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Size distribution dependence 
of collective relaxation dynamics 
in a two‑dimensional wet foam
Naoya Yanagisawa* & Rei Kurita*

Foams can be ubiquitously observed in nature and in industrial products. Despite the relevance of 
their properties to deformation, fluidity, and collapse, all of which are essential for applications, 
there are few experimental studies of collective relaxation dynamics in a wet foam. Here, we directly 
observe how the relaxation dynamics changes with increasing liquid fraction in both monodisperse 
and polydisperse two-dimensional foams. As we increase the liquid fraction, we quantitatively 
characterize the slowing-down of the relaxation, and the increase of the correlation length. We also 
find two different relaxation modes which depend on the size distribution of the bubbles. It suggests 
that the bubbles which are simply near to each other play an important role in large rearrangements, 
not just those in direct contact. Finally, we confirm the generality of our experimental findings by a 
numerical simulation for the relaxation process of wet foams.

Foams constitute a soft jammed system, and have many unique mechanical properties. For example, they exhibit 
both elasticity and fluidity, making them distinct from ordinary fluids and solids. They are also widely seen in 
daily life, from foods and beverages to pharmaceuticals, cleaning products, cosmetics and building materials 
such as building insulation and flame-retardant barriers1–14. Foams can take three states depending on the 
liquid fraction φ ; these are called dry, wet and bubbly foams, from low to high φ13,14. The dry state is made up 
of polyhedral bubbles and is more jammed than the wet state, which consists of round bubbles. Bubbly foams 
also consist of spherical bubbles, but do not have an elastic modulus under small shear15. Thus, although both 
dry and wet foams are jammed, bubbly foams are not: the transition from wet to bubbly foam is the jamming 
transition for this system. The transition point φJ is located at φJ ∼ 0.16 in two-dimensional foams and ∼ 0.36 
in three-dimensional foams16.

There has been a surge of interest in studies of rearrangements in foams, due to their relation to macroscopic 
properties such as elasticity and fluidity. In a dry foam, the liquid films are sometimes rearranged and the it 
induces coarsening of bubbles over time1,2. It has also been reported that bubbles are simply stretched when a 
bubble collapses13. As the liquid fraction φ increases and the dry foam is transformed into a wet foam, the bub-
bles are rearranged more smoothly14, exhibiting enhanced fluidity. Recently, rearrangements and relaxation in 
jammed systems near the jamming point have excited significant interest. In the wet foam close to the jamming 
point, the bubbles are almost circular. In simulations using a soft particle model, where particles are allowed to 
overlap, it has been reported that the contact number per particle Z and rearrangements close to the jamming 
point exhibit critical behavior17–19. It has been also reported that a small perturbation to a particle in a soft 
jammed system leads to random motion in particles close to the perturbated particle and elastic deformation 
in particles far away; the threshold length dividing the regimes increase near the jamming transition20. In an 
experimental study, it was noted qualitatively that foam coarsening becomes slower near the jamming point21.

Yet, it should be noted that there are notably fewer in-situ observations of relaxation in jammed wet foams, 
particularly how the relaxation depends on the bubble size distribution. It is still unclear how structural relaxation 
occurs in the wet foams and what the key parameters are for relaxation. Thus, in this letter, we experimentally 
investigate the dynamical properties of a wet foam. We observe the dynamical response of two-dimensional foams 
by injecting a constant amount of solution into the foam. The slight increase in liquid fraction as a perturbation 
induces a rearrangement of bubbles. It is found that both the relaxation time and the correlation length associated 
with the rearrangement event increase as φ increases. We also find that the nature of the collective rearrangement 
depends on the size distribution of the bubbles. This suggests that mesoscopic structure, rather than bubbles in 
contact, plays an important role in large rearrangements. Furthermore, we perform the numerical simulation 
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by using the soft particle model, and find that the motion of particles depends on the size distribution of the 
particles and the hexagonal order.

Results and discussion
Firstly, we show the experimental setup (see Fig. 1a). We put a foam on a glass plate and cover it with another glass 
plate. The foam consists of the monolayer of bubbles and is considered quasi two-dimensional. In our experi-
ment, we prepare two kinds of the foams, nominally ‘monodisperse’ and ‘polydisperse’. The mean diameter and 
area of the bubbles are 3.1 ± 0.3 mm and 7.7 ± 1.6 mm2 for the monodisperse foam (polydispersity σ = 0.107), 
and 4.4 ± 0.9 mm and 15.4 ± 6.8 mm2 for the polydisperse foam ( σ = 0.201). We also note that the state of foams 
in our experiment is below jamming transition point φJ ∼ 0.16 , that is, the jammed state. See “Materials and 
methods” section for the details.

