
sensors

Article

An Autonomous Log Storage Management Protocol
with Blockchain Mechanism and Access Control for
the Internet of Things

Chien-Lung Hsu 1,2,3,4,5,* , Wei-Xin Chen 1 and Tuan-Vinh Le 2

1 Department Information Management, Chang Gung University, Taoyuan 33302, Taiwan;
codychen0704@gmail.com

2 Graduate Institute of Business and Management, Chang Gung University, Taoyuan 33302, Taiwan;
tvle.cgu@gmail.com

3 Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
4 Department Visual Communication Design, Ming Chi University of Technology, New Taipei 24301, Taiwan
5 Department Nursing, Taoyuan Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
* Correspondence: clhsu@mail.cgu.edu.tw

Received: 11 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 ����������
�������

Abstract: As the Internet of Things (IoT) has become prevalent, a massive number of logs produced by
IoT devices are transmitted and processed every day. The logs should contain important contents and
private information. Moreover, these logs may be used as evidences for forensic investigations when
cyber security incidents occur. However, evidence legality and internal security issues in existing
works were not properly addressed. This paper proposes an autonomous log storage management
protocol with blockchain mechanism and access control for the IoT. Autonomous model allows sensors
to encrypt their logs before sending it to gateway and server, so that the logs are not revealed to the
public during communication process. Along with blockchain, we introduce the concept “signature
chain”. The integration of blockchain and signature chain provides efficient management functions
with valuable security properties for the logs, including robust identity verification, data integrity,
non-repudiation, data tamper resistance, and the legality. Our work also employs attribute-based
encryption to achieve fine-grained access control and data confidentiality. The results of security
analysis using AVSIPA toolset, GNY logic and semantic proof indicate that the proposed protocol
meets various security requirements. Providing good performance with elliptic curve small key size,
short BLS signature, efficient signcryption method, and single sign-on solution, our work is suitable
for the IoT.

Keywords: attribute-based access control; digital forensics; evidence legality; sensor log;
signature chain

1. Introduction

With the popularization of computers and rapid development of mobile network technologies,
Internet of Things (IoT) has become prevalent. Various devices and entities can wirelessly be connected
to the internet as long as they are equipped with sensors. Enabled with fifth generation (5G) technology,
communication in IoT environments is performed with super low latency, high-peak data rates
and massive network capacity [1]. Data aggregation and transmission in IoT networks have been
significantly improved, in order to provide better efficiency of energy consumption, network control
overhead, delay time, loss packet and aggregation rates [2]. Due to these advances, IoT has huge
potentials to change the information technology, enhance reliability of communication systems, as well
as improve our life quality. For example, in wireless body area networks (WBAN) [3], sensing data

Sensors 2020, 20, 6471; doi:10.3390/s20226471 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3105-5939
https://orcid.org/0000-0002-3107-7292
http://dx.doi.org/10.3390/s20226471
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/22/6471?type=check_update&version=2

Sensors 2020, 20, 6471 2 of 32

produced by wearable sensors provides rapid diagnostics, efficient treatments and valuable research
data. In addition to healthcare [3–5], IoT applications have been implemented in a lot of domains, such
as energy [6], vehicle [7,8], industrial systems [9], etc.

Logs generated by IoT devices contain important contents and sensitive information. The logs can
be stored in cloud systems for convenient management. With the management tools, it is allowed to
collect, store, analyze, archive, and dispose of the log information [10]. Specific uses of the logs include
device monitoring [11], user behavior analysis [12], or digital forensics [13].

1.1. The Problems

Most IoT environments adopt centralized architecture for managing log storage. It suffers from
internal threats since the data can be compromised by the management staffs. Moreover, sensitive
information of the logs may be revealed to unauthorized persons. The adversary can also tamper with
the log for illegal purposes. The integrity of the data needs to be preserved for forensic investigations
when security incidents occur [14]. Communicating parties may repudiate data ownership for their
own interests or motives, which causes challenges for digital forensics [15]. In addition, the legality of
collected evidences must be ensured so that it provides an effective and efficient investigation process.
In heterogeneous and distributed IoT environments with various devices and sensors, these concerns
become prominent.

For addressing aforesaid problems, it is essential to propose a mechanism which provides integrity,
availability, and legality of the logs. Access control to the log data should also be taken into account,
which ensures the confidentiality where the log can only be viewed by legitimate parties. Furthermore,
the mechanism should bear a rational implementation cost.

1.2. Related Works

Blockchain is a secure decentralized database that can track, verify, and safely protect the data
from tampering [16]. It provides open and transparent mechanism that does not require third-party
intervention. Blockchain has successfully been used in various sectors, such as transportation
systems [17], medical record management [18], and so on. The concept of combining IoT and
blockchain promotes the quality of data sharing services with automatic workflows [19]. Blockchain
was proposed as a security solution for IoT by various works [20–22]. The research topics include
immutable event logs and data access management [23], sensing data transaction [24], or IoT device
authentication [25]. The digital forensics in the IoT architecture can be classified into various layers
consisting of cloud forensics, network forensics, and device forensics [26]. As the forensics of massive
IoT devices require a lot of resources [27], legal evidences helps in improving investigation efficiency
in accordance with the demand of law enforcement agencies [28].

