by anova with subsequent analysis of simple main effects
where appropriate. If the data failed to satisfy these assumptions,
transformations (square root transform) were applied and anova

performed on the transformed data set. To make the figures more
legible, however, all the data are presented as un-transformed means
(± SEM).

Assessment of pattern separation

We then further analysed the data to determine whether the likelihood
of errors made by the mice was dependent on the spatial separation of
the arms that were to be discriminated. Computational models have
allocated specific roles in information processing to the different
subfields of the hippocampal formation, and have suggested a key role
for the DG in spatial pattern separation (Marr, 1971; McNaughton,
1989; O’Reilly & McClelland, 1994; Shapiro & Olton, 1994; Rolls,
1996; Rolls & Treves, 1998; Gilbert et al., 2001). For each animal the
three allocated baited arms consisted of two adjacent baited arms and
one baited arm that was bordered on either side by non-baited arms
(e.g. arms 1, 2 and 4 or 3, 4 and 6, etc.). If the NR1DDG mice exhibit
impaired pattern separation then it might be expected that they will
display (i) more SRM errors during acquisition into a non-rewarded
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arm bordered by two rewarded arms than into adjacent non-rewarded
arms (having adjusted for the 2 : 1 ratio of adjacent to single arms),
and (ii) more SWM errors into adjacent baited arms compared with
repeat entries into the single baited arm (again having adjusted for the
2 : 1 ratio of adjacent to single arms). Presumably two adjacent arms
have greater overlap between their relevant spatial cues than two arms
that are separated by at least one other arm; hence discriminating
between adjacent arms entails a greater need for spatial pattern
separation. We therefore separately examined the nature of the spatial
memory errors made during (i) SRM acquisition and (ii) testing on the
SWM component of the task at both the 5-s and 15-s delay conditions
(making allowance for the 2 : 1 ratio of adjacent to single arms within
each condition). Errors into the single arm and errors into the adjacent
arms (divided by 2) were thus compared for each phase of the study.

Behavioural experiments were conducted under the auspices of the
UK Home Office Project and Personal licenses held by the authors
(UK).

Results

Generation of NR1DDG mice

We generated mice carrying floxed NR1 alleles and used tTA-induced
Cre-recombinase expression to destroy the NR1 gene specifically in
DG cells (Fig. 1A; see also Krestel et al., 2004). Analysis of brains
from several postnatal day 60 mice by in situ hybridization (Fig. 1B)
and immunocytochemistry (Fig. 1C) revealed that in all NR1DDG

mice, the NR1 mRNA and NR1 subunits were selectively reduced in
DG granule cells, whereas mRNA and protein levels appeared
unchanged in other subfields of the hippocampal formation, as well as
in other forebrain structures.

Electrophysiological assessment of NR1DDG mice

Deletion of NR1 subunit expression in DG cells led to a complete loss
of NMDAR-mediated LTP at DG synapses. Tetanization of the
afferent fibres in slices from six control mice produced a persistent
homosynaptic potentiation observed 40–45 min after the tetanic
stimulation in both the lateral perforant path ⁄ granule cell synapses
(tetanized vs. non-tetanized pathway: 1.30 ± 0.08 vs. 1.00 ± 0.03,
P < 0.01, n ¼ 16; Fig. 2A) and in the medial perforant path ⁄ granule
cell synapses (1.32 ± 0.08 vs. 0.98 ± 0.03, P < 0.01, n ¼ 19;
Fig. 2B). In slices from seven NR1DDG mice, however, the tetanized
pathway was not significantly different from the non-tetanized
pathway, either in the lateral perforant path pathway (1.03 ± 0.03
vs. 1.02 ± 0.03, n ¼ 19, P ¼ 0.77; Fig. 2A) or in the medial
perforant path pathway (1.06 ± 0.04 vs. 0.99 ± 0.03, n ¼ 18,
P ¼ 0.12; Fig. 2B), demonstrating that in both pathways LTP is
NMDAR-dependent (Hanse & Gustafsson, 1992), and is lost when the
expression of NMDARs in DG granule cells is abolished by Cre-
recombinase mediated NR1 gene destruction.

