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Abstract

There has been a large growth in the number of biomedical publications that report

experimental results. Many of these results concern detection of protein–protein inter-

actions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI sys-

tem to detect text passages with PPIs in the full-text articles. By adopting the BioC format,

the output of the system can be seamlessly added to the biocuration pipeline with little

effort required for the system integration. A distinctive feature of our PPI system is that it

utilizes extended dependency graph, an intermediate level of representation that at-

tempts to abstract away syntactic variations in text. As a result, we are able to use only a

limited set of rules to extract PPI pairs in the sentences, and additional rules to detect

additional passages for PPI pairs. For evaluation, we used the 95 articles that were pro-

vided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID data-

base for these articles and show that our system achieves a recall of 83.5%. In order to

evaluate the detection of passages with PPIs, we further annotated Abstract and Results

sections of 20 documents from the dataset and show that an f-value of 80.5% was ob-

tained. To evaluate the generalizability of the system, we also conducted experiments on

AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection

and an f-value of 64.7% for unique PPI detection.

Database URL: http://proteininformationresource.org/iprolink/corpora

Introduction

The protein–protein interaction (PPI) extraction task in-

volves detection of statements of physical interactions be-

tween proteins. Many efforts have contributed to different

aspects of PPI extraction from the biomedical literature;

from PPI document classification to PPI or PPI method de-

tection (1–5). In particular, the BioCreative V BioC task

(Track 1) proposes to build a framework that allows
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different text mining tools to be seamlessly integrated into

a pipeline for literature curation of protein interactions

(both genetic and physical interactions) to be evaluated by

BioGRID database curators (6, 7). Our team participated

in this task by contributing to detecting passages with PPIs

over full-text articles. This task is to “find passages

describing physical PPIs” (7). Physical interactions may ap-

pear in single or several sentences. Thus, in this task one

“passage” consists of one or more consecutive sentences,

but it does not have to be a paragraph in the document.

Full-text articles by nature use various syntactic con-

structions for mentioning similar information. These text-

ual variations can be problematic for relation extraction

(RE) systems to account for. A central theme of this study

is the hypothesis that the varied forms of PPI mentions are

essentially due to certain syntactic structural complexities.

By capturing these regularities, we can build a system

where the extraction patterns can be kept simple.

We have recently proposed a novel text representation,

the extended dependency graph (EDG) that abstracts away

certain text variations (8). EDG not only considers syntac-

tic dependencies between words in a sentence, but also

utilizes information beyond syntax to capture different

dependencies. In particular, EDG adds numbered argu-

ments in the dependency graph to provide consistent argu-

ment labels across different textual forms. For example,

Figure 1 shows EDGs of three text fragments with syntac-

tic edges above the words and numbered argument edges

below. The numbered argument edges, arg0 and arg1,

unify the realization of active, passive and nominalized

forms of the verb “activate” for purposes of PPI detection.

In the BioCreative V BioC task, the contribution of our

project is to extend the framework for fast development of

pattern-based biomedical RE, by incorporating the EDG.

This intuition is partially based on our previous work that

leverages syntactic variations in a language to achieve high

precision (9), as well as the work that applies sentence sim-

plification to improve the coverage of extracted relations

(10–12). These two aspects, which are both incorporated

in EDG, allow us to use only three sets of basic rules to de-

tect PPI pairs. The BioC task is of PPI passage detection.

Based on the detected PPI pairs, we pick the sentence that

contains one or more PPI pairs. The additional rules are

used to detect more passages over the full-text article by

utilizing the detected PPI mentions.

We conducted three experiments to test the system.

First, we retrieve all unique PPIs of 95 documents provided

by the BioC track organizer from the BioGRID database.

We evaluated our system on this dataset and achieve a re-

call of 83.5%. Second, since the task is passage detection

and the annotations are not provided in the 95 document

dataset, one of the authors (C.A.) annotated 20 full-text

articles for this purpose. Experiments on these 20 in-house

full-text articles show that we are able to obtain an f-value

of 80.5% for PPI passage detection. Using these 20 docu-

ments, we also investigated a few heuristics to determine

whether a detected PPI pair is experimentally validated.