Taguchi et al. [29] proposed a distributed management method for logs using a blockchain
scheme. The method provides data tamper resistance and increases access availability. Pourmajidi
and Miranskyy [30] introduced Logchain, a blockchain-based log system. Their system can avoid log
tampering and provides an immutable platform for the log storage. Hang and Kim [31] designed and
implemented blockchain platform for ensuring data integrity of the IoT environments. Hang and Kim
focused on the integration and management of IoT data and blockchain mechanism. Whereas, the IoT
forensics framework designed by Ryu et al. [13] employed the blockchain to satisfy the requirements
of IoT forensics. Their work achieves data tamper proof and non-repudiation in third party-less
environments. Persistence and privacy of forensic data were also assured. In their design, specific data
produced by IoT devices is written into the block for facilitating evidence collection during digital
forensic investigations. Aforesaid works have certain strengths that meet several functionality and
security requirements. However, internal confidentiality issue was not addressed since they did not
introduce access control mechanism. Moreover, the legality of the evidence preservation in their works
was uncertain.

Sensors 2020, 20, 6471 3 of 32

Recently, Li et al. [32] proposed a secure fine-grained data sharing scheme for cloud computing.
Even though their scheme provides lightweight computation with access control and forward secrecy,
it was not introduced with blockchain mechanism. Zheng et al. [33] introduced a new attribute-based
encryption scheme using blockchain technique. Their design did not employ digital signature to achieve
legal security features. Sowjanya and Dasgupta [34] presented another attribute-based encryption
scheme for WBAN. The scheme achieves good performance with elliptic curve cryptography and
attribute-based encryption. Zhong et al. [35] also introduced an efficient access control scheme for
smart healthcare. Nonetheless, both Sowjanya and Dasgupta [34] and Zhong et al. [35] did not include
blockchain mechanism and digital signature technique in their works.

Given the drawbacks of existing works, we are motivated to design a new secure protocol
providing log storage management capabilities, fine-grained access control, robust verification, and
some other essential security properties. The new design should also meet the forensics requirements
as well as the evidence legality.

1.3. Main Contributions

Our work proposes an autonomous log storage management protocol with blockchain mechanism
and access control for IoT environments. The proposed protocol allows sensor to perform the
signcryption of the log data based on its access policy. With access control mechanism, only the
authorized users with appropriate attributes are able to unsigncrypt the message and view the log.
Each entity in the system has to sign a signature during communication process so that they can be
tracked for potential forensics. We integrate blockchain mechanism and digital signature technique to
simultaneously achieve various properties. The contributions made in this paper can be described in
the following.

• Autonomous model allows sensors to encrypt the logs before sending them to other entities
(gateways and servers). Privacy of the logs therefore is fully protected throughout communication
process. In this way, our protocol is even secure for communications via unreliable channels.
Typical application of this model is WBAN, where wearable sensors encrypt health data before
sending it to coordinators and healthcare providers for specific services.

• Since legality of blockchain signature remains uncertain, whereas digital signature satisfies various
requirements with legal security properties [36], we introduce the concept “signature chain” in
this work. A signature chain is composed by the signatures of all communicating entities of the
system including sensors, gateway and server. The integration of blockchain and signature chain
achieves valuable properties: robust identity verification, data integrity, tamper proof (insider
attack resistance), ownership non-repudiation, and evidence legality. Thus, our work is completely
helpful to the purposes of digital forensics.

• In our design, private blockchain is employed as a storage to conveniently and efficiently store and
process the signature chain and ciphertexts, with various management functions. We adopt Proof
of Work (PoW) [37] as the consensus algorithm in proposed private chain, in order to achieve
above-mentioned security properties. Due to its full decentralization mechanism and immutability,
public blockchain is integrated in our protocol to assure the trust of the private blockchain.

• Fine-grained access control with ciphertext policy attribute-based encryption is proposed in
our work. It provides internal confidentiality in which only the legitimate users with specific
appropriate attributes are allows to decrypt the ciphertexts and obtain the log plaintexts.

• We use AVISPA toolset and GNY logic to formally prove security correctness of the
proposed protocol. Sematic security proof further indicates that our protocol satisfies various
security requirements.

• Our work employs elliptic curve with small key size, short BLS signature, and efficient signcryption
method to design the protocol with single sign-on solution. Therefore, our protocol bears low
computation and storage overhead, which is suitable to the IoT.

Sensors 2020, 20, 6471 4 of 32

• We provide practical implementation of the proposed protocol with specific use case, system
construction and user interface.

1.4. Paper Structure

The paper is structured as follows. We present preliminaries of our work in Section 2. Section 3.1
provides system model of our work including all entities with communicating roles. Security goals are
provided in Section 3.2, which are required for providing a secure communication with the proposed
system model. Section 3.3 presents specific procedure and algorithms of the protocol. Section 4 presents
security analysis of the proposed protocol including GNY logic, AVISPA toolset, and semantic proof.
Performance experiment and analysis of the our protocol are provided in Section 5. Section 6 describes
the implementation including practical procedures and system construction of our work. Finally, some
concluding remarks and future works are given in Section 7 of the paper.