In order to study the relaxation of the foam, we apply a perturbation by injecting a constant amount of addi-
tional solution (500 µ l) from the outside using a micropipette, as shown in Fig. 1a. Figure 1b–d show schematic 
images for the energy landscape, which is usually related with the dynamics in jammed systems22. The red dot 
indicates the initial state before injection. Note that the state is in a basin; this is a steady state in the absence of 
any perturbation, where thermal energy can be neglected. By injecting liquid into the foam, the liquid fraction 
increases slightly and the energy landscape changes (Fig. 1c). The foam now relaxes into a new basin close to the 
initial state (Fig. 1d): this is the relaxation process we observe. We note here that the coarsening dynamics does 
not occur in the collective bubble relaxation in our experiment. We show the time evolution of the area S of a 
large bubble, a small bubble and the mean area of all bubbles in Supplementary Fig. S1. We randomly chose the 
large and the small bubbles. It is found that both S and the mean area are constant with respect to t.

Here, we consider key parameters to characterize the dynamics of the relaxation process. Immediately after 
injection, the bubbles near the injection point flow and subsequently return to their original positions. This is 
followed by several large collective rearrangements (see Supplementary Movie 1). In order to estimate the effect 
of the injection, we compute the displacement vector of bubbles i ui(t,�t) , where �t is a time interval. In order 
to obtain sufficient accurate velocity, the displacement of the bubble should be much larger than the spatial 
resolution (0.238 mm). Thus we chose �t = 10 s for φ2D > 0.07 while �t = 1 s for φ2D < 0.07 since the velocity 
decreases with increasing φ2D . Those time scales are shorter than the relaxation time of the single collective 
rearrangement event τ . We checked that our results are not changed in a condition that �t is shorter than τ . We 
firstly consider the maximum of the displacement vectors umax . Figure 2a shows the time evolution of umax for 
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Figure 1.   (a) Schematic of the experimental setup. We slowly inject a fixed amount of liquid (500 µ l) into 
a foam sandwiched between two glass plates from the outside using a micropipette. We then observe the 
relaxation from the top of the foam using a CCD camera. (b–d) Schematic of the energy landscape and the 
relaxation process. (b) Before injection, the foam is located in an energy basin. (c) Just after injection, the energy 
landscape changes since the number of possible states for the bubbles increases with increasing liquid fraction. 
We experimentally observe how the state relaxes into a new basin as shown in (d).
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monodisperse foams. umax greatly decreases just after the injection; this corresponds to the bubbles returning. 
umax decreases gradually since the system is slowly aging after a time tg shown by the green arrow in Fig. 2a. 
Here, we confirm that the injected volume and the injection speed both affect tg , but do not affect the dynamics 
of the foam after tg i.e. the dynamics after tg only corresponds to the relaxation dynamics illustrated in Fig. 1b–d. 
Note that the relaxation dynamics we discuss below is all after tg . We also find sharp increases in umax around 
t = 80 s. From direct observation of the foam over time (see Supplementary Movie 1), we confirm that these 
correspond to discrete, significant collective rearrangements of the bubbles. Here, we define a relaxation time τ 
as the time from the start of the peak to the end, where umax is deviated from the base line. Thus τ is associated 
with a single collective event. We also confirm that the relaxation time using �t is almost same as τ determined 
by in-situ observations. An example of τ at φ2D = 0.11 is presented in Fig. 2a. We also find another peak at t = 
250 s, where two peaks are overlapped. In this case, we also checked the spatial distribution of the rearranged 
bubbles in order to distinguish some collective relaxation events. The latter peak corresponds to the collective 
rearrangement event, while the former peak is just a T1 event. Thus we only chose the width of the latter peak 
as τ . This phenomenon corresponds to an avalanche, where one rearrangement induces another in a different 
location. If we can separate the events in the avalanche through direct observation, we measure τ as the relaxation 
time of each collective event, while we excluded the data when two collective rearrangements are temporally and 
spatially merged and they are undistinguished. We note that it is difficult to distinguish individual rearrangements 
near φJ . We also note that the same behavior is seen for polydisperse foams.

