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Oligodendrocyte precursor cells (OPCs), also known as NG2 glia, arise from neural
progenitor cells in the embryonic ganglionic eminences that also generate inhibitory
neurons. They are ubiquitously distributed in the central nervous system, remain
proliferative through life, and generate oligodendrocytes in both gray and white matter.
OPCs exhibit some lineage plasticity, and attempts have been made to reprogram
them into neurons, with varying degrees of success. However, little is known about
how epigenetic mechanisms affect the ability of OPCs to undergo fate switch and
whether OPCs have a unique chromatin environment around neuronal genes that
might contribute to their lineage plasticity. Our bioinformatic analysis of histone
posttranslational modifications at interneuron genes in OPCs revealed that OPCs had
significantly fewer bivalent and repressive histone marks at interneuron genes compared
to astrocytes or fibroblasts. Conversely, OPCs had a greater degree of deposition of
active histone modifications at bivalently marked interneuron genes than other cell
types, and this was correlated with higher expression levels of these genes in OPCs.
Furthermore, a significantly higher proportion of interneuron genes in OPCs than in other
cell types lacked the histone posttranslational modifications examined. These genes had
a moderately high level of expression, suggesting that the “no mark” interneuron genes
could be in a transcriptionally “poised” or “transitional” state. Thus, our findings suggest
that OPCs have a unique histone code at their interneuron genes that may obviate the
need for erasure of repressive marks during their fate switch to inhibitory neurons.

Keywords: NG2, oligodendrocyte, inhibitory neuron, reprograming, chromatin, histone post-translational
modification
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INTRODUCTION

Oligodendrocyte precursor cells (OPCs), also known as NG2
glia, NG2 cells, or polydendrocytes, are ubiquitously present
throughout the central nervous system and comprise 2-9% of
total cells (Dawson et al., 2003). They represent a fourth major
population of glial cells endowed with proliferative and self-
renewing ability throughout life. Their most well known function
is to generate oligodendrocytes in the developing and mature
central nervous system, but they also exhibit some degree of
lineage plasticity, as briefly reviewed below. The term NG2
glia has been used in the context where the properties of
these cells other than their role as oligodendrocyte-producing
cells is discussed. However, there has been no evidence that
a subpopulation of OPCs generates oligodendrocytes, while
other distinct subpopulations receive inputs from neurons
(Bergles et al., 2000) or generate astrocytes (Zhu et al., 2008,
2011). On the contrary, accumulating evidence supports the
notion that neuronal inputs onto OPCs affect the dynamics of
oligodendrocyte lineage cells (Gibson et al., 2014; Hill et al.,
2014). Thus, the consensus in the field is that NG2 glia are
equated with OPCs and represent cells that have the potential
to generate oligodendrocytes but have other functions as well
(Nishiyama et al., 2016). OPCs are identified by the expression
of NG2 and platelet-derived growth factor receptor alpha
(PDGFRα) (Nishiyama et al., 1996, 2016). Neither protein is
exclusively present in OPCs. NG2 is also expressed by vascular
pericytes and a subpopulation of macrophages that enter the CNS
(Stallcup et al., 2016) though not on resting ramified microglia
(Nishiyama et al., 1997). Pdgfra transcript is also present at a low
level in neurons and other unidentified cell types, though it is
>60-fold more abundant in OPCs (Vignais et al., 1995; Zhang
et al., 2014). Thus, it has become the convention to identify
OPCs by the combinatorial expression of the oligodendrocyte
transcription factor Olig2 (see below) and one of the two cell
surface antigens, NG2 or PDGFRα.

Development of OPCs and Their Close
Relation to Interneurons
During mid-embryonic development, OPCs arise in discrete
domains in the ventral germinal zones, and this process is
dependent on the basic helix-loop-helix (bHLH) transcription
factor Olig2 (Lu et al., 2002; Takebayashi et al., 2002; Zhou
and Anderson, 2002). Olig2 induces Sox10, a member of the
SoxE family of high mobility group (HMG) box-containing
transcription factors. The onset of Sox10 expression marks the
commitment to the oligodendrocyte lineage (Kuhlbrodt et al.,
1998; Kuspert et al., 2011). This is shortly followed by their
emigration from the germinal zone and onset of expression of
NG2 and PDGFRα (Nishiyama et al., 2016; Weider and Wegner,
2017). In the forebrain, a subset of OPCs is generated from ventral
neural progenitor cells (NPCs) in the ganglionic eminences,
which also give rise to interneurons (Spassky et al., 1998; Nery
et al., 2001; Kessaris et al., 2006; Miyoshi et al., 2007). Ventral
NPCs express the pro-interneuron homeodomain transcription
factors Dlx1 and 2, and when Dlx1/2 expression is sustained,

these cells become GABAergic interneurons. A subpopulation
of these NPCs down-regulate Dlx1/2 and up-regulate Olig1/2.
Cross-repression of Dlx1/2 and Olig1/2 plays an important role in
the determination of interneuron and oligodendrocyte cell fates
(Petryniak et al., 2007; Silbereis et al., 2014). Once specified, OPCs
do not revert to a neuronal fate under physiological conditions,
and they either self-renew or differentiate into oligodendrocytes
(see below for more discussion on neuronal fate of OPCs)
(Nishiyama et al., 2009, 2016).

Additional OPCs that arise from the dorsal germinal zones
of the spinal cord expand and migrate ventrally to become
intermingled with the first cohorts of OPCs that arise ventrally
(Cai et al., 2005; Fogarty et al., 2005; Vallstedt et al., 2005).
In the forebrain, the dorsal progenitors arise in the ventricular
zone of the dorsal pallium characterized by the expression of the
homeodomain transcription factor Emx1 (Kessaris et al., 2006;
Winkler et al., 2018). Both populations appear to be PDGF and
PDGFRα-dependent (Calver et al., 1998; Fruttiger et al., 1999).
In addition, there is a small subpopulation of OPCs that appears
to arise perinatally around the lateral ventricles as well as in the
hindbrain in the absence of PDGF signaling (Timsit et al., 1995;
Spassky et al., 1998; Zheng et al., 2018), and in the forebrain
this population rapidly generates oligodendrocytes (Zheng et al.,
2018). However, the exact origin of this subpopulation, its
relationship to other oligodendrocytes, and the target axons they
myelinate remain unclear.

OPC-Astrocyte Fate Plasticity
Oligodendrocyte precursor cells exhibit some degree of lineage
plasticity under developmental and pathological conditions.
For example, some OPCs in the prenatal ventral gray matter
downregulate oligodendrocyte lineage genes and become
protoplasmic astrocytes, contributing to as many as one-third of
the local astrocyte population, while at the same time generating
oligodendrocyte lineage cells in the same region (Zhu et al.,
2008, 2011; Huang et al., 2014). The ability of OPCs to become
astrocytes is restricted to the ventral gray matter and is never seen
in white matter tracts throughout the neuraxis. OPCs also switch
their fate from oligodendrocytes to protoplasmic astrocytes upon
deletion of Olig2 (Zhu et al., 2012; Zuo et al., 2018). The fate
switch mediated by loss of Olig2 occurs only in OPCs in the
dorsal forebrain but not in the ventral gray matter and becomes
less efficient with age. Deletion of histone deacetylase 3 (HDAC3)
in OPCs causes downregulation of Olig2 and phenocopies Olig2
deletion (Zhang et al., 2016). Curiously, the distribution of
OPCs in the postnatal brain that are converted into functional
protoplasmic astrocytes by Olig2 deletion coincides with the
distribution of OPCs that arise in the dorsal germinal zone
defined by the expression the homeodomain transcription factor,
Emx1 (Kessaris et al., 2006; Zhu et al., 2012; Winkler et al., 2018).
The differences in the astrocyte fate and fate potential of OPCs in
ventral and dorsal forebrain could arise from differences in the
chromatin environment of OPCs from the two different sources.

