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Abstract
Background: The global prevalence of non-alcoholic fatty liver disease (NAFLD) continues 
to rise. Non-invasive diagnostic modalities including ultrasonography and clinical scoring 
systems have been proposed as alternatives to liver biopsy but with limited performance. 
Artificial intelligence (AI) is currently being integrated with conventional diagnostic methods 
in the hopes of performance improvements. We aimed to estimate the performance of AI-
assisted systems for diagnosing NAFLD, non-alcoholic steatohepatitis (NASH), and liver 
fibrosis.
Methods: A systematic review was performed to identify studies integrating AI in the diagnosis 
of NAFLD, NASH, and liver fibrosis. Pooled sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and summary receiver operating characteristic curves 
were calculated.
Results: Twenty-five studies were included in the systematic review. Meta-analysis of 
13 studies showed that AI significantly improved the diagnosis of NAFLD, NASH and liver 
fibrosis. AI-assisted ultrasonography had excellent performance for diagnosing NAFLD, 
with a sensitivity, specificity, PPV, NPV of 0.97 (95% confidence interval (CI): 0.91–0.99), 0.98 
(95% CI: 0.89–1.00), 0.98 (95% CI: 0.93–1.00), and 0.95 (95% CI: 0.88–0.98), respectively. The 
performance of AI-assisted ultrasonography was better than AI-assisted clinical data sets for 
the identification of NAFLD, which provided a sensitivity, specificity, PPV, NPV of 0.75 (95% CI: 
0.66–0.82), 0.82 (95% CI: 0.74–0.88), 0.75 (95% CI: 0.60–0.86), and 0.82 (0.74–0.87), respectively. 
The area under the curves were 0.98 and 0.85 for AI-assisted ultrasonography and AI-assisted 
clinical data sets, respectively. AI-integrated clinical data sets had a pooled sensitivity, 
specificity of 0.80 (95%CI: 0.75–0.85), 0.69 (95%CI: 0.53–0.82) for identifying NASH, as well as 
0.99–1.00 and 0.76–1.00 for diagnosing liver fibrosis stage F1–F4, respectively.
Conclusion: AI-supported systems provide promising performance improvements for 
diagnosing NAFLD, NASH, and identifying liver fibrosis among NAFLD patients. Prospective 
trials with direct comparisons between AI-assisted modalities and conventional methods are 
warranted before real-world implementation.
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Introduction
Chronic liver disease (CLD) and cirrhosis have a 
high burden on global health. CLD is the 11th 
leading cause of death globally, attributing to 1.1 
million deaths annually.1 In previous decades, the 
major causes of cirrhosis were chronic hepatitis B 
(HBV) and hepatitis C (HBC) infection. More 
recently, the main causes of cirrhosis have shifted to 
non-alcoholic steatohepatitis (NASH).2 The global 
prevalence of non-alcoholic fatty liver disease 
(NAFLD) is estimated at 25% and is predicted to 
increase up to 30% in 2030.3,4 Moreover, liver-spe-
cific deaths are also significantly increasing in 
patients with NAFLD, especially patients with 
NASH.4 An updated term ‘metabolic associated 
fatty liver disease (MAFLD)’ has been proposed to 
replace NAFLD which establishes the disease as a 
metabolic disorder.5,6 This revision highlights the 
importance of early detection and risk factor modi-
fication to slow steatosis and fibrosis progression.

The gold standard for the diagnosis of NAFLD, 
NASH, and cirrhosis is liver biopsy. It provides 
an assessment of hepatic steatosis, inflammation, 
and fibrosis. However, liver biopsy is relatively 
invasive with complications, such as hemoperito-
neum and hemothorax.7 Due to its invasive 
nature, liver biopsy is also not pragmatic as a fol-
low-up tool. Alternative diagnostic methods for 
NAFLD, such as clinical/laboratory scores and 
imaging modalities have been proposed, but with 
limited performance. For example, NAFLD Liver 
Fat Score has a sensitivity of 86% and specificity 
of 71%,8 whereas ultrasonography have a reason-
able performance for the diagnosis of moderate 
steatosis (>33% of hepatocytes contain steatosis) 
but is less reliable for mild steatosis (⩽33% stea-
tosis).9 Magnetic resonance imaging proton den-
sity fat fraction (MRI-PDFF) has greater accuracy 
but comes with a high cost and limited availabil-
ity.10 Moreover, limitations also extend to the 
detection of NASH and significant fibrosis among 
NAFLD patients. For example, the previously 
reported area under the receiver operating char-
acteristic curves (AUROCs) for the diagnosis of 
NASH among NAFLD were up to 0.82 for ultra-
sonography scores (e.g. ultrasonography fatty 
liver indicator and ultrasonography fatty score) 
and 0.82 for transient elastography (TE).11 On 
the contrary, the AUROCs for detecting signifi-
cant fibrosis among NAFLD were 0.83 for TE, 
0.88 for MRE and 0.64–0.75 for clinical scoring 
systems, for example, BARD score (0.64) and 
FIB-4 (0.75).12 Artificial intelligence (AI) has 

begun to be incorporated into these clinical scor-
ing systems and imaging modalities in order to 
improve diagnostic performance.