Despite the fact that we could not detect a loss of the NR1 subunit
mRNA or NR1 protein in other principal neurons in the hippocampal
formation, we found that Cre recombinase was expressed in some
CA1 cells (Fig. 1C). In addition, we found that the DG-specific Cre
expression model showed some Cre recombinase activity in CA1
pyramidal cells (Krestel et al., 2004). To investigate if this residual Cre
activity affects NMDAR function in CA1 we analysed the NMDAR-
dependent LTP at Schaffer collateral–CA1 synapses (Collingridge
et al., 1983). Statistical evaluation revealed no difference in the
amount of LTP obtained in the two genotypes (P ¼ 0.96; Fig. 2C).
The average fEPSP slope in control mice measured 1.35 ± 0.03

(n ¼ 23) of the pre-tetanic value 40–45 min after tetanization (non-
tetanized pathway: 1.02 ± 0.03), and in NR1DDG mice the magnitude
of LTP was 1.34 ± 0.04 (n ¼ 26) (non-tetanized pathway:
1.02 ± 0.01).

Behavioural assessment of NR1DDG mice

Spatial learning was assessed on a radial maze. Mice were first trained
to discriminate between three initially baited and three never-baited
arms under conditions in which it was not possible to make working
memory errors (Schmitt et al., 2003). Both control and NR1DDG mice
successfully acquired the 3 ⁄ 6 SRM task, making progressively fewer
errors as training proceeded (Fig. 3A; main effect of block,
F7,154 ¼ 133.1, P < 0.0001). There was no evidence of any SRM
impairment in the NR1DDG mice (main effect of group and groups by
blocks interaction, both F < 1).
The working memory component of the task was then introduced.

NR1DDG mice made significantly more SWM errors than control
animals (main effect of group for square root transformed data,

Fig. 2. Specific loss of LTP in DG granule cell synapses in NR1DDG mice.
Summary graphs of normalized field EPSP slopes evoked in the control (open
circles) and the NR1DDG mice (filled circles) in the lateral perforant path
(A), medial perforant path (B), and in the CA1 region (C). For the sake of
clarity, only the non-tetanized pathways of NR1DDG mice are shown in A and B
(filled triangles), whereas the non-tetanized pathways (filled and open triangles)
for both groups of animals are shown in C. The insets show superimposed
means of six consecutive synaptic responses in the tetanized pathway before
and 40 min after (open arrows) tetanization from control (left) and NR1DDG

mice (right). Filled arrows indicate the time of tetanic stimulation. Vertical bars
indicate SEM.
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F1,22 ¼ 11.9, P < 0.005; block, F5,110 ¼ 2.9, P < 0.05; interaction,
F < 1; Fig. 3B). Within these same trials, both groups of mice
continued to make very few reference memory errors, and never
differed on this measure (main effect of group for square root
transformed data, F1,22 ¼ 1.5, P > 0.20; main effect of block and
groups by blocks interaction, both F < 1; Fig. 3C).
The effect of increasing the retention interval between successive

choices from 5 to 15 s was then assessed. Both groups made more
working memory errors and again the NR1DDG mice made more errors
than controls (main effect of group for square root transformed data,
F1,22 ¼ 10.0, P < 0.005; main effect of block, F5,110 ¼ 10.5,
P < 0.0001; groups by blocks interaction, F < 1). There were still
no group differences in terms of SRM errors (main effect of group for
square root transformed data, F1,22 ¼ 1.7, P > 0.20; groups by blocks
interaction, F5,110 ¼ 1.4, P > 0.20). A comparison of working
memory performance across the two delay conditions revealed a
significant effect of delay condition (F1,22 ¼ 7.4, P < 0.05), but no
significant groups by delays interaction (F1,22 ¼ 2.8, P > 0.10;
Fig. 3D).
We then further analysed the data to determine whether the

likelihood of errors made by the mice was dependent on the spatial

separation of the arms that were to be discriminated. Summed across
reference memory training, both the NR1DDG and the control mice
were almost exactly as likely to make an error to a single as to an
adjacent non-rewarded arm (mean errors for NR1DDG mice, 16.38 to
the single arm and 15.5 per adjacent arm; mean errors for the control
mice, 16.38 per single arm and 15.91 per adjacent arm; F < 1;
Fig. 4A). A separate analysis considered whether the first reference
memory error made in each testing trial was more likely to be to the
single, never-baited arm or one of the adjacent, never-baited arms,
over each of the eight, four-trial blocks of acquisition. Again, there
were no differences in error patterns between groups (main effect,
F < 1; interaction with blocks of training, F7,154 ¼ 1.21, P > 0.20;
Fig. 4B), even though during training overall error probabilities
changed from high to low levels in both groups.
In contrast to reference memory acquisition, which was normal in