2. Preliminaries

Preliminaries of the paper include linear secret-sharing scheme, attribute-based encryption,
signcryption, bilinear map, Boneh-Lynn-Shacham signature, blockchain, and single sign-on.

2.1. Linear Secret-Sharing Scheme

Linear Secret-Sharing Scheme (LSSS) proposed by Lewko and Waters [38] introduced how to use
AND and OR gates to generate the matrices. LSSS consists of access policy matrix M and column
vector v. The matrix M is composed by m rows and n columns, with the policy defined and stored
by Boolean formula [39,40]. Whereas, the vector v is composed by s, a1, a2, . . . an ∈R Zp that are the
randomly selected numbers, in which s is the secret value. Multiplying matrix M with vector v will
derive a column vector composed by λ1, . . . λn, where λ is the associated information of the secret
value s. Access policy M contains a certain number of attributes. As long as users possess appropriate
attributes, they can restore the secret value s.

2.2. Attribute-Based Encryption

Attribute-based encryption (ABE) was proposed by Sahai and Waters in 2005 [41]. In ABE,
access policy defined by users considers various attributes. The attributes possessed by users
determine whether they can meet the policy of data access. This advantage allows an efficient and
flexible encryption process. ABE is categorized into two types: key policy attribute-based encryption
(KP-ABE) [42,43] and ciphertext policy attribute-based encryption (CP-ABE) [44–46]. In the CP-ABE
scheme, user’s key is integrated with the attributes; and the ciphertext is associated with the access
policy through the LSSS. When access policy is satisfied, the user can use the attribute key to decrypt
the ciphertext. On the other hand, in the KP-ABE scheme, the user’s key is associated with the access
policy; and the ciphertext is integrated with the attributes. When the ciphertext meets the key’s access
policy, the user can decrypt the ciphertext.

2.3. Signcryption

Signcryption [47] is the combination of encryption and signature signing. The ciphertext and
signature of the message are generated by performing the functions of both encryption and signature
at the same time. Compared with the cumulative cost of separate encryption and signing process,
this novel method is much more efficient. Signcryption method provides confidentiality, verification
and non-repudiation of the given data. Attribute-based signcryption [48] combines the functions of
encryption and signature on the attributes. Fine-grained access control can be associated with the
signcrypted text to achieve robust message protection. This novel access control mechanism is well
suited for data sharing in distributed environments. For example, users outsource their data to cloud

Sensors 2020, 20, 6471 5 of 32

storage, and can effectively share the data with other parties. The users who are granted the access can
effectively obtain the data from anywhere through the network.

2.4. Bilinear Map

Selects a big number q, we have the elliptic curve: E : y2 = x3 + ax + b mod q. Let G1 be a
multiplicative cyclic group of order n, and g, g1 and g2 be the generators of G1, a bilinear map from
G1 ×G1 to GT is a function e : G1 ×G1 → GT . The bilinear map provides the following characteristics
and assumption [45,49,50]:

• Bilinear: If any two integers x, y ∈ Zp and generators g, g1, g2 ∈ G1, then e
(
gx

1, gy
1

)
= e(g1, g1)

xy =

e
(
gy

1 , gx
1

)
, and e(g1.g2, g) = e(g1, g).e(g2, g).

• Non-degenerate: There exists g1, g2 ∈ G1 such that e(g1, g2) is the generator of GT.
• Computable: For any g1, g2 ∈ G1, there exists a polynomial algorithm which can efficiently

compute e(g1, g2).
• Elliptic Curve Discrete Logarithm Problem (ECDLP): ECDLP is a special case of Discrete Logarithm

Problem (DLP), and can be described as follows. Given g1, m ∈ G1, the problem is to find integer
x ∈ Zp such that gx

1 = m.

2.5. Boneh-Lynn-Shacham Signature Scheme

Boneh-Lynn-Shacham (BLS) scheme [51] provides shorter signature length than Elliptic Curve
Digital Signature Algorithm (ECDSA) [52], but with the same security level. BLS signature scheme can
provide batch verification function, which allows to sign and verify multiple signatures at once. Given
g1, G1, GT defined in Section 2.4, plaintexts M1 : {0, 1}∗, M2 : {0, 1}∗, and hash function H : {0, 1}∗ ∈ G1,
the procedure of BLS scheme is described as follows:

• Key generation: Randomly choose an integer x ∈R Zp, let x be private key, we have Y = g1
x is the

corresponding public key.
• Signature generation: Use hash function H and private key x to sign the plaintext M1 and generate

signature σ1 = H(M1)
x.

• Signature verification: Based on plaintext M1 and signature σ1, the verification is to confirm the
equation (H(M1), Y)e(σ1, g1). Correctness of the verification is proved as follows: e(H(M1), Y) =
e(H(M1), g1

x) = e
(
H(M1)

x, g1
)
= e(σ1, g1).