The Neuronal Fate of OPCs
The neuronal fate of OPCs has been highly debated. Earlier
studies showed that exposure of OPCs from postnatal rat optic
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nerves to bone morphogenetic protein 2 (BMP2) caused them
to revert to a neural stem cell-like state, upregulate Sox2,
and subsequently differentiate into neuron-like cells in culture
(Kondo and Raff, 2000, 2004). Sox2 belongs to the SoxB1 family
of HMG box-containing transcription factors and is necessary
for neural stem cell maintenance (Graham et al., 2003; Thiel,
2013). It is also used as one of the four transcription factors to
induce pluripotency in somatic cells (Takahashi and Yamanaka,
2006). In OPCs in the postnatal rat optic nerve, Sox2 expression
is repressed by methylation at lysine residue 9 of histone H3
(H3K9), and derepression of Sox2 is critical for their fate change
to neuronal cells (Lyssiotis et al., 2007).

More recent genetic fate mapping studies suggest that it
is unlikely that neurons comprise a significant physiological
progeny of OPCs (Dimou et al., 2008; Rivers et al., 2008;
Zhu et al., 2008, 2011; Kang et al., 2010). A few studies have
detected a small number of neuronal cells in different CNS
regions (Rivers et al., 2008; Guo et al., 2010; Robins et al.,
2013), but the findings have not yet revealed a consistent rule
regarding the location or the functional subtype of neurons
that are generated from OPCs, and one cannot rule out the
possibility that neurons are detected in the genetic fate mapping
studies due to ectopic expression of the cre recombinase
in common progenitor cells or mature neurons (Nishiyama
et al., 2014; Tognatta et al., 2017). Since OPCs are unique
from other CNS cell types in that they remain proliferative
through adulthood, one can combine genetic fate mapping
with continuous labeling with 5-ethynyl-2′-deoxyuridine (EdU),
which results in EdU incorporation into >98% of OPCs in
young adult mice. Under these conditions, although >96%
of oligodendrocytes were also EdU+, none of the neurons
previously interpreted to have originated from OPCs (Rivers
et al., 2008) had incorporated EdU (Clarke et al., 2012). This
further suggests that proliferating OPCs do not generate neurons
under normal physiological conditions.

Direct Neuronal Reprograming From
Oligodendrocyte Lineage Cells
Since the demonstration that four transcription factors could
revert differentiated somatic cells to a pluripotent state
(Takahashi and Yamanaka, 2006), efforts have shifted toward
achieving direct reprograming from one differentiated cell into
another differentiated cell type. Direct neuronal reprograming
has been achieved by transfecting fibroblasts with three
transcription factors Ascl1, Brn2, and Myt1l (Vierbuchen et al.,
2010). Attempts have been made to directly reprogram neurons
from OPCs. Glutamatergic and GABAergic neurons were
reported to have been generated from reactive glial cells in
the injured neocortex following retroviral transduction with the
proneural bHLH transcription factor Neurod1 (Bertrand et al.,
2002; Guo et al., 2014). However, the identity of the cells that were
initially transduced by Neurod1 remains uncertain. Genetic fate
mapping was used to show that Sox10-expressing OPCs in the
injured but not intact neocortex could be converted into neurons
by retroviral delivery of Sox2 and Ascl1, another member of
the bHLH family (Heinrich et al., 2014), although most of

the transduced cells were functionally immature, compared to
neurons reprogramed from astrocytes (Heinrich et al., 2010).
While these two studies only succeeded in reprograming from
OPCs in the injured cortex, another study (Torper et al., 2015)
showed that neurons could be generated from OPCs in the
normal adult striatum by adeno-associated viral (AAV) delivery
of a combination of three transcription factors Ascl1, Lmx1a,
and Nurr1, known to promote reprograming of fibroblasts into
dopaminergic neurons (Caiazzo et al., 2011). The converted
neurons were stably integrated into the circuit, and many
exhibited electrical properties of mature GABAergic neurons
(Pereira et al., 2017). When oligodendrocytes in adult rats
were transduced with an oligodendrocyte-tropic AAV harboring
microRNA against polypyrimidine tract-binding protein, some
of the transduced cells differentiated into neurons (Weinberg
et al., 2017). However, the mechanisms by which direct
neuronal conversion from glial cells occurs have remained
unclear. Elucidation of basic mechanistic principles that promote
or hinder direct neuronal reprograming would facilitate the
application of reprograming strategies to rectify pathological
conditions in which the balance of excitation and inhibition
in the neural circuit is shifted toward too much excitation,
such as epilepsy.

Transcription Factors and Chromatin
Regulators in Cellular Reprograming
Somatic cell reprograming using transduction of four factors
Oct3/4, Sox2, c-Myc, and Klf4 resets the epigenetic state of
a differentiated cell into an induced pluripotent state, with
changes in DNA and histone methylation at the key transcription
factors (Wernig et al., 2007). The efficiency of reprograming
into a pluripotent state drastically increases when the physical
barrier created by nucleosomes around the pluripotency factors
is removed to create an open chromatin state that is accessible
for transcription factor binding (Ehrensberger and Svejstrup,
2012). ATP-dependent chromatin remodeling enzymes and/or
posttranslational modification of histones play an important
role in altering the chromatin state during somatic cell
reprograming to induced pluripotent state. Overexpression of
the BAF complex (Brg/Brahma-associated factors), one of the
four ATP-dependent chromatin remodeling complexes (Hota
and Bruneau, 2016), accelerates and increases the efficiency
of the generation of induced pluripotent stem cells from
fibroblasts by opening the chromatin, thereby obviating the
need for c-Myc in the reprograming process (Singhal et al.,
2010). Moreover, histone posttranslational modifications such as
methylation and acetylation serve as a “code” that is read by
“histone readers” that recruit molecular complexes, leading to
nucleosome reorganization and restructuring of the chromatin
landscape. Inhibition of enzymes that promote chromatin
condensation, such as DNA methyltransferases and histone
deacetylases, can increase the efficiency of generating induced
pluripotent cells (Shi and Jin, 2010). Thus, it is likely that
the chromatin landscape of a differentiated cell affects the
ability of the cell to undergo reprograming. However, little
is known about the chromatin landscape around neuronal
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genes in committed glial cells that might affect their neuronal
reprograming efficiency.

Chromatin Regulators in the
Oligodendrocyte Lineage
Epigenetic factors play critical roles in the oligodendrocyte
lineage and have been studied primarily in the context of
the regulatory mechanisms that affect terminal oligodendrocyte
differentiation and myelination. Inhibiting histone deacetylases
and their targets in OPCs not only compromises oligodendrocyte
differentiation (Shen et al., 2005; He et al., 2007; Ye et al., 2009)
but also upregulates astrocyte and neuronal genes (Liu et al.,
2007). While histone methylation does not appear to have a
major role in oligodendrocyte differentiation, H3K9 methylation
but not H3K27 methylation increases in oligodendrocytes with
age (Liu et al., 2015). In OPCs, H3K9me3 occupancy is
prominent on genes involved in GABA signaling, and in mature
oligodendrocytes, H3K9me3 is associated with genes involved
in neuronal differentiation. H3K27me3 is also associated with
genes involved in neuronal differentiation in both OPCs and
oligodendrocytes.

In addition to histone posttranslational modification (histone
PTM), ATP-dependent chromatin remodeling has also been
implicated in the oligodendrocyte lineage. A member of the
SWI/SNF complex Brg1 (Brahma-related gene 1) is associated
with the regulatory region of myelin genes and forms a complex
with Olig2 (Yu et al., 2013; Bischof et al., 2015; Matsumoto et al.,
2016). The chromodomain-binding proteins comprise another
family of ATP-dependent chromatin remodeling complex. Of
these, Chd7 and Chd8 cooperatively bind to key oligodendrocyte
lineage transcription factors including Olig2 and Sox10 and affect
proliferation, survival, and oligodendrocyte maturation (Marie
et al., 2018). Furthermore, Chd8 functions upstream of Brg1 and
initiates a cascade of nucleosome remodeling events mediated by
Brg1 and Chd7 (Zhao et al., 2018).