We also count the number of bubbles which undergo a rearrangement during the relaxation process as a 
function of time. We say that a bubble is “rearranged” if its contact bubble changes. Figure 2b shows the cumu-
lative number of rearranged bubbles N as a function of time t. We set t = 0 s to be just after the injection; N is 
normalized by Nfoam , where Nfoam is the total number of bubbles in the foam. The green, light blue, blue, and 
purple lines correspond to N at φ2D = 0.110, 0.093, 0.061 and 0.042, respectively. Each arrow in Fig. 2b indicates 
tg , when the local liquid fraction in the foam becomes approximately constant, that is, when the effect of the 
injection almost disappears. The rapid increase in N before tg is consistent with the decrease in umax shown in 
Fig. 2a. We see that for lower φ2D , N is small and saturates at an early stage, whereas for higher φ2D , N starts 
larger and continues to increase gradually for longer.

Next, we consider how to associate the correlation length with the collective motion. Figure 3a1 shows dis-
placement vectors for collectively rearranged bubbles in the monodisperse foam from t = 119 to 278 s at φ2D = 
0.11. The vectors are shown three times their actual lengths for visibility. Note that these displacements are over 
a single, collective rearrangement event, and that collectively rearranged bubbles are those which change their 
contact bubbles over the same time interval. We find that in monodisperse foams, collective rearrangement occurs 
through slip-like displacements. A similar analysis may be applied to a polydisperse foam. Figure 3a2 shows 
displacement vectors of bubbles in a polydisperse foam from t = 66 to 146 s when φ2D = 0.093 (see Supplemen-
tary Movie 2). A random rearrangement occurs which is distinct from the sliding motion seen in monodisperse 
foams. This random motion is consistent with observations in the soft binary particle simulations20.

Here, we define two correlation lengths for each collective rearrangement event. ξ1 is defined as the distance 
between the two collectively rearranged bubbles which are furthest apart, as shown in Fig. 3a1. We obtain the 
displacement using a single collective rearrangement event. The other correlation length is defined by a displace-
ment correlation function G(r) = F(r)/F(0) , where F(r) is

ttgg

ττ ττ

(a)(a) (b)(b) ttgg

Figure 2.   (a) The time evolution of the maximum of the displacement vector during the time interval �t = 10 
s at φ2D = 0.11 in a monodisperse foam. t = 0 s is the time just after the solution is injected. The effect of the 
injection can be neglected after tg , the green arrow in (a). Sharp peaks are found around 80 s and 250 s. These 
times correspond to large collective rearrangement events. τ is the interval from the start to the end of a single, 
discrete rearrangement event. (b) Cumulative number of rearranged bubbles N/Nfoam during the relaxation 
process as a function of time t, where Nfoam is the total number of bubbles. Each line corresponds to N at φ2D = 
0.110 (green), 0.093 (light blue), 0.061 (blue) and 0.042 (purple). Arrows correspond to tg as shown in (a).
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For a collectively rearranged bubble i, �ui is the displacement vector during a single collective rearrangement, 
while �uj is taken over all Nj bubbles j at a distance r from bubble i. Figure 3b1,b2 show G(r) as a function of r for 
the data shown in Fig. 3a1,a2, respectively. We obtain the correlation length ξ2 (the black line) by the exponential 
fitting G = exp(−r/ξ).

We are now ready to quantitatively study dynamical behavior in a wet foam. Figure 4a shows the mean 
relaxation time τ averaged over several (> 5) collective events as a function of φ2D in monodisperse (circle) and 
polydisperse (triangle) foams. Similarly, Figure 4b shows the mean correlation lengths averaged over several  
(> 5) collective events as a function of φ2D . Red filled circles and blue filled reverse triangles in Fig. 4b show ξ1 for 
the monodisperse foam and for the polydisperse foam, respectively. Red open squares and blue open triangles 
show ξ2 for the monodisperse foam and for the polydisperse foam, respectively. Note here that the distribution of 
τ and ξ are plotted as the error bar in Fig. 4a,b, respectively. Although the nature of the rearrangements is different 
for monodisperse and the polydisperse foams, as discussed below, τ and ξ similarly increase with increasing φ2D.