Over the past decade, AI has been used to identify 
and predict patterns or connections within large 
data sets in various fields of medicine, demon-
strating particular usefulness in the diagnostic 
process. Previous systematic review of AI in hepa-
tology reported on the utilization of machine-
learning for assessing liver fibrosis, predicting liver 
decompensation, screening eligible liver trans-
plant recipients as well as predicting post-trans-
plant survival and complications.13,14 Another 
recent systematic review summarized the integra-
tion of AI in imaging modalities, digital pathology, 
and electronic health records for the diagnosis and 
staging of NAFLD.15 The review emphasized on 
the high accuracy of AI-based system for NAFLD 
diagnosis and staging. However, very few meta-
analyses have been conducted to summarize the 
overall diagnostic performance of AI-assisted 
diagnosis of liver diseases.16 In this systematic 
review and meta-analysis, we aimed to determine 
the performance of AI-assisted systems for the 
diagnosis of NAFLD, NASH, and liver fibrosis.

Methods
The study was conducted based on the Preferred 
Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) checklist.17 The protocol was 
registered with PROSPERO (CRD42021230391).

Search strategy
The objective of the search was to identify studies 
utilizing AI in the diagnosis and classification of 
NAFLD, NASH and liver fibrosis among NAFLD 
patients. A literature search was conducted on 
MEDLINE, Scopus, Web of Science, and Google 
Scholar databases. The search was conducted from 
January 2000 through September 2021. We 
excluded studies published prior to the year 2000 
to avoid obsolete computer-based algorithms which 
are not consistent with the modern AI classifica-
tion. The keywords for the search included: ‘artifi-
cial intelligence’, ‘computer-assisted’, 
‘computer-aided’, ‘neural network’, ‘machine 
learning’, ‘deep learning’, ‘liver’, ‘hepatic’, ‘steato-
sis’, ‘fatty’, ‘NAFLD’, ‘NASH’, ‘steatohepatitis’, 
‘fibrosis,’ and ‘cirrhosis’. Due to the previously 
mentioned updated nomenclature, the search term 
‘metabolic associated fatty liver disease’ or 
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‘MAFLD’ was also included. However, at the time 
of literature search, no studies with MAFLD and 
AI were identified. The search strategies for all 
databases are present in the Supplemental method.

Inclusion and exclusion criteria
We included articles using AI to assist in the diag-
nosis and grading of NAFLD. The inclusion crite-
ria consisted of studies with sufficient data to 
generate a 2 × 2 table of true positive (TP), true 
negative (TN), false positive (FP), and false nega-
tive (FN). The articles also had to specify the refer-
ence standard (diagnostic method) and class(es) of 
AI. The exclusion criteria were studies which did 
not report the desired outcomes or did not have 
sufficient data to complete the 2 × 2 table. We also 
excluded studies that did not clearly describe vali-
dation methods or characteristics of training and 
validation cohorts. Studies in languages other than 
English as well as reviews, editorials, conference 
proceedings, and abstracts with incomplete infor-
mation on the study population or characteristics 
of source image data sets were also excluded.

Data extraction
Two authors (PD and TT) independently 
screened the abstracts and titles to select the stud-
ies for full-text review. After screening, data 
extraction and quality assessment were also inde-
pendently performed and cross-checked by the 
two authors (PD and TT). Any disagreements 
were discussed and decided by the third author 
(RC). Extracted data included author’s last name, 
publication year, study location, study design 
(prospective or retrospective cohort), validation 
methods (k-fold cross-validation and independ-
ent validation cohort), characteristics of training 
and validation cohorts (general population or at-
risk population with specific diseases), sensitivity, 
specificity, positive predictive value (PPV), nega-
tive predictive value (NPV) as well as TP, TN, 
FP, and FN values. For studies with multiple AI 
classifiers, we selected the AI classifier with the 
best performance indicated by the best accuracy 
or greatest area under the curve (AUC).