• Batch signature verification: As stated, σ1 = H(M1)
x and σ2 = H(M2)

x are the signatures,
the verification is to confirm e(H(M1)H(M2), YY)e(σ1σ2, g1g1). The verification correctness is
proved as follows: e(H(M1)H(M2), YY) = e(H(M1)H(M2), g1

xg1
x) = e

(
H(M1)

xH(M2)
x, g1g1

)
=

e(σ1σ2, g1g1).

2.6. Blockchain

Blockchain was proposed by Nakamoto in 2008 with its first application, Bitcoin [53]. Peer-to-peer
(P2P) mechanism of blockchain with distributed ledger is employed to form decentralized networks.
Nodes within the networks communicate with each other to confirm the validity of the transactions
before they are uploaded to the blockchain. Due to a unique data structure, the content and transaction
recorded in blockchain are unalterably protected. Blockchain provides decentralization [54], tamper
resistance [55], and user anonymity [56]. There are three types of blockchain: public blockchain, private
blockchain and consortium blockchain [57]. In public blockchain, everyone can conduct transactions,
verifications and relevant contributions. It is recognized as the concept of completely decentralized
open network. Whereas, private blockchain network partly achieves the decentralization since its
design allows a single organization to hold central authority. Data access in private blockchain is
only granted to a certain number of users based on specific purposes. The consortium blockchain

Sensors 2020, 20, 6471 6 of 32

mechanism is similar to the private blockchain. The difference is consortium blockchain includes
multiple organizations, which can provide business-to-business (B2B) services.

2.7. Single Sign-on

Single Sign-On (SSO) [58] provides multi-server environment that allows users to use a single
password to log in multiple servers. After completing identity authentication with one sever, users can
freely access the services on other severs within the network, without having to repeat authentication
procedure. The benefits of SSO solution can be summarized as follows: (1) Avoids the confusion of
users when they must store massive credentials at the same time in single-server environments; (2)
Allows central service provider to conveniently manage the authentication information of users; and
(3) Significantly reduces credential storage overhead.

3. The Proposed Log Storage Management Protocol with Blockchain Mechanism and Access Control

In this section, we describe system model and security goals of the proposed protocol. Thereafter,
detailed procedure of our protocol is presented. Cryptographic functions and notations used in the
protocol are described in Table 1.

Table 1. Cryptographic functions and notations used in this paper.

Notations Description

PP Public parameters
MSK Secret parameters

Y Public key of the authority
α Secret key of the authority
C′ Public signcryption key
s Private signcryption key

M Log plaintext
C Log ciphertext
σCT Log signature
σIoT Sensor signature
σGW Gateway signature
σSrv Server signature

t Timestamp
IP Internet protocol address

H() Secure one-way hash function
ECDSA() ECDSA signature function

Veri f y : ECDSA() Verifying ECDSA signature function
→
v e Secret vector
BF Access policy based on Boolean formula
x Total number of attributes

IDi Identity of the user

3.1. System Model

Our system model includes 11 roles: attribute authority, SSO server, timestamp server, sensor (IoT
device) and agent, gateway, blockchain server, private blockchain, public blockchain, storage cluster,
and user. The attribute authority generates public and secret parameters used in entire communication
process. In particular, it sends public parameters to the sensor for log signcryption. The authority
also computes private attribute key and transmits it to the user for log unsigncryption. The SSO
server provides single sign-on login, allowing users to use a single password to enter multiple servers
in multi-server environment. The timestamp server derives timestamp parameters for the system.
The sensor is a sensing device which contacts the environment, and generates the logs. The agent is
installed inside the sensor, and is responsible for defining the access policy, as well as signcrypting the
logs to generate ciphertexts. The gateway verifies the signature included in the ciphertexts to ensure the

Sensors 2020, 20, 6471 7 of 32

correctness of the log ciphertext. Blockchain server is responsible for storing the signcrypted text in the
storage cluster. Moreover, the server also generates private blocks from single signatures, and public
block from multiple signatures, and then writes them into private blockchain and public blockchain
respectively. The private blockchain stores signature chains and related information. The public
blockchain records corresponding data from the private blockchain, and stores the batch signatures,
with fully decentralized nature. The user logs in to the blockchain server through the SSO server,
obtains the ciphertext, and uses the attribute private key to unsigncrypt it to view the log plaintext.
The user can also verify the validity of the related information stored in private blockchain and public
blockchain. System model of the proposed protocol is depicted in Figure 1.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 32

the signcrypted text in the storage cluster. Moreover, the server also generates private blocks from
single signatures, and public block from multiple signatures, and then writes them into private
blockchain and public blockchain respectively. The private blockchain stores signature chains and
related information. The public blockchain records corresponding data from the private blockchain,
and stores the batch signatures, with fully decentralized nature. The user logs in to the blockchain
server through the SSO server, obtains the ciphertext, and uses the attribute private key to
unsigncrypt it to view the log plaintext. The user can also verify the validity of the related information
stored in private blockchain and public blockchain. System model of the proposed protocol is
depicted in Figure 1.

Signature chain is composed by the signatures signed by the sensor, the gateway and the server
in each communication session. Data in private blockchain is signed using two types of signature
schemes including BLS and ECDSA. Each block contains a single signature chain. These chains are
immutably stored in blockchain for further security purposes. Figure 2 depicts the design of private
blockchain and signature chain of our work.