While the mechanisms that regulate chromatin landscape in
OPCs are beginning to be unraveled, these studies have been
conducted in the context of regulation of cellular dynamics
within the oligodendrocyte lineage and have focused primarily
on their function at oligodendrocyte and myelin genes. There
is currently little information on how these mechanisms
affect the ability of OPCs to undergo reprograming into
other cell types. Chromatin immunoprecipitation sequencing
(ChIP-seq) for Ezh2, which is the catalytic component the
Polycomb Repressor Complex 2 and catalyzes histone
methylation to generate H3K27me3, has revealed that Ezh2
is enriched at many of the genes that promote neuronal fate
or neuronal differentiation (Sher et al., 2012). Based on these
observations and the close relationship between interneuron and
oligodendrocyte development, we hypothesized that interneuron
genes in OPCs are modified by histone PTMs that facilitate
their reprograming into interneurons. To test this, we have
systematically analyzed active, latent, bivalent, and repressive
histone marks at the promoter and distal regions of interneuron
genes in OPCs and compared them with those in astrocytes
and fibroblasts.

MATERIALS AND METHODS

Interneuron Gene Expression in OPCs
and Other Cell Types
To compile a list of interneuron genes, we curated genes that are
important for interneuron development, function, and identity
from four datasets (Batista-Brito et al., 2008; Zhang et al., 2014;
Zeisel et al., 2015, and the Gene Expression Nervous System Atlas
(GENSAT) database) (Figure 1 and Supplementary Table S1).
The FPKM (fragments per kilobase per million mapped reads)
values corresponding to transcript levels in OPCs and astrocytes
from postnatal day 7 (P7) mouse cortex were obtained from the
RNA-seq database generated by Barres and colleagues (Zhang
et al., 2014)1, from which we extracted FPKM values for the
curated interneuron genes (Supplementary Table S2). Genes
with FPKM <1 were considered “not expressed”. Gene Ontology
analysis was performed with the web toolset g:Profiler (version
r1750_e91_eg38) to identify enrichment of biological processes
(Reimand et al., 2007, 2016) using the g:GOSt gene group
functional profiling function. GO terms with p-value < 0.05 were
considered significantly enriched.

RNA-seq data for interneuron genes expressed in normal adult
skin tissue (dermal fibroblasts) were downloaded from accession
GSE98157 as an FPKM transcript table (Zhao et al., 2019).
Microarray expression data for interneuron genes expressed in
mouse fibroblasts isolated from E13.5 embryos were downloaded
from accession GSE8024 as processed data (Mikkelsen et al.,
2007). RNA-seq data for mouse medial ganglionic eminence
(MGE) isolated from E12.5 embryos were downloaded from
accession GSE99049 as processed FPKMs (Liu et al., 2018).

Chromatin-Immunoprecipitation
Sequencing (ChIP-seq) Analysis
We obtained ChIP-seq data for genomic regions that were
occupied by histone 3 lysine 27 acetylation (H3K27ac) and
histone 3 lysine 4 tri-methylation (H3K4me3) in P2 rat cortical
OPCs (Yu et al., 2013); histone 3 lysine 27 tri-methylation
(H3K27me3) and H3K9me3 in P1 rat cortical OPCs, and histone
3 lysine 4 mono-methylation (H3K4me1) in mouse epiblast stem
cell-derived OPCs (Najm et al., 2011). All animal experiments
were approved by the Institutional Animal Use and Care
Committees. The ChIP-seq data for H3K27ac and H3K4me3
were aligned to the rat rn5 genome build using Bowtie with the
following options: -p 8 –best –chunkmbs 2002. Peak calling was
performed using Model-based Analysis3 of ChIP-seq (MACS)
with a p value cutoff of 1 × e−9. The ChIP-seq data of histone 3
lysine 27 tri-methylation (H3K27me3) and histone 3 lysine 9 tri-
methylation (H3K9me3) were obtained from OPCs isolated from
P1 rat cortices of either sex (Liu et al., 2015), and MACS was used
for peak calling.

For analysis of histone marks in adult human astrocytes
and adult dermal fibroblasts, H3K27ac, H3K4me3, H3K4me1,

1https://web.stanford.edu/group/barres_lab/brain_rnaseq.html
2http://bowtie-bio.sourceforge.net
3http://liulab.dfci.harvard.edu/MACS
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FIGURE 1 | Curated list of interneuron genes. (A) Diagram illustrating the stages of interneuron development and the sets of interneuron genes used. Markers used
to identify interneuron populations are shown. (B) Venn diagram displaying the number of genes obtained from each source and the degree of overlap. A total of 500
genes from P8 neocortical neurons, 82 genes from immature neurons from embryos, 365 genes from cortical interneurons from juvenile mice, and 372 genes from
GENSAT annotated interneurons. (C,D) Bar graphs of the top 10 significant gene ontology (GO) terms (y-axis) of interneuron genes expressed in OPCs (C) and
astrocytes (D). The number of genes in each GO category is shown on the x-axis. GO categories are ordered by p-values. Red represents the most significant GO
terms while blue represents the least significant.

H3K27me3, and H3K9me3 ChIP-seq datasets were generated
by the ENCODE Project Consortium (Consortium, 2012) and
downloaded as narrowPeak files from the roadmap epigenomics
project web portal4 and converted to BED files. ChIP-seq
data for mouse astrocytes were obtained from embryonic stem
(ES) cell-derived NPCs that were differentiated into mature
astrocytes (Tiwari et al., 2018). EncodePeak files for H3K27ac
and H3K4me1 ChIP-seq datasets were downloaded from the
GEO database, accession GSM2535250, and converted to BED
files. H3K27me3 ChIP-seq data for cortical astrocytes that
were isolated at P5, expanded for 10 days and infected with
EGFR-expressing viral supernatant were downloaded from the
GEO database, accession GSE76289, as BED files (Signaroldi
et al., 2016). For analysis of mouse adult dermal fibroblasts,
H3K4me3 and H3K27me3 ChIP-seq datasets were downloaded

4https://egg2.wustl.edu/roadmap/web_portal/

from the GEO database, accession GSE58965, as BedGraph
files and converted to BED files (Park et al., 2017). For
analysis of histone marks in E13.5 mouse embryonic fibroblasts
(MEFs), H3K27ac, H3K4me1, and H3K4me3, ChIP-seq datasets,
broadPeak files were downloaded from the GEO database,
accession GSE31039 generated by the mouse ENCODE project,
and H3K27me3 and H3K9me3 wig files were downloaded
from accession GSE26657 and converted to BED files. For
analysis of histone marks of the MGE region of E12.5
telencephalon, H3K27ac, H3K4me1, H3K4me3, and H3K27me3
ChIP-seq datasets were downloaded from accession GSE85704
as MACS peak output files and converted to BED files
(Sandberg et al., 2016).

All ChIP-seq BED files were used to call for closest genes
using the closest feature utility in bedtools. ChIP peaks were
parsed based on location, with±2 kb from the gene transcription
start site (TSS) defined as promoter, 2 kb downstream from
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gene TSS to 2kb downstream from the end of the last exon
defined as gene body, and any peaks outside those regions defined
as intergenic enhancer. Significant peaks were filtered with a
false discovery rate ≤5% and p-value 1.00e−05. To compare
RNA-seq expression and peak intensity of histone PTMs across
different datasets, signal intensity values within each dataset in
a given cell type were converted to percentiles, ranging from
100 for the gene with the highest mRNA expression or histone
modification peak signal intensity to 0 for the gene with the
lowest mRNA expression or peak signal intensity or no signal
(Supplementary Table S3).