Quality assessment
The quality of the studies was assessed using the 
Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS-2) tool which is comprised of 12 ques-
tions assessing risk of bias and applicability in four 

domains (patient selection, appropriate index test, 
reference standard, and flow and timing).18 As 
mentioned in our previous work, some questions 
were slightly modified to better assess the quality of 
AI-related studies.16 For instance, the interpreta-
tion of the index test in clinical diagnostic studies 
should be conducted with an optimal pre-specified 
threshold in order to avoid overfitting. In AI-related 
research, separate validation or testing cohorts 
should be conducted in order to prevent the over-
fitting issue. Therefore, we assessed whether the 
included studies provided clear validation methods. 
Other questions for the assessment of human-ori-
ented bias were also modified including whether 
knowing the reference standard results influenced 
the index test results. This was interpreted as a risk 
of bias caused by human manipulation in the AI 
protocol which could affect the AI output.

Statistical analysis
We used Covidence (Veritas Health Innovation, 
Melbourne, and Australia) for the screening, data 
extraction, and quality assessment process. After 
data extraction, TP, FP, TN, and FN values were 
exported from Covidence. If not available, the 
values were calculated from sensitivity, specific-
ity, and prevalence using Review Manager ver-
sion 5.3.5.19 All statistical analysis was conducted 
using R software, version 3.6.3, Vienna, Austria.20 
Pooled sensitivity, specificity, PPV, NPV, and 
diagnostic odds ratio (DOR) with 95% confi-
dence intervals (95% CI) were calculated using 
random effects model. Summary receiver operat-
ing characteristics (SROC) with AUCs were also 
generated. AUC values of 0.5–0.7, 0.7–0.9, and 
0.9–1 indicated low, moderate, and high accu-
racy, respectively. Heterogeneity was assessed 
using I2 and Cochrane’s Q statistics. Publication 
bias was assessed with Deeks’ funnel plot. 
Subgroup analysis and meta-regression were pre-
specified according to population, AI classifiers 
and diagnostic methods. P values of <0.05 were 
considered statistically significant. Sensitivity 
analysis was also performed by excluding studies 
with uncertain risk or high risk for bias and appli-
cability assessed by the QUADAS-2 criteria.

Results

Literature search
The searching process and results are shown in 
Figure 1. After literature search, a total of 
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430 articles were identified. After removing 173 
duplicates, 257 abstracts were screened and 183 
articles were excluded due to the following reasons: 
conducted on animals (n = 24), meeting abstracts 
or proceedings (n = 71), editorials or reviews 
(n = 20), irrelevant articles (n = 66), and written in 
languages other than English, that is, Chinese 
(n = 1) and Arabic (n = 1). Next, 74 full-text articles 
were assessed for eligibility and 49 were excluded 
due to the following reasons: focusing on other 
objectives (n = 17), unclear diagnostic method 
(n = 11), no desired outcomes (n = 15), no valida-
tion cohort characteristics (n = 5), and unclear vali-
dation methods (n = 1). A final total of 25 studies 
were included in the systematic review with 13 of 
the studies identified for the meta-analysis.

The studies in the systematic review were divided 
into 5 categories: (1) AI-assisted ultrasonography 

to diagnose NAFLD (n = 6), (2) AI-assisted anal-
ysis of clinical data sets to diagnose NAFLD 
(n = 6), (3) AI-assisted system for the diagnosis of 
NASH (n = 5), (4) AI-assisted system for the 
diagnosis of liver fibrosis in NAFLD (n = 5), and 
(5) AI-assisted system for steatosis quantification 
in pathological specimen (n = 4). One study eval-
uated both AI-integrated diagnosis of NASH and 
fibrosis among NAFLD patients, the result for 
each category was therefore extracted and 
included in the respective categories.21 Seven 
studies contained multiple AI classifiers. For the 
studies with a single AI model (n = 18), nine stud-
ies used neural network models including artifi-
cial neural network (ANN) and convolutional 
neural network (CNN). Nine studies utilized 
non-neural network models such as regression 
tree (RT), rule extraction algorithm, and lasso 
regression. The diagnostic methods for NAFLD, 

Figure 1. Flow diagram of search methodology and literature selection process.

https://journals.sagepub.com/home/tag


P Decharatanachart, R Chaiteerakij et al.

journals.sagepub.com/home/tag 5

NASH, and liver fibrosis applied in the included 
articles were liver biopsy, MRI, elastography, 
ultrasonography, and ultrasonography in combi-
nation with elevated liver chemistries. Details of 
the extracted data on the studies’ information, 
developmental and validation cohort characteris-
tics, validation methods, diagnostic method, AI 
classifiers, and performance are shown in Table 1.