We may also compute how collective the motion of the bubbles is for a single rearrangement event. We 
calculate the probability distribution Pe(θ) for the angle between displacement vectors of bubbles in contact 
participating in a rearrangement event. Figure 5a,b show Pe(θ) at φ2D = 0.11 for the monodisperse and polydis-
perse foams, respectively. Pe(θ) has only one peak near θ = 0 for the monodisperse foam, while there is another 
peak around θ = 90◦ for the polydisperse foam. Figure 5c shows P‖ (circle), P⊥1 (square) and P⊥2 (triangle) as a 
function of φ2D in the monodisperse foam, where P‖ , P⊥1 and P⊥2 are the probabilities that the angle is between 

(1)F(r) =
1
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Figure 3.   Displacement vector fields of rearranged bubbles in (a1) a monodisperse foam when φ2D = 0.11 
from 119 s to 278 s and (a2) a polydisperse foam when φ2D = 0.093 from 66 s to 146 s. Vectors are shown three 
times their actual lengths for visibility. (b1) Displacement correlation function G as a function of distance r 
for the monodisperse foam. (b2) G for the polydisperse foam. The black solid line is an exponential fitting by 
exp(r/ξ) . Correlation length (size) ξ1 is defined as the greatest distance between bubbles in a single collective 
rearrangement event. We also define ξ2 as the exponential decay length of G.
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Figure 4.   (a) The mean relaxation time τ of a single collective rearrangement event averaged over several 
collective rearrangements as a function of φ2D . Red circles and blue triangles indicate τ in monodisperse 
and polydisperse foams, respectively. (b) The mean correlation length ξ of a single collective rearrangement 
as a function of φ2D . Red filled circles and red open squares indicate ξ1 and ξ2 in the monodisperse foams, 
respectively. Blue filled reverse triangles and open triangles indicate ξ1 and ξ2 in the polydisperse foam. The error 
bars correspond to the distributions of the data.

Figure 5.   Probability distribution Pe(θ) of the angle between displacement vectors of bubbles in contact in 
collective rearrangement events at (a) φ2D = 0.11 in a monodisperse foam and (b) φ2D = 0.11 in a polydisperse 
foam. Pe(θ) has only one peak near θ = 0 for the monodisperse foam, while Pe(θ) has another peak around θ = 
90° for the polydisperse foam. The probability of parallel and perpendicular displacements as a function of φ2D 
in (c) monodisperse and (d) polydisperse foams. Circles, squares and triangles indicate probabilities that the 
angles are 0 ◦ to 15◦ , 75◦ to 90◦ , and 90◦ to 105◦ , respectively. The solid lines and dashed lines represent slip-like 
parallel displacements and perpendicular displacements, respectively. Slip-like parallel motion is more likely to 
be seen closer to the jamming point in monodisperse foams, but is independent of proximity to the jamming 
point in polydisperse foams.
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0 ◦ and 15◦ , 75◦ and 90◦ , and 90◦ and 105◦ , respectively. As φ2D increases, we find that P‖ increases while P⊥ 
decreases. This indicates that bubbles are more likely to move in the same direction near the jamming point in 
the monodisperse foam. Figure 5d shows P‖ (circle), P⊥1 (square) and P⊥2 (triangle) as a function of φ2D in the 
polydisperse foam. Interestingly, we see that P‖ and P⊥ remain almost constant as φ2D increases. This shows that 
bubbles move just as randomly, regardless of liquid fraction. Thus, the rearrangement dynamics depends on the 
size distribution of the bubbles, both qualitatively and quantitatively.

We consider the structural difference between monodisperse and polydisperse foams. Firstly, we compute 
the nominal contact number Z∗ for each bubble. We define nominal contact as when the gap between the bub-
ble interfaces is below 0.238 mm, the spatial resolution of our observation method. Thus, Z∗ may be larger than 
the actual contact number Z. Note that the foam adopts a disordered configuration as shown in Fig. 3a1 for the 
monodisperse foam and (a2) for the polydisperse foam. Different colors indicate Z∗ of each bubble; orange, yel-
low, green, blue and purple correspond to bubbles with 3, 4, 5, 6 and 7 contacts, respectively. We find Z∗ = 5.34 at 
φ2D = 0.094 for the monodisperse foam and Z∗ = 5.33 at φ2D = 0.093 for the polydisperse foam. Thus, there is very 
little structural difference when we look at the contact number. However, if we use a nearest neighbor method of 
associating bubbles rather than contact, we begin to see hexagonal order in the monodisperse foam, but not in 
the polydisperse foam. We define a bubble k as a nearest neighbor if rik < 1.3di , where rik is the distance between 
i and k and di is the diameter of bubble i. We use the local hexatic order parameter ψ i