We obtained promising results with a precision of 81.4%

and a recall of 91.5%. We plan to explore this issue

further.

Third, to test the generalizability of our system as well

as the precision of PPI detection, we evaluated the system

on AIMed (13, 14), which is a widely-used PPI corpus.

Since this corpus contains annotations with individual PPI

mentions, we can use it for both PPI sentence detection

and PPI pair detection. We obtained an f-value of 75.4%

at a precision of 91.5% for the sentence detection and an

f-value of 64.4% at a precision of 82.5% for the PPI pair

detection.

Figure 2 summarizes that how our system (shown

within the dashed lines) fits into the BioCreative V BioC

task architecture (7, 15). Given the full-text articles, the or-

ganizers provided text analysis (such as sentence splitting),

and the teams who participated in subtask 1 detected the

gene/protein-named entities. Our system used these prepro-

cessed full-text documents as input and produced BioC an-

notation indicating which sentence or block of sentences

contains PPIs. This output was then used by teams who

participated in subtask 8 for visualization. The collabora-

tive framework used BioC format to transfer information,

and was evaluated by the BioGRID curators to rate the

usefulness of the whole integrated tool. The feedback from

curators indicates that the performance of the curation

tool is adequate to support the BioGRID curation task (7).

In our system, we parsed full-text articles to obtain the

Stanford dependency graph of each sentence. Then, we

constructed EDG from Stanford dependency graph and

gene/protein-named entities. We used predicate-argument

rules on EDG to extract PPI instances from sentences and

additional rules to select passages with PPIs and finally

Figure 1. Sample EDGs with an (a) active, (b), passive (b), and (c) nominalized forms of the verb “activate”.
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produced PPI passages in BioC format. We will describe

each of these steps in the following section.

Methods

Extended dependency graph

In general, all predicate-argument patterns rely on the

edges, which link the trigger word and its two arguments

(proteins). Due to a variety of reasons, articles use different

forms of textual structures to express similar meanings. In

many situations, it brings challenges to rule-based systems

because a large number of rules are required to cover dif-

ferent text variations.

In this article, we use EDG to represent the structure of

the sentence (8). The vertices in an EDG are labeled with

information such as the text, part-of-speech and the word

lemma. If an entity mention spans multiple tokens in a sen-

tence, we merge their corresponding vertices into one

vertex.

EDG has two types of dependencies. The syntactic

dependencies are obtained from CCProcessed dependen-

cies output by applying Stanford dependencies converter

(16) on a parse tree obtained by Bllip parser (17). The

other type of dependencies is the numbered arguments,

whose idea is based on the guidelines of PropBank (14).

For the PPI detection task, we use only arg0 and arg1 in

EDG. To create arg0 and arg1 in EDG, we use different

syntactic dependencies obtained from the Stanford typed

dependencies. For verbal predicate, we mostly rely on syn-

tactic dependencies such as “nsubj”, “nsubjpass”. For

nominal forms, we investigated structures of noun phrases

such as “interaction between X and Y” and “binding of X

and Y”. In these cases, arg0 and arg1 are added between

the nominalization of verbal predicates and its arguments

based on syntactic dependencies like “prep_of” and

“conj_and”. For the demonstration purpose, we show one

construction rule below, which is used to create arg0 and

arg1 edges in Figure 1b.