Quality assessment by QUADAS-2 showed that 
most studies contained low risk of bias and had 
no applicability concerns, except for the four 
studies which contained uncertain risk of bias, 
one study with high risk of bias, and one study 
with high risk for applicability concerns. Studies 
with uncertain risk for bias were studies referring 
to both alcoholic and non-alcoholic fatty liver dis-
ease (n = 3) of which two of the three studies did 
not provide detailed distribution of the patient’s 
degree of liver steatosis which could affect the 
performance of AI-assisted methods. Another 
study with uncertain risk of bias used non-stand-
ard reference diagnostic methods, that is, ultra-
sonography with elevated liver function for the 
diagnosis of NASH (n = 1). The study with high 
risk of bias had multiple diagnostic methods, that 
is, using ultrasonography for control group and 
liver biopsy for NAFLD group. Regarding appli-
cability concerns, one high-risk study included 
genomic data as AI inputs which could be diffi-
cult to obtain in clinical setting (n = 1). Detailed 
assessments for each study are summarized in 
Supplemental Table 1.

Performance of AI-assisted ultrasonography  
for the diagnosis of NAFLD
Systematic review included six studies incorpo-
rating AI into ultrasonography for NAFLD diag-
nosis.22–27 Three studies relied on multiple AI 
classifiers22,24,27 and three studies utilized a single 
AI classifier (2 CNN23,26 and 1 RT25). Liver 
biopsy was employed as the diagnostic method 
for NAFLD in four studies,22–24,27 whereas the 
other two studies chose MRI-PDFF.25,26 Two 
studies included 50% of patients with less than 
30% steatosis.23,27 One study consisted of 92% of 
patients with less than 20% steatosis25 and the 
other study had a mean steatosis of 11%.26 Two 
pairs of studies (Kuppili et al.22 and Biswas et al.,24 
Byra et  al.23 and Zamanian et  al.27) were con-
ducted in the same patient cohorts. In the meta-
analysis, we included one study from each 
population cohort which was more recent and 

reported the better performance of the AI sys-
tem.24,27 Eventually, a total of four studies were 
included in the meta-analysis.24–27

The pooled sensitivity, specificity, PPV, NPV, 
and DOR for the four studies was computed as 
0.97 (95% CI: 0.91–0.99), 0.98 (95% CI: 0.89–
1.00), 0.98 (95% CI: 0.93–1.00), 0.95 (95% CI: 
0.88–0.98), and 599.53 (95% CI: 96.73–
3716.06), respectively (Figure 2(a)–(e)). 
Heterogeneity was relatively low with I2 of 0 for 
pooled specificity and PPV, I2 of 30, 29, and 53 
for sensitivity, PPV, and DOR, respectively. 
Cochrane’s Q results were also not significant 
(p ⩾ 0.1) for all analyses. SROC curve with AUC 
of 0.98 is shown in Figure 3.

We further performed meta-regression with the 
diagnostic method (liver biopsy vs MRI), AI clas-
sifier (neural network vs non-neural network) and 
study population (general population vs specific 
at-risk population) as covariates in order to deter-
mine whether these factors affected the overall 
results of the meta-analysis. The p values for the 
AI classifier, diagnostic method, and study popu-
lation as covariates were 0.04, 0.04, and 0.23, 
respectively. This finding suggested that different 
AI classifiers and diagnostic methods significantly 
affected the overall performance of AI-assisted 
diagnosis of NAFLD.

Subgroup analysis by AI classifiers revealed that 
neural network AI had slightly higher sensitivity, 
NPV, and DOR than non-neural network AI, 
with sensitivity of 0.98 (95% CI: 0.94–0.99) vs 
0.88 (95% CI: 0.73–0.97), NPV of 0.97 (95% 
CI: 0.92–0.99) vs 0.86 (95% CI: 0.67–0.96) and 
DOR of 1197.75 (95% CI: 255.84–5607.32) vs 
90.00 (95% CI: 15.17–533.81), respectively 
(Supplemental Table 2). Nevertheless, interpre-
tation of the subgroup analysis should be 
approached with caution because there was only 
one study that utilized non-neural network. 
Moreover, subgroup analysis by diagnostic 
method showed that studies using liver biopsy 
had higher NPV and DOR compared to studies 
using MRI with NPV of 0.98 (95% CI: 0.93–
1.00) vs 0.90 (95% CI: 0.79–0.95) and DOR of 
4130.95 (95% CI: 368.73–46279.93) vs 200.90 
(95% CI: 36.88–1094.46), respectively. 
Interestingly, heterogeneity was also significantly 
lower in liver biopsy subgroup with I2 of 0 for all 
pooled analysis (Supplemental Table 2). 
However, no significant difference was found in 
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(a)