Assay for Transposase Accessible
Chromatin-Sequencing (ATAC-seq)
Analysis
To assess chromatin accessibility, ATAC-seq data for open
chromatin regions from P7 mouse cortical OPCs was
downloaded from accession GSE116598 (Marie et al., 2018),
and bigWig files were converted to BED files and BedGraph
files. ATAC-seq data from adult mouse astrocytes infected
with Xbp1-shRNA in an EAE model was downloaded from
accession GSE121923 as BedGraph files and converted to BED
files (Wheeler et al., 2019). Closest genes to ATAC-seq peaks were
called as described above. For visualization of genome tracks,
BedGraph files were uploaded to the Integrative Genomics
Viewer (Thorvaldsdottir et al., 2013).

RESULTS

Compiling Interneuron Genes
Since OPCs share an early developmental origin with cortical
interneurons, we sought to determine whether OPCs had
specific histone post-translational modifications (histone PTMs)
at interneuron genes, which might facilitate their conversion
into interneurons. We first curated a list of genes that are
expressed specifically in interneurons at different stages of their
development or known to be important for differentiation and
maturation of interneurons from the following four sources
(Figures 1A,B and Supplementary Table S1): (1) The top
500 genes that were enriched in acutely dissociated neurons
from P8 cortex compared to genes expressed by OPCs, and
this list included both excitatory and inhibitory neurons
(Zhang et al., 2014); (2) 82 genes expressed in immature
postmitotic interneuron precursors from E13.5 and E15.5
mouse neocortex (Batista-Brito et al., 2008); (3) 365 genes
expressed in mature interneurons in young adult (P21-P31)
somatosensory cortex and hippocampal CA1 region identified
by single cell RNA-seq (Zeisel et al., 2015); and (4) 372 genes
listed as interneuron-associated genes in the GENSAT database
generated using text annotation search for “interneuron.”
This resulted in a combined list of 890 non-duplicate genes
(Figure 1B). We chose these four sources since they provided
a diverse list of interneuron genes expressed at different
developmental stages. This included genes that are important
for the differentiation, function and subtype specification of

interneurons (Batista-Brito et al., 2008; Rudy et al., 2011;
Pla et al., 2018).

Expression of Interneuron Genes in
OPCs and Astrocytes
We previously noted from published transcriptomic analyses that
OPCs express low levels of transcripts encoding some neuronal
genes (Nishiyama et al., 2016). To systematically determine the
levels of interneuron gene expression in OPCs, we generated a
list of interneuron genes that had an FPKM >1 in the RNA-seq
database generated from purified P7 mouse neocortical OPCs
(Zhang et al., 2014). Of the 890 curated interneuron genes
described above, 46% (405 genes) were expressed (FPKM > 1)
in OPCs, with an average FPKM of 15.8 and median FPKM
of 6.8 (Supplementary Table S2). Gene ontology analysis of
interneuron genes expressed in OPCs revealed an enrichment
of genes involved in nervous system development, neuronal
projection development, and regulating membrane potential, ion
transport and signal transduction (Figure 1C). Some of these
enriched “interneuron” genes may play a role in OPC function
such as process extension and regulation of membrane potential,
supporting a shared function in OPCs and interneurons. We also
examined interneuron gene expression in cortical astrocytes from
P7 mice (Zhang et al., 2014) and found that compared to OPCs,
fewer interneuron genes were expressed in astrocytes (330 genes,
37% of the 890 interneuron genes), with an average FPKM value
of 13.2 and median FPKM of 5.4 (Supplementary Table S2).
Gene ontology analysis of the interneuron genes expressed
in astrocytes revealed that 6 of the 10 top GO terms were
shared with those represented in OPCs. Unique functions for
interneuron genes expressed in astrocytes included neurogenesis
and regulation of synaptic transmission and neurotransmitter
receptor activity, consistent with the known role of astrocytes at
synapses (Figure 1D).

Histone Post-translational Modifications
(Histone PTMs) at Interneuron Genes in
OPCs
We examined whether there were histone PTMs at a subset
of interneuron genes in OPCs that could facilitate their
reprograming into inhibitory neurons. Specifically, we were
interested in determining whether interneuron genes in OPCs
had an enrichment of bivalent histone PTMs. Bivalent genes
are defined as genes that are occupied by both active and
repressive histone PTMs. Many of the bivalently modified genes
are developmentally important genes that regulate cell fate,
and the bivalent marks are often resolved into either active or
repressive marks as the cell differentiates into a more mature
cell type, leading to transcriptional activation or silencing of the
genes, respectively (Bernstein et al., 2006; Zhou et al., 2011). Thus,
genes that are bivalently marked are considered to be repressed
but “poised” for activation.

To determine the key categories of histone PTMs associated
with interneuron genes in OPCs, we analyzed ChIP-seq datasets
from postnatal rodent OPCs for H3K4me1, H3K4me3, H3K27ac,
and H3K27me3 (Yu et al., 2013; Liu et al., 2015; Factor and
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Tesar, unpublished) at the promoter and distal regions of the
890 interneuron genes in OPCs (Figure 2A). The promoter
was defined as ±2kb from TSS (Roh et al., 2006), and distal
region included gene body and intergenic regions. We used
the following criteria to classify histone PTMs at interneuron
genes. Promoter regions were classified into, (1) active histone
PTM defined by H3K27ac occupancy with or without H3K4me3
(Barski et al., 2007; Creyghton et al., 2010; Sandberg et al., 2016);
(2) bivalent histone PTM defined by the dual occupancy of
the active mark H3K4me3 and the repressive mark H3K27me3
(Barski et al., 2007; Creyghton et al., 2010; Rada-Iglesias et al.,
2011; Young et al., 2011; Zentner et al., 2011; Matsumura et al.,
2015); and (3) repressive histone PTM defined by H3K27me3
occupancy without any of the above active marks (Bannister et al.,
2001; Boyer et al., 2006; Barski et al., 2007; Zhu et al., 2013).
Distal regions were classified into (1) active histone PTM defined
by H3K27ac occupancy with or without H3K4me1 (Barski et al.,
2007; Creyghton et al., 2010); (2) latent histone PTM defined by
H3K4me1 occupancy alone (Barski et al., 2007; Guenther et al.,
2007; Bogdanovic et al., 2012; Rada-Iglesias et al., 2012); (3)
bivalent histone PTM defined by occupancy of H3K27ac alone
or in combination with H3K4me1 and/or H3K27me3 (Zentner
et al., 2011; King et al., 2016); and (4) repressive histone PTM
defined by H3K27me3 occupancy alone or in combination with
H3K4me1 (Attanasio et al., 2014). Genes marked with latent
histone PTMs are considered to be ‘primed’ for activation,
and this modification typically precedes H3K27ac deposition.
Interneuron genes that lacked any of the above histone PTMs
were grouped as “no marks,” and interneuron genes that were not
found in the ChIP-seq data were classified as “not found.”

When we examined the histone PTMs at the 890 curated
interneuron genes in postnatal mouse or rat OPCs, surprisingly
none of the interneuron genes were bivalently marked at
the promoter, and only 6.3% were bivalently marked at
distal regions (Figure 2B). None of these were transcription
factors known to be important for interneuron differentiation
(Table 1). Among the interneuron genes, 17.5 and 21.5% had
active histone modifications at promoter and distal regions,
respectively (Figure 2B). While genes with H3K27ac had the
highest transcript levels, those with H3K27ac positioned at
both the promoter and gene body had higher transcript levels
(average FPKM 32.87) than those with H3K27ac positioned
at the promoter (average FPKM 24.42) or gene body (average
FPKM 19.74) alone. Of the key interneuron transcription
factor genes, Dlx2, Lhx6, and Sp9 were in this distal active
category (Table 1).

Only 0.5% of the interneuron gene promoters and 5.7% of
distal regions were repressively marked in OPCs. The majority
of interneuron genes (55.4%) lacked any of the analyzed histone
PTMs at the promoter, and 21% of the genes also lacked the
analyzed PTMs at distal regions. This group of interneuron genes
in OPCs with “no marks” at the promoter included all but one of
the ten key interneuron transcription factor genes (Dlx1, Dlx2,
Dlx5, Lhx6, Lhx8, Lhx9, Sp8, and Sp9). Dlx1, Dlx5, and Dlx6
also lacked the analyzed histone PTMs at distal sites (Table 1).
One-fifth of interneuron genes were latently marked at distal
regions, including transcription factors Lhx5, Lhx8, Lhx9 and

Sp8, suggesting these genes were in a chromatin state “primed
for activation.”