6 =
1
ni
|�k exp(j6θk)| , where 

ni is the number of nearest neighbors, j is the imaginary unit, and θk is the angle of the relative vector �rk − �ri 
with respect to x axis. We may also compute 〈ψ6〉 , which is the particle average of ψ i

6 . We obtain 〈ψ6〉 = 0.772 at 
φ2D = 0.094 for the monodisperse foam and 0.587 at φ2D = 0.093 for the polydisperse foam. We also consider 
the proportion α of hexatic order bubbles, where ψ i

6 > 0.85 . We obtain α = 0.542 for the monodisperse foam 
and 0.267 for the polydisperse foam. Furthermore, we investigate ψ i

6 by using a Voronoi tessellation as well as a 
separation cutoff. As a result, we obtain 〈ψ6〉 = 0.822 at φ2D = 0.094 for the monodisperse foam and 0.545 at φ2D 
= 0.093 for the polydisperse foam in the experiment. We find that both 〈ψ6〉 (cut off and Voronoi tessellation) 
are almost the same. Thus, the slip-like motion seen during rearrangements may be related to this hexagonal 
order. Here, we note that the predictions from numerical simulations is limited to small perturbations, that is, 
displacements in the linear relaxation regime23,24; the rearrangements we see in our experiment are large and 
non-linear. Our results suggest that it is not only bubbles in contact, but those which are simply near to each 
other which play an important role in large, non-linear rearrangements.

We also note that rearrangements sometimes do not occur after liquid injection. This reason may be that the 
energy landscape is not changed. This can occur when the system size is not large enough. If the size of the foam 
is infinite, we may assume that collective rearrangements will always occur. Finite size effects may also play a 
role in the relaxation of the foam in our experiment near the jamming point, which may affect the relaxation 
dynamics. In the future, we will investigate relaxation dynamics using larger foams to further enhance accuracy 
near φJ and expand upon our discussion.

In the experiments, many experimental factors, such as the concentration of the surfactant, viscosity, defor-
mation, elastic modulus, type of the surfactant and so on, can be related with the relaxation. Thus, we perform 
numerical studies of the relaxation dynamics to confirm the generality of our experimental results. In wet foams 
the soft particle model is one of the simplest model for investing the relaxation process19. In order to prepare the 
initial state, the particles are placed in the simulation box, and we repeat increasing the size of all particles by 1% 
and relaxing the system until the void fraction φv becomes about 0.11. We note that φv corresponds to φ in the 
experiment. Then we decrease the size of all particles by 1% at time t = 0 . This shrink of the particles corresponds 
to the injection of liquid in our experiment. Figure 6a,b are the displacement vector field of particles with σ = 0.10 
and σ = 0.20 over the time interval 4.0× 104 to 1.0× 105 and 2.5× 104 to 1.0× 105 , respectively. We change φv 
from 0.114 to 0.125 for σ = 0.10 and from 0.116 to 0.128 for σ = 0.20. It seems that slip-like displacements occur 
for σ = 0.10, whereas random-like displacements occurs for σ = 0.20. Figure 6c shows the probability distribu-
tion Ps(θ) for the angle between displacement vectors of particles in contact each other, and red circle and bule 
triangle symbols indicate particles with σ = 0.10 and σ = 0.20, respectively. It is found that Ps(θ) obtained from 
the simulation is almost consistent with Pe(θ) obtained from the experiment. Moreover, we investigate Z and 
ψ i
6 , and obtain Z = 4.465 and �ψ6� = 0.855 for particles with σ = 0.10, and obtain Z = 4.471 and �ψ6� = 0.556 

for particles with σ = 0.20. We also find that in a Voronoi tessellation 〈ψ6〉 = 0.818 and 0.522 for σ = 0.10 and σ = 
0.20, respectively. Thus, we establish that the slip-like motion seen during the relaxation process is related to the 
hexagonal order. Our simulation results also show that the relaxation dynamics of the jammed wet foams close 
to the jamming point is universal, that is, it does not depend on the experimental factors such as deformation, 
the type of the surfactant, its concentration and so on.