NR1DDG mice, overall working memory performance had differed
between groups. We therefore considered whether this difference
might result from impaired spatial pattern separation. Although
working memory errors were more common overall in the NR1DDG

mice, they were no more likely to be into adjacent than into single
initially baited arms (Fig. 4C). anova revealed no overall main effect
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Fig. 3. NR1DDG mice display normal spatial reference memory but impaired spatial working memory on a 3 ⁄ 6 radial arm maze task. (A) Mean (± SEM) number
of reference memory errors per trial (maximum of three) for control (white circles; n ¼ 16) and NR1DDG mice (black squares; n ¼ 8) during reference memory
acquisition in the 3 ⁄ 6 radial arm maze task (doors prevented working memory errors in this phase of the experiment). Each block consisted of four trials.
(B) Mean (± SEM) number of working memory errors per trial during simultaneous assessment of working and reference memory performance on the task (doors
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of error type (F < 1), and importantly no groups by error type
interaction (F1,22 ¼ 1.7, P > 0.20) nor any groups by error type by
delay condition interaction (F < 1). Analysis of simple main effects
showed that the NR1DDG mice made significantly more of both error
types (F1,37 > 6.1, P < 0.02 for both), and that there were no
differences in the number of each error type made by either group
(both F < 1). Inspection of the data revealed that neither wild-type nor
NR1DDG mice were visiting the baited arms in a consistent order across
trials.

Discussion

In the present study we generated genetically modified mice (NR1DDG

mice) exhibiting substantial loss of the NR1 subunit of the NMDAR
specifically in the granule cells of the DG. There was no evidence of
any reduction in NR1 subunit levels in any of the other hippocampal
subfields, or anywhere else in the brain. NR1DDG mice displayed
severely impaired LTP in both medial and lateral perforant path inputs
to the DG, whereas LTP was unchanged in CA3-to-CA1 cell synapses
in hippocampal slices. Behavioural assessment of the NR1DDG mice
revealed a clear SWM impairment in the absence of any effect on
hippocampus-dependent SRM performance on the same task. Import-
antly, this contrasts with the effects of fibre-sparing, colchicine lesions
which disrupt both SWM and SRM performance (Sutherland et al.,
1983; McNaughton et al., 1989; Xavier et al., 1999; Jeltsch et al.,
2001). The present results therefore demonstrate that SWM and SRM
are, at least in part, subserved by different information processing
mechanisms within the hippocampus.

The working memory deficit in the NR1DDG mice is unlikely to
result from non-mnemonic effects of the mutation on sensorimotor or
motivational aspects of performance, because these same animals
showed normal SRM acquisition and performance on the same
apparatus with the same sensorimotor and motivational demands, and
the same spatial cues. Moreover, a full battery of tests, including
explicit assays of motor function and emotionality, revealed that in
general control and NR1DDG mice were indistinguishable (see
Supplementary material). The NR1DDG mice did, however, appear
less anxious on some measures in the successive alleys test (a

modified form of the elevated plus maze). This may reflect the
hypothesized role of the hippocampus, particularly its ventral portion,
in anxiety (Richmond et al., 1999; Gray & McNaughton, 2000;
Kjelstrup et al., 2002; Bannerman et al., 2004; McHugh et al., 2004),
although this reduced anxiety phenotype was not observed on the
other tests of emotionality that were conducted. The absence of a
sensorimotor phenotype in these mice is obviously not surprising in
view of the spatially restricted nature of the mutation, but highlights
the advantage of this more selective approach.
Spatially restricted genetic modifications have also allowed the role