Histone PTMs at Interneuron Genes in
Astrocytes
We next examined whether the number and extent of
histone PTMs at interneuron genes differed between OPCs
and astrocytes, which represent another non-neuronal
neuroectodermally derived cell type. We first compared
human adult astrocytes with OPCs because ChIP-seq data for
all four histone PTMs at the promoter were not available for
mouse astrocytes. The most striking difference between mouse
OPCs and human astrocytes was the abundance of bivalent
histone PTMs at the 890 interneuron genes in astrocytes both
at promoter and distal regions, which represented one-third of
the interneuron genes (Figure 2C), compared to that in OPCs.
A significantly larger proportion of the interneuron genes had
repressive marks in astrocytes than in OPCs at the promoter or
distal sites. All the key interneuron transcription factor genes had
either bivalent or repressive marks in astrocytes (Table 1). Two
other major differences between OPCs and human astrocytes
were the larger proportion of interneuron genes in OPCs with
no marks at the promoter or distal sites and those with distal
latent marks compared with astrocytes. More interneuron genes
in astrocytes had active marks at the promoter than those in
OPCs, while at distal regions, the proportion of actively marked
interneuron genes was slightly lower in astrocytes than in OPCs.

To determine whether the observed differences in histone
PTMs at interneuron genes between murine OPCs and human
astrocytes were due to species differences or a reflection of
the differences between the cell types, we performed a similar
analysis on mouse cells. Since a comparable ENCODE ChIP-
seq datasets from acutely isolated mouse astrocytes was not
available, we used H3K27ac and H3K4me1 ChIP-seq datasets
from ES cell-derived NPCs that had been further differentiated
into astrocytes (Tiwari et al., 2018) and H3K27me3 ChIP-seq
dataset from astrocytes isolated from P5 mouse cortex and
expanded for 10 days in culture (Signaroldi et al., 2016). These
astrocytes exhibited some phenotype of mature astrocytes, such
as the expression of Aquaporin-4 and genes involved in signaling
and cytokine response (Tiwari et al., 2018). Since H3K4me3
ChIP-seq data was unavailable for mouse astrocytes, we analyzed
distal regions only. The abundance of bivalently and repressively
marked genes was similar in human and mouse astrocytes and
much greater than that in OPCs (Figures 2B–D). A notable
difference between mouse and human astrocytes was the higher
proportion of interneuron genes that were latently marked
(Figure 2D), which was comparable to that in OPCs and could
reflect the degree of cell maturity rather than species difference.
The proportions of actively marked interneuron genes in mouse
astrocytes was slightly higher compared to human astrocytes and
comparable to that in OPCs. The key interneuron transcription
factor gene Dlx2 had a distal active mark in both OPCs and
mouse astrocytes, while the other two transcription factor genes
Lhx6 and Sp9 that had active distal PTMs in OPCs had distal
bivalent marks in mouse astrocytes, and those with latent marks
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FIGURE 2 | Histone post-translational modifications (PTMs) at interneuron genes in OPCs and astrocytes. (A) Diagram illustrating the operational classification of
histone PTMs at the promoter and distal regions of interneuron genes used in this study. Red marks indicate active histone PTMs and blue marks indicate repressive
histone PTMs. (B) The proportion of the 890 curated interneuron genes with each category of histone PTMs at promoter and distal regions in postnatal OPCs. (C,D)
The proportion of interneuron genes with each category of histone PTMs at promoter and distal regions in adult human astrocytes (C), and at the distal regions in
mouse astrocytes derived from neural stem cells and matured in culture (D).

in OPCs (Lhx5, 8, 9, and Sp8) had distal repressive marks in
mouse astrocytes. The proportion of interneuron genes with no
marks was similar between human and mouse astrocytes and
represented a significantly lower fraction than those with no
marks in OPCs. Overall, the distribution of histone PTMs at
interneuron genes was highly conserved between the mouse and
human, and the most significant differences in histone PTMs at
interneuron genes between OPCs and astrocytes were the higher

occupancy of bivalent and repressive marks in astrocytes and the
paucity of genes with no marks.

Histone PTMs at Interneuron Genes in
Fibroblasts
We next compared histone PTMs at interneuron genes between
OPCs and fibroblasts. Fibroblasts are mesodermally derived
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TABLE 1 | Histone post-translational modifications at key interneuron transcription
factor genes in different cell types.

OPC Mouse astrocyte Mouse adult fibroblast

Gene Promoter Distal Gene Distal Gene Promoter

Dlx1 No Marks No Marks Dlx1 No Marks Dlx1 Bivalent

Dlx2 No Marks Active Dlx2 Active Dlx2 Active

Dlx5 No Marks No Marks Dlx5 Repressive Dlx5 Repressive

Dlx6 Not Found No Marks Dlx6 Repressive Dlx6 Repressive

Lhx5 No Marks Latent Lhx5 Repressive Lhx5 Repressive

Lhx6 No Marks Active Lhx6 Bivalent Lhx6 Active

Lhx8 No Marks Latent Lhx8 Repressive Lhx8 Repressive

Lhx9 No Marks Latent Lhx9 Repressive Lhx9 Bivalent

sp8 No Marks Latent Sp8 Repressive Sp8 Bivalent

sp9 No Marks Active Sp9 Bivalent Sp9 Repressive

MEF MGE

Gene Promoter Distal Gene Promoter Distal

Dlx1 Active Latent Dlx1 Bivalent Bivalent

Dlx2 Active Bivalent Dlx2 Bivalent Bivalent

Dlx5 Bivalent Repressive Dlx5 Bivalent Bivalent

Dlx6 Bivalent Repressive Dlx6 Bivalent Bivalent

Lhx5 Active Repressive Lhx5 Bivalent Bivalent

Lhx6 Active Active Lhx6 Bivalent Bivalent

Lhx8 Active Active Lhx8 Bivalent Bivalent

Lhx9 Active Bivalent Lhx9 Bivalent Bivalent

Sp8 Active Latent Sp8 Bivalent Bivalent

Sp9 Active Repressive Sp9 Bivalent Bivalent

Human Astrocyte Human Adult Fibroblast

Gene Promoter Distal Gene Promoter Distal

Dlx1 Bivalent Repressive Dlx1 Bivalent Repressive

Dlx2 Bivalent Bivalent Dlx2 Active Active

Dlx5 Bivalent Repressive Dlx5 Bivalent Repressive

Dlx6 Bivalent Repressive Dlx6 Bivalent Repressive

Lhx5 Repressive Repressive Lhx5 Repressive Repressive

Lhx6 Repressive Bivalent Lhx6 Repressive Repressive

Lhx8 Repressive Repressive Lhx8 Bivalent Repressive

Lhx9 Repressive Bivalent Lhx9 Bivalent Repressive

Sp8 Bivalent Repressive Sp8 Bivalent Repressive

Sp9 Bivalent Repressive Sp9 Active Active

Red, active marks; orange, latent mark; green, bivalent marks; blue, repressive
marks; gray, no marks; purple, gene not found in the ChIP-seq dataset.

and are often targeted for direct reprograming. We reasoned
that the mesodermal origin of fibroblasts would result in a
more closed chromatin environment around interneuron genes,
with greater repressive and lower bivalent or active marks.
We first examined adult human dermal fibroblasts, for which
ChIP-seq data for all the histone PTMs were available. The
proportion of repressive and bivalent marks at interneuron
genes was significantly higher both at the promoter and distal
regions in adult human fibroblasts compared to murine OPCs
(Figure 3A). The proportion of these marks was highly conserved

in adult (8-week-old) mouse dermal fibroblasts (Figures 3A,B).
Surprisingly, about one-third of the interneuron genes in mouse
and human fibroblasts had active marks at the promoter, similar
to astrocytes and higher than that in OPCs. Fibroblasts had a
similar proportion of latently marked genes to astrocytes, which
was lower than that in OPCs. The interneuron transcription
factor Dlx2 had active promoter marks in both mouse and human
dermal fibroblasts, while the other interneuron transcription
factor genes had either repressive or bivalent marks in fibroblasts,
with the exception of active promoter marks on Lhx6 in
mouse fibroblasts and active promoter marks on Sp9 in human
fibroblasts (Table 1).