VBN verbð Þ

nsubjpass verb; entity1ð Þ ) arg1 verb; entity1ð Þ

prep by verb; entity2ð Þ arg0 verb; entity2ð Þ

Oftentimes, arg0 and arg1 link the nominal phrases that

are not target protein mentions. For example, in “ARTS

binds to a distinct domain in XIAP-BIR3”, arg1 links

“bind” to “domain”, but not “XIAP-BIR3”. For such

cases, the EDG construction uses additional relations that

are extracted. These relations are extra-syntactic and more

semantic in nature. In the above example, the system

first detects a part-whole relation from “domain” to

“XIAP-BIR3, and then propagates arg1 from “domain” to

“XIAP-BIR3”. In general, if there is an arg0 (arg1) edge

from a node n1 to n2 and a part-whole edge from n2 to n3

then the propagation phase now adds an additional arg0

(arg1, respectively) edge from n1 to n3. Thus we are able

to get “ARTS arg0 binds! arg1! XIAP-BIR3”. In

addition to the part-whole relation, we also detect is-a

indicating the relation between X and Y when X is a sub-

type of Y; member-collection indicating the link between a

generic reference to a group of entities that specified in

other places in the sentence; and co-reference, including

abbreviation, indicating the relation between multiple ex-

pressions and one referent. More details on how arg0 and

arg1 are created, how the four above-mentioned extra-syn-

tactic relations are determined and propagated can be

found in (8, 9).

Table 1 shows basic examples of sentence constructs

that encapsulate a PPI but are expressed in different ways.

Note that some examples in Table 1 are the combination

of different constructs, but it is straightforward to identify

the main construct in the examples.

For all sentences in Table 1, EDG, through its use of

numbered argument labels and detection of different sen-

tence structures, alleviates the textual variations challenge

by mapping them to the same single base form. This base

form, shown in Figure 3 as the EDG of the last example in

Table 1, corresponds to each triple of arg0, arg1 edges and

the trigger word they emanate from. Note that all con-

structs (one coordination and three appositions) contribute

individual arg1 representations. Each arg0 and arg1 pair

then corresponds to a pair of interacting protein mentions.

Basic predicate–argument rules with triggers

We use predicate–argument rules on EDG to extract PPI

pairs. The predicate can be “bind”, “interact” or

“crosslink” that triggers the potential occurrence of a PPI

pair. The set of triggers were determined in consultation

with the domain expert (CA) and also by examining the

BioGRID guidelines (http://wiki.thebiogrid.org/doku.php/

curation_guide). Additional triggers for binding were

included after an investigation of BioNLP 2011 binding

corpus. Since EDG applies lemmatization to abstract from

different inflectional forms of words, only the common

base forms of triggers (lemma) are used in the system. The

complete list of all triggers can be found in the supplemen-

tary table (S1).

Because numbered arguments and their propagation

provide a uniform representation for various textual vari-

ations (e.g. consider the range of sentences in Table 1),

EDG allows the number of rules to extract PPIs to greatly

reduce. In our system, only two sets of rules are used.
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1. Direct trigger

a. Protein arg0  PPI/PTM verb trigger ! arg1 !
Protein

b. Protein arg0 PPI/PTM noun trigger! arg0!
Protein

2. Indirect trigger

a. Protein  arg1  process trigger  arg0  indir-

ect trigger! arg1! Protein

b. Protein  arg1  indirect trigger ! arg1 ! pro-

cess trigger! arg1! Protein

Rule 1a is a set of most basic and strict rules. We use PPI

triggers (e.g. “associate” and “bind”) and post-transcrip-

tional modification triggers (e.g. “acetylate” and “methy-

late”) in the system. Because EDG has unified different

forms of predicates in the vertices, we only need to list

stems of triggers in the rules. Rule 1a employs trigger stems

that are verbal but, of course, can match noun forms such

as “association” in the text.

Rule 1b accounts for triggers that are not derived from

verbs (e.g. “complex” and “dimer”). This rule matches the

noun phrase such as “[X]protein–[Y]protein complex”.

Table 1. Constructs with examples

Type Explanation Example

1 Active form Verbs in an active voice HFE binds to the transferrin receptor

2 Passive form Verbs in a passive voice Plasminogen activator inhibitor 1 (PAI) is bound to

vitronectin in plasma.

3 Nominalization Nominalized verbs Binding of G beta gamma to Raf/330

4 Adjective Verbs used as an adjective Raf-1-binding proteins, Ras

5 Full relative clause Relative clauses introduced by relative pronouns, such

as “which”, “who”, and “that”.