Figure 1. System model of the proposed protocol. Figure 1. System model of the proposed protocol.

Signature chain is composed by the signatures signed by the sensor, the gateway and the server
in each communication session. Data in private blockchain is signed using two types of signature
schemes including BLS and ECDSA. Each block contains a single signature chain. These chains are
immutably stored in blockchain for further security purposes. Figure 2 depicts the design of private
blockchain and signature chain of our work.

Sensors 2020, 20, 6471 8 of 32Sensors 2020, 20, x FOR PEER REVIEW 8 of 32

Figure 2. Private blockchain and signature chain in our system model.

3.2. Security Goals

Security problems are always big concerns in any information systems. The proposed system
model includes various parties in a public communication environment. External invasion and
security attacks should also be considered for providing a high security environment. We expect that
our protocol can satisfy the following security requirements.

• Secure decryption key: After the sensor signcrypts the logs, the user attempts to compute the
decryption key to decrypt the ciphertext and access the logs. Only legitimate user possessing
appropriate attributes is able to compute the correct key.

• Robust verification: The digital signature signed by the sensor makes sure that the log data is truly
produced and transmitted by the sensor itself. Any parties participating in the communication
can verify the validity of the signature.

• Data unforgeability: Only the sensor with its own private key is able to sign the message. We
desire to warrant that the signcryption key of the sensor is kept secret to the sensor only, during
communication process. In this way, the adversary cannot forge the signature and impersonate
the sensor.

• Data tampering resistance: The signatures may be modified for obstruction purposes. In addition,
the signer may re-sign the message to tamper with its data. These issues should be addressed so
that security properties of digital signature are guaranteed.

• Data confidentiality: The log data must be kept confidential to the legal parties under any
circumstances. Users within the system are allowed to access the logs only if they possess
required attributes.

• Non-repudiation: Once the logs are signed, signers cannot repudiate them for any own interests.
This property is helpful to digital forensic investigations.

• Data integrity: This property makes sure that the logs must be originally sent by the sensor
without any modifications to its contents.

• Perfect forward secrecy: This security goal is required for the long-term decryption key. It ensures
that if the adversaries successfully calculate the current decryption key, they still cannot use it to
compromise the logs in previous communications sessions.

Figure 2. Private blockchain and signature chain in our system model.

3.2. Security Goals

Security problems are always big concerns in any information systems. The proposed system
model includes various parties in a public communication environment. External invasion and security
attacks should also be considered for providing a high security environment. We expect that our
protocol can satisfy the following security requirements.

• Secure decryption key: After the sensor signcrypts the logs, the user attempts to compute the
decryption key to decrypt the ciphertext and access the logs. Only legitimate user possessing
appropriate attributes is able to compute the correct key.

• Robust verification: The digital signature signed by the sensor makes sure that the log data is truly
produced and transmitted by the sensor itself. Any parties participating in the communication
can verify the validity of the signature.

• Dataunforgeability: Only the sensor with its own private key is able to sign the message. We
desire to warrant that the signcryption key of the sensor is kept secret to the sensor only, during
communication process. In this way, the adversary cannot forge the signature and impersonate
the sensor.

• Datatampering resistance: The signatures may be modified for obstruction purposes. In addition,
the signer may re-sign the message to tamper with its data. These issues should be addressed so
that security properties of digital signature are guaranteed.

• Data confidentiality: The log data must be kept confidential to the legal parties under any
circumstances. Users within the system are allowed to access the logs only if they possess
required attributes.

• Non-repudiation: Once the logs are signed, signers cannot repudiate them for any own interests.
This property is helpful to digital forensic investigations.

• Data integrity: This property makes sure that the logs must be originally sent by the sensor without
any modifications to its contents.

• Perfect forward secrecy: This security goal is required for the long-term decryption key. It ensures
that if the adversaries successfully calculate the current decryption key, they still cannot use it to
compromise the logs in previous communications sessions.

Sensors 2020, 20, 6471 9 of 32

3.3. Procedure of the Proposed Protocol

Communication in the proposed protocol is carried out including 13 phases: initialization phase,
device registration phase, SSO registration phase, SSO login phase, SSO password generation phase,
user registration phase, log signcryption phase, log verification phase, private block calculation phase,
private block verification phase, log unsigncryption phase, public block calculation phase and public
block verification phase.

3.3.1. System Initialization Phase

In initialization phase, the attribute authority generates public and secret parameters used in
entire system. The attribute authority selects a big number q, and determine the elliptic curve: E : y2 =

x3 + ax + b mod q. It then generates a cyclic group G1 and bilinear map e : G1 ×G1 → GT . g is set as the
generator of G1. Next, a set of system attributes is determined by us = {att1, att2, . . . , attx}. The authority
selects the corresponding random numbers {Q1, Q2, . . . , Qx} ∈R G1, based on attribute set us, and chooses
a secure one-way hash function H : {0, 1}∗ ∈ G1. It randomly selects α, β ∈R Zq, and compute B = gβ and
public key Y = e(g, g)α. Finally, the authority generates public parameter PP = (g, B, Y, H, Qx, e, G1, GT)

and secret parameter MSK = (α, β, us). Specific steps of this phase are described in Algorithm 1.