(b)

(c)

(d)

(e)

Figure 2. Sensitivity (a), specificity (b), positive predictive value (c), negative predictive value (d), and diagnostic 
odds ratio (e) of AI-assisted ultrasonography for the diagnosis of NAFLD.
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the subgroup analysis based on the population. 
Sensitivity analysis excluding studies with uncer-
tain or high risk for bias according to the 
QUADAS-2 showed consistent results with sensi-
tivity, specificity, PPV, NPV, and DOR of 0.96 
(95% CI: 0.87–0.99), 0.95 (95% CI: 0.88–0.98), 
0.97 (0.93–0.99), 0.94 (95% CI: 0.82–0.98), and 
336.58 (95% CI: 53.80–2105.69), respectively 
(Supplemental Table 3).

Performance of AI-assisted clinical  
data sets for the diagnosis of NAFLD
We performed a meta-analysis of six studies 
incorporating AI into clinical data sets for 
NAFLD diagnosis.28–33 Examples of clinical data 
sets primarily included demographic data (age, 
sex, weight, and height) and laboratory values 
(liver and renal function tests, lipid profile, and 
plasma glucose). Multiple AI classifiers were used 
in four studies,28–30,33 while the other two studies 
used a single AI classifier (1 ANN32 and 1 ran-
dom forest31). Five articles selected ultrasonogra-
phy as the diagnostic method,28–30,32,33 while one 
study relied on MRI.31

The pooled sensitivity, specificity, PPV, NPV, 
and DOR were 0.75 (95% CI: 0.66–0.82), 0.82 
(95% CI: 0.74–0.88), 0.75 (95% CI: 0.60–0.86), 
0.82 (0.74–0.87), and 13.29 (95% CI: 8.32–
21.21), respectively (Figure 4(a)–(e)). Figure 3 
shows the SROC with an AUC of 0.85. We 
observed a high degree of heterogeneity with I2 of 
98%, 99%, 99%, 99%, and 98% for pooled sen-
sitivity, specificity, PPV, NPV, and DOR, 
respectively.

Meta-regression performed with diagnostic 
method and AI classifier as covariates resulted in 
p values of 0.20 and 0.55, respectively. Subgroup 
analysis by AI classifiers revealed that neural net-
work AI had slightly higher sensitivity and DOR 
than non-neural network AI, with sensitivity of 
0.84 (95% CI: 0.82–0.85) vs 0.72 (95% CI: 
0.63–0.80) and DOR of 21.08 (95% CI: 18.08–
24.59) vs 12.09 (95% CI: 7.13–20.50), respec-
tively. Subgroup analysis according to the 
diagnostic method yielded a higher specificity, 
PPV, NPV, and DOR of 0.84 (95% CI: 0.75–
0.89), 0.80 (95%CI: 0.70–0.87), 0.80 (95%CI: 
0.72–0.86), and 15.60 (95% CI: 10.62–22.92) 

Figure 3. SROC curves demonstrating performance of AI-assisted diagnosis of NAFLD (AI-assisted 
ultrasonography and AI-assisted clinical data sets) and AI-assisted diagnosis of NASH).
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(a)

(b)

(c)

(d)

(e)

Figure 4. Sensitivity (a), specificity (b), positive predictive value (c), negative predictive value (d), and diagnostic 
odds ratio (e) of AI-assisted clinical data sets for the diagnosis of NAFLD.
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for studies using ultrasonography (n = 5), com-
pared to 0.74 (95% CI: 0.73–0.75), 0.42 (95% 
CI: 0.40–0.44), 0.89 (95% CI: 0.88–0.90), and 
5.77 (95% CI: 4.96–6.70) for the study using 
MRI (n = 1). Since only one study utilized neural 
network as AI classifier and one study used MRI 
as the diagnostic method, interpretation of the 
subgroup analysis should be approached cau-
tiously. Results for the subgroup analyses are pre-
sented in Supplemental Table 2. Sensitivity 
analysis, excluding articles with uncertain or high 
risk for bias revealed similar results with sensitiv-
ity, specificity, PPV, NPV, and DOR of 0.72 
(95% CI: 0.63–0.80), 0.83 (95% CI: 0.72–0.90), 
0.76 (95% CI: 0.69–0.82), 0.80 (95% CI: 0.70–
0.88), and 12.94 (95% CI: 8.74–19.15), respec-
tively (Supplemental Table 3).