Shc, which specifically binds the SH2 domain of GRB2

6 Reduced relative clause Relative clauses that start with a gerund or past parti-

ciple and have no overt subject.

Structure of ERK2 bound to PEA-15 reveals a mechan-

ism for rapid release of activated MAPK.

7 Coordination Structures that link two or more items (conjuncts) of

syntactically equal status.

p53 [binds and activates]coordination the xeroderma pig-

mentosum DDB2 gene in humans

8 Null argument When the argument is omitted, but implied Histone deacetylase 1 can repress transcription by bind-

ing to Sp1.

9 Is-A Argument X is a hyponym of argument Y, if X is a sub-

type of Y, or when an instance of X refers to a con-

cept Y

CD5 is a T-cell-specific antigen which binds to the

B-cell antigen CD72

10 Appositive Constructs of two noun phrases next to each other, typ-

ically separated by comma and referring to the same

entity

TPO binds and activates its receptor, myeloproliferative

leukemia virus receptor

11 Member-collection Constructs that link a generic reference to a group of

entities that are specified in other places in text.

The basic cleft of RPA70N binds multiple checkpoint

proteins, including RAD9

12 Part-whole Constructs that an argument extracted for a trigger

comprises a part of the target entity.

ARTS binds to a distinct domain in XIAP-BIR3

13 Combination Any combination of above types TR6 specifically binds two cellular ligands, LIGHT

(herpes virus entry mediator (HVEM)-L) and Fas lig-

and (FasL/CD95L)

Entities in the extracted relations are marked in bold font.

EDG 
Construc�on

Rules 
Matching

Full text 
ar�cles
Full text 
ar�cles

Subtask 1:
Gene/protein

Subtask 1:
Gene/protein

Subtask 4: 
PPI passages

Organizer-provided
text analysis

Organizer-provided
text analysis

Subtask 8:
Visualiza�on tool

Subtask 8:
Visualiza�on tool

BioC representa�on 
of PPI passages

Addi�onal 
text analysis

Figure 2. Flowchart of our system in the BioC subtask 4 pipeline.
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Rules 2a and 2b account for indirect PPI triggers such

as “block” and “mediate”. These triggers connect a pro-

tein with an activity of another protein. In our system, the

process triggers include “activity” and nominalization of

PPI triggers whose suffixes are “-ion”.

Once an EDG is produced for a sentence, the above

rules are matched with the EDG using a subgraph-match-

ing algorithm (18). For each rule, a subgraph is con-

structed. Both nodes and edges in the subgraph are

predicates of EDG nodes and edges. The worst-case com-

plexity of the subgraph matching algorithm is O(n2kn)

where n is the number of vertices in EDG and k is the ver-

tex degree. It is worth noting that we only use arg0 and

arg1 in the rules, thus EDG only contains numbered argu-

ments, and the matching is efficient in practice.

Non-predicate–argument rules to increase recall

of passage detection

Our system uses EDG with basic rules to detect PPI inter-

acting partners, and then selects the corresponding sen-

tences. For the BioCreative V BioC task, we felt that other

sentences that contain the detected protein pairs might also

be the interest of biocurators. For example, if we are able

to detect that “STRAP” and “Smad7” interact somewhere

in the article with PMID 10757800, then we would also

like to pick the sentences such as “We used both Flag- and

HA-tagged STRAP and Smad7 in the coimmunoprecipita-

tion experiments, demonstrating that the association was

independent of the epitope tag employed and that the

amino- or carboxy-terminal tags did not alter the associ-

ation of the proteins.” in the same document. The basic

rules in the previous section are not sufficient to extract

any PPI information. However, under the assumption that

such sentences will be useful for curation of PPI informa-

tion, we have added two additional rules listed below. It is

to be noted that these two rules are applied only to sen-

tences containing two proteins, which are already known

to interact somewhere else in the article. Thus, these rules

only boost the recall of passages detection only and not

that of the detection of interacting partners.