Algorithm 1: System initialization.

Input: Initial parameters.
Output: PP, MSK.

1: Select a big number q, and determine the elliptic curve: E : y2 = x3 + ax + b mod q.
2: Generate a cyclic group G1 and bilinear map e : G1 ×G1 → GT .
3: Set g as the generator of G1.
4: Determine system attribute set us = {att1, att2, . . . , attx}.
5: Select {Q1, Q2, . . . , Qx} ∈R G1, based on attribute us.
6: Choose a secure one-way hash function H : {0, 1}∗ ∈ G1.
7: Randomly select α, β ∈R Zq.
8: Compute B = gβ.
9: Compute public key Y = e(g, g)α.
10: Generate PP = (g, B, Y, H, Qx, e, G1, GT) and MSK = (α, β, us).

3.3.2. SSO Registration Phase

In this phase, the user Ui uses a smart card to register with the SSO server for obtaining multiple
services. SSO registration procedure is provided in Algorithm 2 as follows. The user Ui enters
SIDi and SPWi into smart card. The smart card generates a random number ri, and computes
Ai = H(SPWi) ⊕H(ri ‖ SIDi). The SSO sever then stores ri and Ai.

Algorithm2: SSO registration.

Input: SIDi, SPWi.
Output: ri, Ai.

1: Ui enters SIDi and SPWi into smart card.
2: Smart card generates ri.
3: Smart card computes Ai = H(SPWi) ⊕H(ri ‖ SIDi).
4: SSO sever stores ri and Ai.

Sensors 2020, 20, 6471 10 of 32

3.3.3. SSO Login Phase

The user Ui enters SIDi and SPWi into SSO sever for verifying his/her legitimacy. The user Ui enters
SIDi and SPWi into the SSO server. The SSO server computes Ai

′ = H(SPWi) ⊕H(ri ‖ SIDi). It then
compares A′i and Ai, in order to verify legitimacy of the user Ui. Procedure of this phase is presented by
Algorithm 3.

Algorithm 3: SSO login.

Input: SIDi, SPWi.
Output: True or False.

1: Ui enters SIDi and SPWi.
2: SSO server computes Ai

′ = H(SPWi) ⊕H(ri ‖ SIDi).
3: SSO server compares Ai

′ and Ai.
4: if above check holds, then output True, and confirm legitimacy of Ui.
5: otherwise, output False, and terminate the login.

3.3.4. SSO Password Generation Phase

The use Ui enters SIDi, SPWi and IDi so that the server can generate an SSO password. In this
way, the user Ui can obtain services from multiple servers using this single password. The user Ui
enters SIDi, SPWi and IDi into SSO server. The SSO server generates PWi from SIDi, SPWi and IDi.
Procedure of this phase is described by Algorithm 4.

Algorithm 4: SSO password generation.

Input: SIDi, SPWi, IDi.
Output: PWi.

1: Ui enters SIDi, SPWi and IDi into SSO server.
2: SSO server generates PWi = SSOgen(SIDi, SPWi,IDi).

3.3.5. Device Registration Phase

In this phase, the sensori registers with the attribute authority for further communication. The
sensor and the authority perform necessary steps for device registration, as presented in Algorithm
5. The sensori sends DIDi to the attribute authority. The authority verifies DIDi, then sends public
parameter PP to the sensori.

Algorithm 5: Device registration.

Input: DIDi.
Output: PP.

1: Sensori sends DIDi to attribute authority.
2: Attribute authority verifies DIDi.
3: Attribute authority sends PP to sensori.

3.3.6. User Registration Phase

The user Ui uses his/her identity IDi to register and obtain the attribute private key from the attribute
authority. This procedure is performed by the attribute authority, as specified in Algorithm 6. The user Ui
first sends his/her identity IDi to the attribute authority. Upon the received message, the attribute authority
verifies IDi. It then randomly chooses tIDi ∈R Zq, and uses g,α,β, and tIDi to compute Ki, Li = gtIDi and

Sensors 2020, 20, 6471 11 of 32

Ki
j = Q

tIDi
j (∀ j ∈ x). The authority generates attribute private key SKIDi = (Ki, Li, Ki

j), and sends SKIDi to
the user Ui.

Algorithm 6: User registration.

Input: IDi, PP, MSK.
Output: SKIDi .

1: Receive IDi from Ui.
2: Verify IDi.
3: Choose tIDi ∈R Zq.

4: Compute Ki = gα+(βtIDi).
5: Compute Li = gtIDi .

6: Compute Ki
j = Q

tIDi
j (∀ j ∈ x).

7: Send SKIDi = (Ki, Li, Ki
j) to Ui.