of synaptic plasticity in the other hippocampal subfields to be
examined. For example, specific deletion of the NR1 subunit of the
NMDAR in CA3 resulted in impaired performance on a modified
version of the classic Morris watermaze task (Nakazawa et al., 2002).
Despite successful acquisition of the standard reference memory
paradigm, mutant animals performed less well than controls during a
recall test that was conducted with a reduced number of the original
cues. This was consistent with a deficit in pattern completion and thus
with the predictions that have been made by computational models
(Marr, 1971; McNaughton & Morris, 1987; Hasselmo et al., 1995;
Rolls, 1996). In addition, in a subsequent study NR1DCA3 mice were
also impaired in a watermaze SWM, delayed-matching to place task,
after continued training to daily novel platform locations (Nakazawa
et al., 2003). Thus, at least in some respects, the present demonstration
of impaired SWM but preserved SRM in NR1DDG mice shows some
parallels with the behavioural phenotype of the NR1DCA3 mice. Both
mouse lines demonstrated intact SRM acquisition and recall provided
all of the spatial cues were still available, but were nonetheless
impaired on a SWM task. There is thus some similarity between the
phenotypes resulting from NR1 deletion in the DG and from NR1
deletion in its downstream target in CA3. In contrast to both of these
mouse lines, deletion of NR1 in the CA1 subfield of the hippocampus
leads to impaired SRM acquisition in the watermaze (Tsien et al.,
1996). Although the generality of this finding to other tests of SRM
such as the radial maze remains to be established, it would appear that
the development of spatially restricted genetic modifications has
identified specific and dissociable roles for synaptic plasticity in the
different hippocampal subfields.

Fig. 4. NR1DDG mice display normal spatial pattern separation on the radial arm maze task. (A) Mean (± SEM) total number of reference memory errors during
acquisition (32 trials) to the single non-baited arm and adjacent non-baited arms (divided by 2) for control (white bars; n ¼ 16) and NR1DDG mice (black bars;
n ¼ 8). (B) Mean (± SEM) percentage of trials during acquisition (32 trials) on which the first reference memory error is to the single non-baited arm.
(C) Mean (± SEM) total number of working memory errors to the single-baited arm and adjacent baited arms (divided by 2) during testing with either a 5- or 15-s
inter-choice interval (24 trials for both).
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Computational models have also suggested a role for the DG in
pattern separation (Marr, 1971; McNaughton, 1989; O’Reilly &
McClelland, 1994; Shapiro & Olton, 1994; Rolls, 1996; Rolls &
Treves, 1998). Empirical evidence in support of this theory has so far
come from lesion studies in rats. Selective, fibre-sparing colchicine
lesions of the DG affect performance on both spatial working and
reference memory tasks (Sutherland et al., 1983; McNaughton et al.,
1989; Xavier et al., 1999). More recently, DG lesions restricted to
dorsal hippocampus (but not dorsal CA1 lesions) have been shown to
produce deficits in spatial working memory on a matching to place
task but, importantly, the impairment was only evident when the two
spatial locations that were to be discriminated were close together,
thus presumably maximizing the need for pattern separation (Gilbert
et al., 2001). Further analysis of our data revealed that NR1DDG mice
made substantially and significantly more SWM errors than controls to
both the single and the adjacent baited arms. They were just as likely
to return in error to the single baited arm as to an adjacent baited arm.
There was no evidence of a significant difference in the number of
errors made to single and adjacent baited arms for the knockout mice.
These results therefore fail to provide positive evidence for the
hypothesis that NMDAR-mediated synaptic plasticity in the DG
supports aspects of spatial pattern separation. The present results
cannot, however, completely rule out a role for NMDARs in the DG in
spatial pattern separation in the present task, although they do clearly
show that any putative role must be restricted to the working memory
component. Furthermore, if a failure of pattern separation is indeed
responsible for the working memory dysfunction in NR1DDG mice,
then even arms separated by 120� must retain sufficient stimulus
overlap to require spatial pattern separation. It is perhaps surprising
that the change in degree of overlap between arms 60� apart and arms
120� apart was not sufficient to reveal a graded working memory
impairment in errors made to single or paired arms. It nonetheless
remains possible that using a radial arm maze with a greater number of
arms, so that adjacent arms are even closer together and single arms
could be even further apart than is possible with a six-arm maze, might
have revealed a clear, graded impairment in the NR1DDG mice as a
function of degree of arm separation (but see also Gilbert et al., 2001).
We have also previously observed the simultaneous coexistence of