In addition to adult fibroblasts, we examined histone PTMs
at interneuron genes in fibroblasts isolated from E13.5 mouse
embryos to explore age-dependent differences (Figure 3C).
Mouse embryonic fibroblasts (MEFs) are a population of
immature fibroblasts that have been widely used as a starting
population for reprograming. The most notable characteristic
of histone PTMs in MEFs was that two-thirds of interneuron
genes had active modifications at the promoter, which was
significantly higher than that in any other cell types examined,
including OPCs. This was accompanied by a lower proportion
of bivalent and repressive marks at the promoter compared to
adult fibroblasts, though they were higher than in OPCs. The
distal histone PTMs in MEFs were similar to those in adult
fibroblasts except for the larger proportion of latently marked
genes in MEFs, which was comparable to that in OPCs. In
MEFs, the key interneuron transcription factor genes Dlx1, Dlx2,
Lhx5, Lhx6, Lhx8, Lhx9, Sp8 and Sp9 had active modifications
at the promoter, while Dlx5 and Dlx6 were bivalently modified
at the promoter (Table 1). These findings suggest that cells from
developmentally immature animals tended to have more active
promoter and latent distal histone PTMs and fewer genes with
repressive marks than those from more mature animals.

Histone PTMs in Cells From Mouse
Medial Ganglionic Eminence (MGE)
We examined histone PTMs at interneuron genes in cells from
E12.5 MGE as an example of progenitors that were fated to
become inhibitory neurons. The MGE at this developmental
age consists of neural progenitors, neuroblasts, post-mitotic
differentiating inhibitory neurons and a small population
of progenitor cells that are becoming committed to the
oligodendrocyte lineage. The most striking feature of the histone
PTMs in MGE cells was the abundance of interneuron genes with
bivalent marks, particularly at the promoter, which comprised
almost half of the interneuron genes (Figure 3D) and was
higher than in any other cell types, consistent with the presence
of multipotent progenitors in this region. Notably, all the key
interneuron transcription factor genes had bivalent marks at
the promoter and distal sites (Table 1). MGE cells also had a
higher proportion of interneuron genes with active marks at
the promoter and distal regions compared with OPCs, though
this was lower than that in MEFs. The proportion of repressive
modification at the promoter region of interneuron genes was
similar to that in MEFs and OPCs and slightly higher than in
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FIGURE 3 | Histone PTMs at interneuron genes in embryonic and adult fibroblasts and MGE cells. Distribution of histone PTMs at promoter and distal regions of all
890 curated interneuron genes in adult human fibroblasts (A), mouse fibroblasts (B), mouse embryonic fibroblasts (C), and mouse MGE (D). Bar graph of average
expression percentiles (y-axis) of interneuron genes expressed in OPCs (blue), astrocytes (red), adult fibroblasts (dark green), and embryonic fibroblasts (light green)
for each histone PTM category (x-axis) at the promoter (E) and distal regions (F) of interneuron genes.
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OPCs at distal regions. These findings suggest that interneuron
genes were more highly decorated with bivalent histone PTMs
in MGE cells than in other cell types, consistent with previous
reports on bivalent marks in uncommitted progenitor cells
(Bernstein et al., 2006; Boyer et al., 2006; Mikkelsen et al., 2007).

Expression of Interneuron Genes in
Mouse OPCs, Astrocytes, Fibroblasts,
and MGE Cells
To determine if the histone PTM occupancy at interneuron genes
were correlated with transcription, we compared interneuron
genes in each histone PTM category to the RNA-seq data of
different cell types. The FPKM values of interneuron genes in P7
cortical OPCs and astrocytes (Zhang et al., 2014) and the histone
PTM patterns for OPCs are shown in Supplementary Table S2.
We extended the analysis of interneuron gene expression levels
with histone PTM occupancy across the different mouse cell
types. Since the different methods of transcriptome analyses
of the various mouse cell types precluded a direct comparison
of FPKM values, we normalized the range of FPKM or
microarray expression values within each RNA-seq or microarray
dataset to obtain percentiles of transcript expression for each
cell type, ranging from highest at 100th percentile to lowest
at 0th percentile, and compared the percentile values for
interneuron genes among OPCs, mouse astrocytes, adult mouse
fibroblasts, MEFs, and MGE.

Overall, the levels of interneuron transcripts with each histone
PTM category tended to be higher in OPCs than in astrocytes,
with the exception of latently marked interneuron genes, which
were expressed at comparable levels in OPCs and astrocytes
(Figures 3E,F). When comparing transcript levels of interneuron
genes marked by the different histone PTMs, interneuron genes
with active modifications at either the promoter or distal regions
had the highest average expression percentile in all cell types,
as expected. In OPCs, 83% of the interneuron genes with active
marks at the promoter had FPKM values above 1, and the
majority of interneuron genes with FPKM values above 100
had an active modification at the promoter and/or distal region
(Supplementary Table S2).

Generally, there was a good correlation between histone PTMs
at the promoter and transcript levels (Figure 3E). Those with
active marks had the highest level of expression, those with
repressive marks had the lowest expression, and those with
bivalent marks had intermediate levels of expression. Interneuron
genes with no marks at the promoter had a wide range of
expression, from <1 to >100 FPKM, but the average expression
levels of these genes were significantly lower than those with
active marks, and this was true for all cell types. The average
expression level of interneuron genes with no marks at the
promoter was higher than those with repressive marks. However,
in OPCs, the nine key interneuron transcription factor genes
described above that had no marks at the promoter all had
FPKM values of <1, which is consistent with the non-neuronal
phenotype of OPCs.

In OPCs, the expression levels of interneuron genes with
different types of histone PTMs at distal sites did not segregate as

cleanly as the promoter marks. While the genes with distal active
marks had the highest levels of expression, those with latent,
bivalent, repressive or no marks at distal sites were expressed
at similar levels in OPCs. By contrast, in astrocytes, there was a
tighter correlation between expression levels and distal histone
PTMs, similar to the histone PTMs at the promoter. Thus,
interneuron genes with bivalent or repressive marks were more
repressed in astrocytes than in OPCs.

Quantitative Analysis of Histone PTMs at
Interneuron Genes With Bivalent and
Repressive Marks
We explored further into the nature of the bivalent modification
that was detected at an unexpectedly large number of interneuron
genes in astrocytes and fibroblasts from both human and mouse.
The analysis described above did not take into account the ChIP-
seq peak signal intensity of each kind of histone PTM. To more
quantitatively examine the histone PTMs at interneuron genes,
we normalized the range of signal intensities within a histone
PTM dataset to obtain percentiles of signal intensities, ranging
from highest at 100th percentile to lowest at 0th percentile, and
compared the percentile values for each type of histone PTM
at the interneuron genes among murine OPCs, human adult
astrocytes, mouse astrocytes, and human adult dermal fibroblasts.
We were unable to include the MEFs in this comparison because
there was no quantitative output from the available ChIP-seq
data. We limited our analysis to distal sites because there were
too few interneuron genes with bivalent or repressive marks at
the promoter region in OPCs for a meaningful comparison.