3.3.7. Log Signcryption Phase

In this phase, the sensori is allowed to signcrypt the log, based on attribute-based access policy,
Boolean formula BF and public parameters PP. The sensori performs specific steps in Algorithm 7 for
the log signcryption procedure. It sets LSSS matrix me by Boolean formula BF, and randomly generates
random number r j ∈R Zq(∀ j ∈ x) and a secret vector

→
v e composed by secret signcryption key s and j

attributes. Then, the sensori uses matrix me, vector
→
v e, signcryption key s and parameter g to compute

λe = me
→
v e and C′ = gs. Parameters B, r j, g and λe are used to compute C j = gβλe Q j

−r j(∀ j ∈ x) and
D j = gr j(∀ j ∈ x). Next, the sensori computes log ciphertext C = MYs, its hash value h = H(C) and
signature σCT = hY. xs. Thereafter, ECDSA signature σIoT = ECDSA(σCT, IPIoT, tIoT) is derived. The
sensori generates ciphertext CT =

(
σCT, C, C j, C′, D j, me, IPIoT, tCT

)
, and then sends it to the gateway.

Finally, δIoT = (σIoT, IPIoT, tIoT) is stored by the sensori.

Algorithm7: Log signcryption.

Input: BF, PP, M.
Output: CT, δIoT.

1: Set LSSS matrix me by BF.
2: Randomly generate r j ∈R Zq(∀ j ∈ x).

3: Generate
→
v e =



s
att1
att2

...
att j


∈R Zq(∀ j ∈ x).

4: Use me and
→
v e to compute λe = me

→
v e.

5: Use s and g to compute C′ = gs.
6: Use B, r j and λe to compute C j = gβλe Q j

−r j (∀ j ∈ x).
7: Use r j and g to compute D j = gr j (∀ j ∈ x).
8: Compute C = MYs.
9: Compute h = H(C).
10: Compute σCT = hY. xs.
11: Perform σIoT = ECDSA(σCT, IPIoT, tIoT).

12: Send CT =
(
σCT , C, C j, C′, D j, me, IPIoT, tCT

)
with(me,ρ(j)) to gateway.

13: Store δIoT = (σIoT, IPIoT, tIoT).

Sensors 2020, 20, 6471 12 of 32

3.3.8. Log Verification Phase

The gateway verifies the validity of the signatures and the ciphertext CT, based on public
parameters PP. If the verifications are valid, the gateway will send it to the blockchain server. This
phase is performed by the gateway with Algorithm 8. The gateway checks e(h, Y.xC′)e(σ, g) and
ECDSA(δIoT, σCT). If the checks hold, it sends ciphertext CT to the blockchain server. The ciphertext is
then stored at cluster storage. The gateway computes signature σGW = ECDSA(σCT, σIoT, IPGW , tGW),
sets δGW = (σGW , IPGW , tGW), and stores δGW .

Algorithm 8: Log Verification.

Input: CT, δIoT, PP.
Output: δGW .

1: Veri f y : e(h, Y. xC′)e(σCT, g).
2: Veri f yECDSA(δIoT, σCT).
3: if above checks hold, then continue with step 5.
4: otherwise, terminate the session.5: Send CT to blockchain server, CT is then stored in

cluster storage.
5: Compute signature σGW = ECDSA(σCT, σIoT, IPGW , tGW).
6: Store δGW = (σGW , IPGW , tGW).

3.3.9. Log Unsigncryption Phase

In log unsigncryption phase, the user Ui is allowed to unsigncrypt the ciphertext CT to view the
log M, using private key SKIDi (with appropriate attributes) and public parameter PP. The user Ui
uses Algorithm 9 to complete this procedure. Parameter wi is first restored from the matrix me with
appropriate attributes. The user Ui then uses parameters C, C′, D j and private key SKIDi =(Ki, Li, Ki

j)
to compute decryption key Ys. Value h = H(C) is computed for checking e(h, Y.xC′)e(σ, g) based on
parameters g, Y, C and C′. At last, the user Ui uses Ys to decrypt log ciphertext and obtain the log by
M = C.Ys−1.

Algorithm 9: Log unsigncryption.

Input: CT, SKIDi , PP.
Output: M.

1: Restores wi from me with appropriate attributes:


1
0
...
0

 = mew j.

2: Use C, C′, D j and SKIDi to compute decryption key: Ys = e(g, g)sα =
e(C′,Ki)

Π j∈x

(
e(C j,Li)e

(
D jKi

j

))wj .

3: Compute h = H(C).
4: Use g, Y, C and C′ to Veri f y : e(h, Y. xC′)e(σCT, g).
5: if above check holds, then continue with step 7.
6: otherwise, terminate the session.
7: Use Ys to decrypt C and obtain M = C.Ys−1.

3.3.10. Private Block Calculation Phase

Based on the ciphertext CT and some other information, the blockchain server calculates
private block data, then writes it to the blockchain. At first, the server retrieves previous
hash from the private blockchain, and verifies ECDSA signature σGW . It computes
signature σSrv = ECDSA(σCT, σGW , IPSrv, tSrv), and sets δSrv = (σSrv, IPSrv, tSrv) and δCT =

Sensors 2020, 20, 6471 13 of 32

(σCT, IPSrv, tCT). The initial Nonce value is set as 0. The server then iteratively compute
H(Nonce ‖ PreviousHash ‖ δSrv ‖ δGW ‖ δIoT ‖ δCT ‖ OptionalFields ‖ OtherFields), which must be smaller
than the Di f f iculty level. It sets Nonce = Nonce + 1 if above check does not hold, and
re-compute the hash. The computing is completed if above condition holds. Block data
PriB = (δSrv, δGW , δIoT, δCT, Nonce, Di f f iculty, Optional Fields is generated and written to the private
blockchain. Finally, the server receives a corresponding block number PriBlockNon. Private blockchain
calculation procedure is further specified in Algorithm 10.