Performance of AI-assisted diagnosis  
of NASH in patients at-risk for NASH
We identified five studies focusing on the diag-
nosis of NASH among patients with NAFLD or 
with at-risk for NAFLD (i.e. obese and hyper-
tensive).21,34–37 In this category, two studies 
integrated AI with imaging modalities21,34 and 
three studies incorporated AI with clinical data 
sets.35–37 Almost all studies selected liver biopsy 
as the diagnostic methods, except for one study 
which used ultrasonography findings in combi-
nation with elevated liver enzymes.36 The pooled 
sensitivity, specificity, PPV, NPV, and DOR for 
the diagnosis of NASH were 0.80 (95% CI: 
0.75–0.85), 0.69 (95% CI: 0.53–0.82), 0.71 
(95% CI: 0.36–0.91), 0.75 (95% CI: 0.35–
0.94), and 8.27 (95% CI: 5.53–12.37), respec-
tively. The heterogeneity was relatively high 
with I2 ranging from 0–98% (Supplemental 
Figure 1A–1E). SROC curve showed an AUC 
of 0.81 (Figure 3).

Performance of AI-assisted diagnosis  
of liver fibrosis in NAFLD
Systematic review included a total of five studies 
integrating AI for the diagnosis of liver fibrosis 
among NAFLD patients.21,38–41 However, the 
meta-analysis was not feasible due to differences 
in diagnostic modalities and outcomes of the 
included studies. Three studies integrated AI with 
clinical data38,39,41 and one study incorporated AI 
with imaging biomarkers21 to evaluate liver fibro-
sis in NAFLD patients. The other study investi-
gated AI-assisted clinical data sets for evaluating 

both the diagnosis of NASH and fibrosis.40 Two 
studies conducted by the same investigator group 
contained overlapping study population.40,41 
Regarding diagnostic methods in each study, three 
study relied on liver biopsy,21,38,41 one study used 
elastography39 and one study selected liver biopsy 
and ultrasonography as diagnostic method for the 
NAFLD group and control group, respectively.40 
Overall, the reported sensitivity and specificity 
varied by different stages of fibrosis. For example, 
one study found that the performance for identify-
ing METAVIR F1-F4 ranged from a sensitivity of 
0.993 for F1 to 1.00 for F4 and a specificity of 
0.757 for F1 to 1.00 for F4.39

Performance of AI-assisted steatosis 
quantification in pathological specimen
Our systematic review identified four studies inte-
grating AI with pathological imaging analysis for 
steatosis quantification and diagnosis of 
NAFLD.42–45 The outcome of each study was dif-
ferent from each other, including steatosis grad-
ing, differentiating macrosteatosis from other 
structures, identify significant steatosis or mac-
rosteatosis and diagnosing NASH among 
NAFLD samples. Therefore, meta-analysis was 
not performed. All studies relied on pathologist as 
the reference standard. The diagnostic perfor-
mance varied by outcomes of the study. For 
example, the AI-assisted identification of mac-
rosteatosis showed a sensitivity and specificity of 
0.98 and 0.94, respectively,42 while the sensitivity 
and specificity for diagnosing ⩾30% steatosis 
were 0.714 and 0.973, respectively.44 The perfor-
mance of AI-assisted system for steatosis grading 
according to the NASH Clinical Research 
Network histological scoring system ranged from 
a sensitivity of 0.99 for grade 1 to 0.67 for grade 
3 and a specificity of 1.00 for grade 1 to 0.98 for 
grade 3 steatosis.43 Furthermore, the AI-assisted 
pathological identification of NASH among 
NAFLD had a sensitivity and specificity of 0.879–
0.909 and 0.909–1.00, respectively.45

Publication bias
In the Deeks funnel plot, the slope coefficients 
were relatively symmetrical with a p- value of 0.40 
for AI-assisted ultrasonography for the diagnosis 
of NAFLD, 0.78 for AI-assisted clinical data sets 
for the diagnosis of NAFLD and 0.23 for 
AI-assisted clinical data sets for the diagnosis of 
NASH, indicating that no publication bias was 

https://journals.sagepub.com/home/tag


P Decharatanachart, R Chaiteerakij et al.

journals.sagepub.com/home/tag 13

detected for the selected studies (Supplemental 
Figure 2A–C).