The most notable difference between OPCs and astrocytes
or adult dermal fibroblasts was that the signal intensity of
H3K27me3 at distal regions of interneuron genes with both
bivalent and purely repressive histone PTMs was significantly
lower in OPCs compared to human and mouse astrocytes and
adult human fibroblasts (Figures 4A,B). When comparing the
range of the occupancy of the H3K27me3 mark at distal sites
in both bivalently and repressively marked interneuron genes,
the majority of the genes with H3K27me3 in OPCs had signal
intensity values of less than 50th percentile, whereas some of
the highest degrees of enrichment for H3K27me3 at interneuron
genes were found in astrocytes and fibroblasts. We included an
analysis of H3K9me3 as another repressive modification and an
indicator of heterochromatin. The difference between the depth
of H3K9me3 enrichment at interneuron genes in OPCs and
astrocytes was not as prominent as the difference in H3K27me3,
while fibroblasts had a significantly greater deposition of
H3K9me3 compared to OPCs. These observations indicated a
tendency for many of the interneuron genes to be more heavily
enriched for the repressive histone PTM H3K27me3 in astrocytes
and fibroblasts than in OPCs, consistent with lower levels of
interneuron transcripts in astrocytes compared with OPCs.

Chromatin Accessibility in Murine OPCs
and Mouse Astrocytes
We have shown that OPCs have the highest proportion of
interneuron genes that lacked the four histone modifications
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FIGURE 4 | ChIP-seq peak signal intensity at interneuron genes in OPCs and other cell types. Dot plots show signal intensity percentiles (y-axis) for histone PTMs
(x-axis) at interneuron genes in OPCs (blue), human astrocytes (red), mouse astrocytes (pink), and adult human fibroblasts (light green) among the bivalently marked
(A) and repressively marked (B) interneuron genes. Each circle represents the signal intensity percentile data after binning of two adjacently ranked genes. Horizontal
bars represent the means of the signal intensity percentiles within each histone PTM dataset. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, two-way ANOVA, Fisher’s LSD.

analyzed, particularly at key interneuron transcription factors
(Table 1), while this group of “unmarked” genes had the
highest expression of interneuron genes among all mouse cell
types analyzed (Figures 3E,F). In addition to histone PTMs,
the chromatin structure also critically affects transcription by
modulating accessibility of transcription factors (Thurman et al.,
2012). ATAC-seq is a method that uses a mutant Tn5 transposase
to interrogate across the genome for accessible and hence open
chromatin, which can be quantified by degree of transposase-
mediated insertion of sequencing adaptors, measured by the
number of sequencing reads. We analyzed available ATAC-seq
datasets from P7 mouse cortical OPCs (Marie et al., 2018)
and adult mouse cortical astrocytes (Wheeler et al., 2019) to
examine chromatin accessibility around the key interneuron
transcription factors. OPCs had sizeable open chromatin peaks
around the TSS and the first exons of Dlx1, Dlx2 and Dlx6

genes that were largely absent or very sporadic in astrocytes
(Figure 5). This is consistent with the previous report that
genes that are transcribed typically have a large chromatin
peak at the TSS as well as the transcription termination
site (Teif et al., 2012), and suggests a more transcription-
conducive environment at these genes in OPCs. Other key
interneuron transcription factor genes that were unmarked in
OPCs, including Dlx5, Lhx5, Lhx6, and Sp8 also had significant
ATAC-seq reads in OPCs but the peaks appeared similar
between OPCs and astrocytes and seemed more randomly
distributed throughout the genes. Both OPCs and astrocytes
had a chromatin peak around the first exon of the Sp9 gene,
but the intensity was much greater in OPCs. This supports
the notion that interneuron genes lacking the four histone
modifications have a permissive environment and thus may be
“poised” for transcription.
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FIGURE 5 | ATAC-seq genome tracks showing open or closed chromatin regions at key interneuron transcription factor genes. Tracks show peak signal intensity
(y-axis) for open chromatin regions of interneuron genes (x-axis) in mouse OPCs (red, top) and mouse astrocytes (green, bottom). Individual gene maps are shown
in blue. Tracks span +5 kb from first exon and –5 kb from last exon of each gene. Black arrows indicate transcription start site and direction of transcription. Scale
bar = 5 kb.

DISCUSSION

Gene expression is globally regulated by transcription factor
availability and the chromatin environment. Histone PTMs
and ATP-dependent chromatin remodeling complexes play key
roles in defining the chromatin landscape of a given cell
type under different conditions. We focused this study on
examining histone PTMs at interneuron genes in OPCs as
a first step toward gaining a mechanistic insight into how
OPCs can be reprogramed toward an interneuron fate. We
were particularly interested in determining whether histone
PTMs at interneuron genes in OPCs were distributed in a
way that marked them in a “poised state”. Bivalent histone
modifications are characterized by the presence of both active
and repressive histone PTMs. During development, the bivalent
marks are often resolved into either active or repressive
marks as the cell differentiates from a progenitor state into
a mature cell type, resulting in transcriptional activation or
silencing of the genes, respectively (Bernstein et al., 2006;
Zhou et al., 2011). Since OPCs that arise from ventral sources,

which comprise about half of those in the neocortex and are
lineally closely related to interneurons, our initial hypothesis
was that OPCs have an enrichment of bivalent histone PTMs
at interneuron genes, making them “poised for activation,”
compared to other cell types such as astrocytes and fibroblasts,
which are developmentally more distant from interneurons.
However, contrary to our expectations, we found that bivalent
modifications were the least abundant in OPCs at interneuron
genes, and a large majority of interneuron genes either had
active or no histone PTMs at their promoter, while bivalent
marks were a prominent feature of the promoter of interneuron
genes in the MGE.

Active and Latent Histone PTMs at
Interneuron Genes
Using the available transcriptomic data, we found that
interneuron genes were expressed at a higher level in OPCs
than in astrocytes. This led us to closely examine active histone
PTMs in these cells. H3K27ac is a well-characterized active
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histone mark correlated with enhancer activity (Barski et al.,
2007), and H3K4me3 has traditionally been associated with
active promoters, although it is also deposited at 59% of silent
promoters (Barski et al., 2007; Guenther et al., 2007). H3K4me1 is
associated with active enhancers but also functions as a ‘priming’
mark, identifying genes that will become active (Creyghton
et al., 2010; Rada-Iglesias et al., 2011). For this reason, we
classified promoters with H3K4me3 and/or H3K27ac and distal
regions of genes with H3K27ac with or without H3K4me1 as
active. Distal regions associated with H3K4me1 without the
other active PTMs were classified as latent. The presence of
H3K27ac at both the promoter and gene body showed the
greatest correlation with higher transcript levels, as was the
presence of active promoter PTMs, consistent with previous
reports. The proportion of interneuron genes with active histone
PTMs was unexpectedly high in fibroblasts, as we had predicted
that interneuron genes would be more permanently repressed
in mesodermally derived cells. It is possible that histone marks
do not affect chromatin structure by themselves but influence
the binding or activity of other chromatin regulators, such as
ATP-dependent chromatin remodeling enzymes (Zentner and
Henikoff, 2013). The abundance of genes with active promoter
marks in fibroblasts was even greater in MEFs, which could
reflect the generally high degree of open chromatin and active
transcriptional state in embryos.

In OPCs, there were more interneuron genes with latent marks
than in other cell types, particularly those from adults, suggesting
that this could be a PTM that has a more significant function in
cells during development. Consistent with the “priming” function
known for the H3K4me1 mark, the transcript levels of these genes
were comparable to those of distal bivalently marked genes and
lower than those of actively marked genes.