Experimental techniques with 2 proteins

To identify new PPI, experiments are conducted and

described in the paper. Such description will be captured

by our system when both the experimental technique and

two (interacting) proteins are mentioned in the same sen-

tence. Currently, we use only five technique keywords in

our system: “2-hybrid”, “BIFC”, “cosedimentiation”,

“ITC” and “pulldown”.

Extension with PPI triggers and 2 proteins

In some complicated sentences, the PPI triggers and two

proteins are mentioned but there is no direct EDG edge be-

tween proteins and trigger nodes in EDG. This is especially

true when this sentence is followed by a sentence where the

interaction between these two proteins has been detected

already. The hypothesis is that the block of sentences is a

continuation of the same topic. The following text frag-

ment (PMCID: PMC137860) shows such an example. In

the first sentence (in the “Results” section), we extract the

PPI pair<Kap b2B, TAP>. In the second sentence (in the

“Discussion” section), no pattern can be applied.

However, since both “interaction” and the pair appear, we

extend the PPI passage to include the second sentence as

well.

Kap b2B Is Associated with TAP in the Presence of

RanGTP (1st sentence in the Results section)

. . .

The data presented support the conclusion that Kap

b2B is a major carrier for export of cellular mRNA and

TAP connects Kap b2B to the mRNAs to be exported,

whereas the direct interaction of TAP with nucleoporins

allows lower rates of mRNA export. (1st sentence in the

Discussion section)

Evaluation and analysis

The participants in the BioC task were provided 120 art-

icles by the organizers. Our first evaluation was based on

the PPI information associated with these articles in the

BioGRID database. Note, BioGRID only marks the unique

Table 2. Recall on 95 annotated documents

TP FN Recall (%)

Unique PPI 263 52 83.5

Figure 3. Sample EDGs with coordination and apposition.
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PPIs discovered in the study described in the article. Hence,

the articles could have included mentions of other PPI part-

ners. Since our system is designed to extract all PPI pairs in

text regardless of whether the pairs are validated in the ex-

periments conducted by the authors, we cannot use this

dataset to calculate the precision of the system but only

calculate the recall (Table 2). Over the total 120 full-text

articles, we observed that some have a large number of

PPIs in a network in supplementary data, which were not

found in the articles’ text shown (e.g. PMID 24711643).

Such cases tended to be ones where a significant number of

PPIs were associated with articles in BioGRID. For this

reason, we only chose papers with 10 or fewer pairs for the

evaluation (95 in total). Over these 95 full-text articles,

our system was able to extract 263 unique pairs out of 315

marked in BioGRID, which yields 83.5% in recall.

Note that while the BioC task was the detection of PPI

passages rather than the PPI protein pairs, the data derived

from BioGRID cannot be used for PPI passage detection

evaluation. This is because BioGRID does not contain in-

formation about the passages from which PPI pairs are

mentioned. Therefore, to further evaluate the system per-

formance on passage detection, we created a test set our-

selves. We randomly chose 20 articles from the 95 and one

of the authors (C.A.), who is an experienced biocurator,

annotated the Abstract and Results sections of this set of

articles. Table 3 shows the results of PPI passage detection.

On this 20 in-house datasets, we obtained 80.5% in

f-value. We linked the dataset from http://proteininforma

tionresource.org/iprolink/corpora.

Our system did not distinguish PPI passages that corres-

pond to results experimentally validated in the article

(“new” PPIs) versus passages that do not. However,

curators are probably more interested in the former ones.

While we have not fully developed the system to only iden-

tify passages with “new” PPIs, we consider a hypothesis

about the position and structure of such passages. We be-

lieve that the passages that meet the following criteria will

more likely discuss the experimental results of the article.

1. The Results section (if applicable) or the whole

Abstract;

2. The titles of subsections in the Results section;

3. Figure captions in the Results section;

4. Any sentence that indicates the goals of experiments,

such as beginning with “to investigate”.