To summarize, we experimentally investigated the relaxation dynamics of wet foams. By injecting a constant 
amount of liquid into a two-dimensional foam, the energy landscape of the foam was changed and a relaxation 
process was observed. We saw that the relaxation time and correlation lengths associated with discrete relaxation 
events both increase with φ for both monodisperse and polydisperse foams. Furthermore, we found that the 
way in which the rearrangements occurred depended on the size distribution of the bubbles. A slip-like motion 
was observed in monodisperse foams, while a more random motion was seen in polydisperse foams. We found 
that the hexagonal order found from nearest neighbor bubbles, not only bubbles in contact, may be crucial for 
the difference in the motion. We also verified these experimental results by performing the numerical simula-
tion of the relaxation process of the wet foam using the soft particle model. In the future, we hope to study the 
transition from slip-like to random motion in more depth. We believe these results, as well as those planned, 
form key experimental investigations which will significantly advance our understanding of not only foams but 
also of soft jammed systems, and may guide the development of new applications for soft condensed matter.
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Materials and methods
We use an aqueous solution of household detergent (CHAMY, Lion Co., Japan), diluted to 25% with deionized 
water. The foams are created using a capillary glass tube connected to an air pump. In this generation method, 
it is well known that the generated bubble size depends on the nozzle size and gas flow rates25. In this study, we 
calibrate the bubble size distribution by controlling the air-injection speed. We create monodisperse and poly-
disperse foams by using the speed between approximately 10 and 70 ml/min. The diameter of nozzle is 0.7 mm. 
We define the bubble size dispersity as

where 〈d〉 and di are mean diameter of bubbles and the diameter of bubble i, respectively. We obtain σ = 0.107 
for monodisperse foams and 0.201 for polydisperse foams. The sample thickness is set to 2.1 mm using a spacer. 
The number of bubbles is 350 ∼ 500. We take videos of the relaxation process after liquid injection using a CCD 
camera (KEYENCE, VW-9000) at 30 frames per second. We examine static and dynamical properties using 
an image analysis technique developed in-house. Spatial resolution (0.238 mm) was exchanged for access to 
a larger field of view over time. We also compute a two-dimensional liquid fraction φ2D using image analysis, 
which corresponds to the two-dimensional liquid fraction in a cross section through the center of the sample. 
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Figure 6.   Displacement vector field of particles with (a) σ = 0.10 and (b) σ = 0.20 over the time interval 
4.0× 104 to 1.0× 105 and 2.5× 104 to 1.0× 105 , respectively. We change φv from 0.114 to 0.125 for σ = 0.10 and 
from 0.116 to 0.128 for σ = 0.20. The left images are zoomed in on a collective motion regions for the simulation 
systems. Vectors are shown the ten times larger than their actual lengths for visibility. (c) Probability distribution 
Ps(θ) for the angle between displacement vectors of particles in contact each other. Red circle and blue triangle 
symbols indicate particles with σ = 0.10 and σ = 0.20, respectively.
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φ2D = 1− Sbubble/Sfoam , where Sbubble is the area of the bubble region, and Sfoam is the whole area of the foam14. 
Note that the upper limit of φ2D in our experiment is about 0.13 since the relaxation time becomes much longer 
near φJ , and the influence of evaporation and drainage is not negligible. We also note that the state of foams in 
our experiment is below jamming transition point φJ ∼ 0.16 , that is, the jammed state.

We use the soft particle model for investigating the relaxation process of the wet foam. This particle is fric-
tionless circular disk and the distribution of the particle sizes is a Gaussian function. Pairs of the disks i and j 
interact via the pairwise harmonic repulsive potential:

where ǫ(= 1) is the characteristic energy scale of the interaction, Dij = (Ri + Rj)/2 , rij is the center-to-center 
distance between disks i and j, and � is the Heaviside function. In this model, the overlap between pairs of 
particles is allowed. We take 4000 particles with σ = 0.10 and σ = 0.20, which correspond to monodisperse and 
polydisperse foams used in our experiment, respectively. The periodic boundary conditions are applied in the 
simulation box.
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