Bivalent and Repressive Histone PTMs at
Interneuron Genes
Contrary to our prediction that many of the interneuron genes
have bivalent marks in OPCs, none of the interneuron genes
had bivalent marks at the promoter in OPCs, and bivalent
marks were more frequently detected in all the other cell
types. Moreover, the relative abundance of bivalent marks was
highly conserved in human and mouse astrocytes. When we
examined quantitatively the degree of enrichment of each of
the specific histone PTMs classified as bivalent marks, the
repressive H3K27me3 mark was significantly more enriched at
interneuron genes in adult human astrocytes than in OPCs. This
was not the case with mouse astrocytes, which had been cultured
from NPCs and matured in vitro for 5 days. Thus, the higher
H3K27me3 deposition at bivalently marked genes in astrocytes
could reflect age-dependent differences, rather than a species
difference, and it is possible that OPCs from the adult brain have
a greater enrichment of H3K27me3 at interneuron genes. While
H3K27me3 or Ezh2, the Polycomb group methyltransferase that
catalyzes the deposition of this PTM, has been detected at
some interneuron genes (Sher et al., 2012; Liu et al., 2015), our
analyses revealed a greater occupancy of the active H3K27ac
mark at distal bivalently modified interneuron genes in OPCs

compared to other cell types. Collectively, these observations
indicate that the interneuron genes were less repressed in
OPCs, consistent with the higher average FPKM of bivalently
marked interneuron genes in OPCs than in astrocytes. Similarly,
among the repressively marked genes, there was a greater
enrichment of H3K27me3 in adult astrocytes and fibroblasts
than in OPCs. In contrast to H3K27me3, H3K9me3 occupancy
at interneuron genes in OPCs was similar to that in astrocytes
but lower than that in fibroblasts. It is possible that this
modification plays a more important role in permanently
repressing interneuron genes in non-neurectodermally derived
cells. Compared to OPCs, H3K9me3 has been shown to be more
abundant in mature oligodendrocytes, and many of the genes
occupied by H3K9me3 in oligodendrocytes are genes related
to GABAergic transmission and neuronal differentiation (Liu
et al., 2015). Thus, it appears that in the terminally differentiated
oligodendrocytes, H3K9me3-mediated repression of interneuron
genes occurs more prominently than in astrocytes and that
the interneuron fate is more tightly sealed. This is consistent
with the observation that astrocytes can be reprogramed into
interneurons under certain conditions (Heinrich et al., 2010;
Niu et al., 2013).

No Histone PTMs at Many Interneuron
Genes in OPCs, Particularly the Key
Transcription Factor Genes
A major unexpected observation was the large number of
interneuron genes in OPCs that had none of the four histone
marks at either their promoter or distal regions. It was intriguing
that all but one of the ten key interneuron transcription factors
in OPCs had no marks at their promoter (Table 1). Several
observations make it highly unlikely that this group arose from
technical reasons such as inadequate peak detection of the ChIP-
seq data. First, other modifications, such as active marks were
detected at the promoters in OPCs. Second, 7 out of 10 of
these transcription factor genes had latent or distal active marks
that were distinct from those in other cell types. Third, ATAC-
seq data revealed greater chromatin accessibility around the
transcription initiation sites of these genes in OPCs compared to
that in astrocytes in which these genes were more prominently
marked by bivalent and repressive marks. Collectively, these
observations indicate that interneuron genes with no promoter
marks represent a specific functional state that can be considered
as a ‘poised’ state, somewhat similar to bivalently or latently
marked genes. It is possible that they represent a transition from
an active to a more repressed state or the converse as the cells
develop further along the oligodendrocyte lineage, analogous
to the bivalent marks in multipotent stem cells. Notably, all
ten key interneuron transcription factor genes were bivalently
marked in E12.5 MGE cells, which is consistent with the original
description of bivalent histone PTMs prior to lineage restriction
from multipotent stem cells, which are resolved to either active
or repressive marks upon lineage commitment (Bernstein et al.,
2006; Boyer et al., 2006). It would be interesting to examine the
evolution of the PTMs at these genes throughout different stages
of oligodendrocyte development.
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The OPCs that were used for ChIP-seq analyses in this
study were mostly derived from neocortical OPCs from perinatal
rodents, which represent a mixture of OPCs derived from ventral
germinal zones and those from the dorsal Emx1 domain (Kessaris
et al., 2006; Winkler et al., 2018). The paucity of repressive
histone PTMs at interneuron genes in OPCs could reflect a
unique property of ventrally derived OPCs that share their
origin with interneurons, and that this signal is diluted by
dorsally derived OPCs with a different histone PTM signature.
Conversely, interneuron genes in OPCs from the ventral sources
might require tighter repression when their fate diverges from
a common precursor to firmly establish their oligodendrocyte
lineage identity, and that the paucity of repressive marks in
cortical OPCs reflects the property of dorsally derived OPCs
diluted by ventrally derived OPCs with a different PTM signature.
It is also possible that the histone modifications do not reflect
the origin of OPCs but rather the function of OPCs and the
necessity to transcribe some genes expressed in interneurons to
maintain OPC functions. Comparison of ChIP-seq data of OPCs
from ventral and dorsal germinal zones should provide a clearer
answer as to whether the developmental origin and relation to
interneurons plays a significant role in their chromatin landscape.
Regardless of the possible heterogeneity among OPCs in their
histone modifications, the lack of repressive histone PTMs and
the open chromatin state at these key interneuron transcription
factor genes found in the neocortical OPCs could give OPCs
a significant advantage over other cell types for reprograming
into interneurons.

Species-Dependent Differences in
Histone PTMs
We initially compared histone modifications of murine OPCs
and human astrocytes and fibroblasts, which was supplemented
with data from mouse astrocytes and fibroblasts where
available. Although a comprehensive analysis of all four histone
modifications of the different cell types done within the same
species would have been ideal to fully validate the findings of
this study, such a study was not feasible with the currently
available datasets, and our findings suggested a high degree
of species conservation of histone PTMs at interneuron genes.
For example, the proportional distribution of the histone
modifications was similar between mouse and human astrocytes,
with the exception of more distal latent modified genes in
mouse astrocytes. Furthermore, there was a higher proportion
of genes that were bivalently and repressively marked in
both mouse and human astrocytes compared to OPCs, also
suggesting species conservation. A similar conservation was
observed for fibroblasts, which showed similar extent of active
marks at the promoter in mouse and human. Regardless of
the species, more interneuron genes were repressively marked
and bivalently marked in fibroblasts than in OPCs. Consistent
with our findings, a study on the direct comparison of histone
PTMs between mouse and human brain tissue showed 90%
conservation at promoter regions, 84% at enhancers, and 33%
of heterochromatin regions (Gjoneska et al., 2015). A separate
group performed a similar study and found a strong association

between stability and conservation of histone modifications in
mouse and human species (Woo and Li, 2012). Thus, the
observed differences seen among histone PTMs at interneuron
genes between mouse and human cells are more likely due to
cell type-dependent and age-dependent differences than inherent
interspecies differences.

In summary, we have identified a characteristic histone
PTM signature at interneuron genes in OPCs, which consisted
of an enrichment of active histone PTMs and a paucity of
bivalent and repressive modifications, particularly H3K27me3,
compared with adult astrocytes and fibroblasts. In both OPCs
and astrocytes, the histone PTM signature was highly correlated
with transcript levels. MEFs, on the other hand, had a
greater enrichment of active histone PTMs at their interneuron
genes, suggesting that age significantly influences the chromatin
landscape. Most somatic cell reprograming strategies require
the bHLH transcription factor Ascl1 (Wapinski et al., 2013),
which is considered a pioneer transcription factor capable of
opening nucleosome-bound chromatin (Zaret and Carroll, 2011;
Wapinski et al., 2017). Our findings that OPCs had a more
accessible chromatin environment around their key interneuron
transcription factor genes and lacked repressive marks could
be partially explained by the expression of Ascl1 in OPCs
(Nakatani et al., 2013; Zhang et al., 2014), suggesting that OPCs
could more readily switch their fate into interneurons than
adult fibroblasts or astrocytes, given the correct signals. The
observation that OPCs in the ventral telencephalon (striatum)
were readily reprogramed into interneurons (Torper et al., 2015;
Pereira et al., 2017), while similar attempts in the neocortex,
were only successful in the injured environment (Guo et al.,
2014; Heinrich et al., 2014), could be related to differences in
their epigenetic landscape around interneuron genes that could
reflect their developmental origin. Further explorations on age-,
cell type-, and cell origin-dependent differences in the chromatin
landscape could lead to rational approaches for manipulating
the fate of OPCs and exploiting the lineage plasticity of this
ubiquitous and abundant self-renewing cell population.
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signal). The datasets for OPCs, astrocytes and fibroblasts are in
separate worksheets.
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