Discussion
This systematic review and meta-analysis have 
identified many types of AI-assisted methods to 
diagnose NAFLD, NASH, and fibrosis among 
NAFLD patients and quantify liver steatosis in 
pathological specimens. Meta-analysis results 
showed excellent performance of AI-assisted 
ultrasonography for the diagnosis of NAFLD, 
with an AUC of 0.98 and relatively low heteroge-
neity. Combining AI with clinical data sets also 
demonstrated an acceptable performance level 
for the diagnosis of NAFLD, with an AUC of 
0.85, with a higher degree of heterogeneity, which 
was likely due to variations in clinical input data.

Integrating AI into ultrasonography can improve 
the performance of NAFLD diagnosis. 
Ultrasonography is widely available in most hos-
pitals and healthcare facilities. The equipment is 
also relatively inexpensive and the procedure is 
non-invasive. However, since the image analysis 
is user-dependent, it is also subject to inter- and 
intra-observer variations. The performance of 
conventional ultrasonography is often less reliable 
for the diagnosis of early-stage NAFLD. 
Therefore, incorporating AI with ultrasonogra-
phy image analysis can minimize both human-
related errors as well as improve overall 
performance. Our meta-analysis found that three 
out of the four studies had enrolled patients with 
mild steatosis (50–92% of patient cohorts had 
less than 30% steatosis) emphasizing the ability of 
AI-integrated methods to identify early-stage ste-
atosis. The meta-analysis results show promising 
performance of AI-assisted ultrasonography with 
excellent sensitivity, specificity, PPV, and NPV of 
0.95 and above as well as high accuracy with an 
AUC of 0.98. Heterogeneity assessment for 
AI-assisted ultrasonography was also relatively 
low with I2 of <40 for all pooled analyses except 
for the I2 of 53 for DOR. Subgroup analysis by AI 
classifier indicated the superior performance of 
neural network AI over non-neural network AI. 
Interestingly, subgroup also showed that studies 
using liver biopsy as diagnostic method has sig-
nificantly lower degree of heterogeneity with I2 of 
0 for all pooled analysis, implying that different 
diagnostic method could be the cause of hetero-
geneity for AI-assisted ultrasonography. 
Moreover, compared to currently available 

imaging modalities, the performance of an 
AI-assisted system for the diagnosis of NAFLD 
exceeded the performance of conventional ultra-
sonography, TE, and dual-gradient echo mag-
netic resonance imaging (DGE-MRI) reported in 
previous studies (Table 2).47,48 Our results sup-
port the benefits and robustness of using 
AI-assisted ultrasonography. Nevertheless, rand-
omized controlled trials with head-to-head com-
parisons between AI-assisted system and 
conventional imaging modalities are warranted to 
validate the performance differences.

AI has also been employed to analyze large clini-
cal data sets with various inputs, such as demo-
graphic data, physical findings, and laboratory 
results. The performance of AI in this category is 
promising but less satisfactory with findings 
showing only moderate accuracy compared to 
AI-assisted ultrasonography (AUC: 0.85 vs 0.98) 
and large heterogeneity (I2: 98–99%). To identify 
the source of heterogeneity, we performed a 
meta-regression which suggested that heteroge-
neity was not driven by various AI classifiers and 
diagnostic method. We hypothesized that the dif-
ferences in performance are likely due to the dif-
ferences in type and quantity of the AI inputs. 
The inputs for AI-assisted ultrasonography are 
usually images of the liver which contain diverse 
and potentially relevant features to be extracted 
by AI. The inputs for AI-assisted clinical data sets 
are limited to clinical parameters pre-selected by 
the investigators. The numbers of selected clini-
cal parameters inputted in the AI were relatively 
small with great variation among the different 
studies. This may explain the lower performance 
and higher degree of heterogeneity. Nonetheless, 
the overall performance of AI-assisted clinical data 
sets was still comparable to those of TE and slightly 
lower than DGE-MRI as shown in Table 2. 
Incorporating AI into patient information already 
available in routine clinical practice could provide 
a preliminary screening method to identify 
patients at risk for NAFLD, especially in resource-
limited settings where TE or MRI machines are 
unavailable or cost-prohibitive.