To probe the effectiveness of these criteria, we limited our

PPI pairs to true positives and then considered how many of

those also appear in the BioGRID database. It is noteworthy

that any false positives in PPI pair detection will obviously

not appear in the BioGRID database, hence are not relevant

for new PPIs detected in the document. Since we could only

identify the true positive PPI pairs for the 20 in-house docu-

ments, we used these documents for our study. Of 65 true

positive PPI pairs, 54 were annotated in the BioGRID data-

base, giving a precision of 83.1%. There is a total of 59 dis-

tinct PPIs in the BioGRID database, five do not meet the

criteria, giving a recall of 91.5%. In the future, we plan to in-

vestigate this issue further and extend our system to identify

PPIs that are experimentally validated in the article.

We also apply the RE system on the AIMed corpus

(13), which is commonly used in PPI extraction tasks

and has been suggested by the task organizers as a train-

ing set (for machine learning systems). Table 4 reports

two sets of performance metrics based on how we com-

pare the system annotation with the gold standard. Since

we applied the system at the sentence level, only basic

rules were used to obtain both results (“Basic predicate–

argument rules with trigger” section). The first row

shows the performance of selecting sentences with PPI

rather than the pairs. We conducted this experiment be-

cause our current task is for PPI passage detection rather

than the PPI interaction detection. Similarly, we modi-

fied the AIMed annotations to indicate whether a sen-

tence mentions a PPI or not. For the sentence selection

task, we achieved an f-value of 76.1% at a high preci-

sion of 92.7%. The second row shows the performance

of detecting PPI pairs, which is the traditional PPI ex-

traction task. We obtained an f-value of 64.7%. It is

noteworthy that we achieve these results by using just

basic rules, and the results obtained are among the best

obtained on this corpus. This shows the advantages

brought out by the use of EDG and furthermore suggests

the generalizability of the system since it was not de-

veloped specifically for the characteristics of AIMed.

Table 3. Recall on 20 in-house annotated documents (only

Abstract and Results sections)

Section TP FP FN Precision (%) Recall (%) F-value (%)

Abstract 20 5 4 80.0 83.3 81.6

Results 216 79 26 73.2 89.3 80.4

Total 236 84 30 73.8 88.7 80.5

Table 4. Evaluation results on AIMed

Task TP FP FN Prec.

(%)

Recall

(%)

F-value

(%)

Sentence detection 370 29 197 92.7 64.6 76.1

PPI pairs 557 165 443 77.2 55.7 64.7

Rule 1a 458 116

Rule 1b 86 46

Rule 2 13 3
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To analyze the contribution of each rule, we count how

many TP and FP instances are extracted by basic rules.

Rows 4–6 in Table 4 show that patterns with verb and

noun triggers are able to extract 96% instances. On the

other hand, indirect rules have extracted very few cases.

This is partially because we did not consider general verbs

as the indirect triggers due to high precision concerns. In

future, we will include more trigger words to improve the

recall. At the same time, to maintain the precision, we will

propose restrictions to exam whether the trigger word indi-

cates a “direct” interaction.

Conclusion

In BioCreative V BioC task, we developed a PPI system to

detect text passages with PPIs in the full-text articles. By

adopting the BioC format, the output of the system could

be added to the biocuration tool. The feedback from cur-

ators indicates that the performance of the curation tool is

adequate to support the BioGRID curation task.

In addition, we evaluated the BioC-compatible PPI sys-

tem on 95 documents for unique PPI detection, 20 in-house

documents for passage detection and the widely used

AIMed corpus for both unique PPI and sentence detection.

All experiments confirm that the system is able to achieve

good performance.

The development of our rule-based system is based on the

semantic dependencies between entities that are critical for ei-

ther pattern-based or machine learning systems. In this article,

we show the use of a few rules on EDG still enables us to get

good coverage of passage/PPI detection. This, in particular,

allows us to address one of the main criticisms against rule-

based systems—it is hard to develop rules for all the vari-

ations found in the text. We believe this information is not

task dependent and an enhanced understanding will contrib-

ute to developing systems for various RE tasks, including gen-

etic interactions defined in BioGRID in this track.

Supplementary data

Supplementary data are available at Database Online.
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