impaired SWM with spared SRM performance in genetically modified
mice with a global deletion of the GluR-A subunit of the AMPA
receptor (Reisel et al., 2002), including studies which used the very
same radial maze task (Schmitt et al., 2003, 2005). GluR-A– ⁄ – mice,
like the NR1DDG mice in the present study, were perfectly able to
discriminate between and remember which arms of a radial maze are
baited and which are never baited (SRM), but they are unable to keep
track of which arms they have entered on a particular visit to the maze,
and thus avoid repeat entry (SWM) errors. On the basis of these results
we have suggested that there are two distinct and dissociable
information processing mechanisms within the hippocampus (Schmitt
et al., 2004). We have suggested that one is a GluR-A-dependent
system that allows the animal to respond rapidly and flexibly on the
basis of trial-specific conditional information that needs to be retrieved
from memory. This presumably underlies SWM performance, and
could make a key contribution to aspects of episodic memory in
humans. The other is a GluR-A-independent mechanism allowing the
associative strength or reward valence of places or locations in the
environment to be increased and ⁄ or decreased gradually or incre-
mentally over many trials. The latter could underpin SRM acquisition
on tasks such as the Morris watermaze or radial maze.
The limitation of studying global knockouts is that the deletion of

the GluR-A subunit is not exclusive to the hippocampus and that it is
often difficult to ascribe the behavioural phenotype to a particular

brain area. Even forebrain-specific manipulations provide only a
relatively limited increase in selectivity, and are not completely
hippocampus-specific (Schmitt et al., 2005). Therefore, an alternative
explanation of the impaired SWM and spared SRM in GluR-A– ⁄ –

mice might be that deficits in areas of the brain other than the
hippocampus which mediate specific aspects of working memory
performance, such as areas of the frontal lobe, underlie the behavioural
effects, and that the GluR-A deletion does not in fact affect
hippocampal spatial information processing, thus leaving SRM
performance unaffected. Although we have previously reasoned that
the absence of robust and enduring frontal lesion effects on SWM
tasks such as the radial maze and the spatial non-matching to place
version of the T-maze argues against such an account (e.g. Shaw &
Aggleton, 1993; Aggleton et al., 1995; Delatour & Gisquet-Verrier,
1996, 2000; Dias & Aggleton, 2000), this is logically a weaker
position than being able to demonstrate a SWM impairment, in the
absence of an SRM deficit, as a result of a manipulation that is
exclusively hippocampal. The present results now show that it is
indeed possible to dissociate SWM from SRM on the three-from-six
radial maze task with an exclusively hippocampal manipulation.
Therefore, the present results with NR1DDG mice suggest that

NMDAR-mediated synaptic plasticity in the DG contributes to a
memory mechanism that encodes information associated with partic-
ular events or episodes. This deficit in NR1DDG mice is consistent with
previous pharmacological studies that have reliably shown SWM
impairments following i.c.v. infusion of the selective NMDA antag-
onist AP5 (Tonkiss & Rawlins, 1991; Steele & Morris, 1999; Bast
et al., 2005), at doses of the drug which have been shown also to block
perforant path–granule cell LTP in the DG in vivo (Good &
Bannerman, 1997). Furthermore, Lee & Kesner (2002) showed that
infusion of AP5 directly into the DG induces delay-dependent SWM
impairments. However, the present study represents a major advance
over pharmacological approaches where the diffusion of the drug to
other subfields and other brain structures is inevitably less well
controlled.
Arguably, the present demonstration of normal SRM acquisition in

the NR1DDG mice is also potentially consistent with the previous report
that AP5-treated rats are able to acquire a hippocampus-dependent
SRM task in the watermaze, despite a complete block of LTP at
perforant path–granule cell synapses, provided they have received prior
task-specific pre-training (Bannerman et al., 1995). A precise explan-
ation as to why the presence or absence of pre-training, the exact nature
of the pre-training and its extent may all influence the subsequent
outcome of studies assessing the effects of NMDAR antagonists on
SRM remains to be fully formulated (Bannerman et al., 2006).
In conclusion, NR1DDG mice displayed a lack of LTP at perforant

path–granule cell synapses in the DG, whereas LTP in the CA1
subfield was unaffected. This electrophysiological phenotype was
associated with a very selective impairment in a rapid, flexible
hippocampal memory system that may contribute to aspects of
episodic memory performance in humans. These results demonstrate a
clear dissociation between SWM and SRM on the radial maze
following the manipulation of synaptic plasticity exclusively within
the DG of the hippocampal formation.

Supplementary material

The following supplementary material may be found on www.
blackwell-synergy.com
Appendix S1. Assessment of sensimotor function and emotionality in
NR1DDG mice.
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