Other applications of AI in NAFLD are the iden-
tification of NASH and fibrosis which could offer 
tremendous clinical benefits as the degree of 
hepatic inflammation or fibrosis is associated with 
liver-related mortality.4 Regarding the AI-assisted 
diagnosis of NASH, our meta-analysis showed an 
acceptable sensitivity of 80% and AUC of 0.8 but 
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with relatively high heterogeneity. We hypothe-
sized that the different diagnostic methods and 
different population might in part contribute to 
the high heterogeneity. Due to the limited number 
of studies included in the meta-analysis (n = 3), 
interpretation of the results needs to be done with 
caution. More studies in this topic are required for 
a more comprehensive analysis. Moreover, vari-
ous scoring systems and imaging modalities have 
been proposed as screening tools for early detec-
tion of fibrosis, including aspartate aminotrans-
ferase-to-platelet ratio index (APRI) and 
Fibrosis-4 score (FIB-4). A previous meta-analy-
sis reported a relatively low diagnostic perfor-
mance of these conventional scoring systems, with 
a pooled sensitivity and specificity of 60% and 
77%, respectively, for diagnosing significant fibro-
sis, and 67% and 77%, respectively, for diagnos-
ing advanced fibrosis.12 We found that when AI 
was integrated into the clinical datasets, it pro-
vided a better tool for screening fibrosis. For 
example, AI-integrated clinical data sets had a 
pooled sensitivity and specificity of 0.99–1.00 and 
0.76–1.00 for diagnosing liver fibrosis stage F1–
F4, respectively. Nevertheless, more studies focus-
ing on using AI to improve diagnostic capabilities 
of clinical scoring systems are critically needed.

The last application of AI in NAFLD is to quan-
tify liver steatosis in pathological specimens. 
Previous studies have shown that conventional 
identification of pathological specimen is suscep-
tible to inter- and intra-observer variations and 
also considered to be a time-consuming pro-
cess.49,50 AI-supported analysis has shown that it 
can provide reliable results with acceptable per-
formance levels including a sensitivity and 

specificity of 0.71 and 0.97 for the diagnosis of 
more than 30% steatosis44 as well as 0.67 – 0.99 
and 0.85 – 1.00 for steatosis grading.43

This manuscript represents one of the very first 
meta-analyses focusing on the application of AI in 
the diagnosis of NAFLD. In the production of 
this effort, we conducted a comprehensive litera-
ture search, including articles from medical jour-
nals, computer science, and engineering journals. 
Our selection criteria also only included articles 
with clear validation methods which is crucial for 
evaluating performance of AI technology. We do 
recognize some limitations remain present in this 
study. No AI algorithms were completely identi-
cal among the included articles. Since AI inputs 
were slightly different among the studies despite 
being classified as similar, interpretation of the 
pooled diagnostic performance must proceed 
with caution. More studies in each subgroup are 
required for comprehensive subgroup analysis. 
Another limitation is the difference in the diag-
nostic method among the included studies. The 
gold standard for the diagnosis of NAFLD and 
steatosis quantification is liver biopsy or MRI-
PDFF as the best alternative. However, some 
studies integrating AI with clinical data sets 
instead relied on ultrasonography which may 
affect performance results. In order to accurately 
evaluate the performance of the AI-assisted diag-
nostic system, liver biopsy or MRI-PDFF should 
be employed as the diagnostic method for 
NAFLD. Finally, prospective or randomized 
controlled studies comparing AI-supported anal-
ysis with conventional methods would be benefi-
cial in assessing the potential utility of AI in 
clinical practice.

Table 2. Comparisons between the performance of AI-assisted systems in this meta-analysis and the performance of conventional 
methods reported in previous studies for the diagnosis of NAFLD.

Analysis AI-assisted 
ultrasonography

AI-assisted 
clinical 
datasets

Conventional 
ultrasonography48 
(⩾5% steatosis)

Transient 
elastography47 
S0 vs S1–3

DGE-MRI48 
(⩾5% steatosis)

Sensitivity 0.97 (0.91–0.99) 0.75 (0.66–0.82) 0.62 (0.49–0.73) 0.69 (0.60–0.75) 0.77 (0.65–0.86)

Specificity 0.98 (0.89–1.00) 0.82 (0.74–0.88) 0.81 (0.72–0.88) 0.82 (0.76–0.90) 0.87 (0.79–0.92)

Positive predictive value 0.98 (0.93–1.00) 0.75 (0.60–0.86) 0.66 (0.53–0.77) – 0.78 (0.66–0.87)

Negative predictive value 0.95 (0.88–0.98) 0.82 (0.74–0.87) 0.78 (0.69–0.85) – 0.86 (0.78–0.92)

AUC 0.98 0.85 – 0.82 0.88

DGE-MRI, dual-gradient echo magnetic resonance imaging.
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Conclusion
AI-assisted ultrasonography and clinical data sets 
delivered satisfactory performance as a diagnostic 
tool for NAFLD. AI-assisted systems used in the 
identification of fibrosis and NASH as well as the 
quantification of steatosis of a pathological speci-
men also yielded promising results albeit the lim-
ited number of the studies available for review. 
Randomized controlled studies or prospective 
studies are warranted to validate the benefit of AI 
use in clinical setting.
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