3.3.11. Private Block Verification Phase

In this phase, the user Ui verifies the validity of the private block PriB. Specific steps of
private block verification are performed by the user Ui with Algorithm 11. The user Ui verifies
whether H(Nonce ‖ PreviousHash ‖ δSrv ‖ δGW ‖ δIoT ‖ δCT ‖ OptionalFields ‖ OtherFields) < Di f f iculty.
The validity of ECDSA signatures (δIoT, σCT), (δGW , σCT) and (δSrv, σCT), and e(h, Y.xC′)e(σCT, g) are
also verified. The system outputs True if above verifications hold, otherwise outputs False.

Algorithm 10: Private block calculation.

Input: CT, δIoT, δGW , PreviousHash, OptionalFields, OtherFields.
Output: PriB.

1: Retrieve previous hash from private blockchain.
2: VerifyECDSA(δGW , σCT).
3: if above check holds, then continue with step 5.
4: otherwise, terminate the session.
5: Compute σSrv = ECDSA(σCT, σGW , IPSrv, tSrv).
6: Set δSrv = (σSrv, IPSrv, tSrv).
7: Set δCT = (σCT, IPSrv, tCT).
8: Set initial Nonce value as 0.
9: while

H(Nonce ‖ PreviousHash ‖ δSrv ‖ δGW ‖ δIoT ‖ δCT ‖ OptionalFields ‖ OtherFields) < Di f f iculty do.
10: Nonce = Nonce + 1.
11: end while.
12: Generate PriB = (δSrv, δGW , δIoT, δCT, Nonce, Di f f iculty, Optional Fields).
13: Write PriB to private blockchain.
14: Receive PriBlockNon from private blockchain.

Algorithm 11: Private block verification.

Input: CT, PriB.
Output: True or False.

1: Verify if: H(Nonce ‖ PreviousHash ‖ δSrv ‖ δGW ‖ δIoT ‖ δCT ‖ OptionalFields ‖ OtherFields) < Di f f iculty.
2: Veri f yECDSA(δIoT, σCT).
3: Veri f yECDSA(δGW , σCT).
4: Veri f yECDSA(δSrv, σCT).
5: Veri f y : e(h, Y.xC′)e(σ, g).
6: if verifications hold, then output True.
7: otherwise, output False.

Sensors 2020, 20, 6471 14 of 32

3.3.12. Public Block Calculation Phase

The blockchain sever computes batch signature from multiple signatures, and write it to public
blockchain. In this. way, credibility of the signatures is enhanced with immutability feature. The
procedure is performed by the blockchain server with Algorithm 12 as follows. The server retrieves
block number PriBlockNon from the corresponding block PriBn, and multiple signatures σCTn from
multiple private blocks PriBn. Batch signature BSig = σCT1σCT2 . . . σCTn is computed to generate
public block PubB = (PriBlockNon, BSig, Optional Fields). Next, the server writes PubB to the public
blockchain, and receives the corresponding block number PubBlockNon.

3.3.13. Public Block Verification Phase

In this phase, the user Ui verifies the batch verification of data recorded in public blockchain,
based on CTn, PubB and PP. Algorithm 13 is performed by the user Ui to complete this procedure.
The user Ui confirms if PriBlockNon is available on the private chain, then obtains the corresponding
blocks PriBn. Next, the user Ui verifies whether BSig matches the signatures in the private blocks PriBn.
Value hn = H(Cn) is computed based on n log ciphertext Cn. Finally. the user Ui verifies the validity
of the batch signature: e(hn, Y.xnC′n)e(BSig, gn). The system outputs True, meaning the verification is
successful if the check holds, otherwise outputs False.

Algorithm 12: Public block calculation.

Input: PriBlockNon.
Output: PubB.

1: Retrieve PriBlockNon from corresponding block PriBn.
2: Retrieve σCTn from PriBn.
3: Compute BSig = σCT1σCT2 . . . σCTn .
4: Generate PubB = (PriBlockNon, BSig, Optional Fields).
5: Write PubB to public blockchain.
6: Receive PubBlockNon from public blockchain.

Algorithm 13: Public block verification.

Input: PubB, CTn, PP.
Output: True or False.

1: Confirm if PriBlockNon is available on private blockchain.
2: Veri f y : BSigσCT1σCT2 . . . σCTn .
3: if above check holds, then continue with step 6.
4: otherwise, terminate current session.
5: Compute hn = H(Cn), based on n log ciphertext Cn.
6: Veri f y : e(hi, Y.xnC′n)e(BSig, gn).
7: if verification holds, then output True.
8: otherwise, output False.

4. Security Analysis

In this section, we use AVISPA toolset and GNY logic to verify security correctness of the proposed
protocol. In addition, we prove that our protocol meets various security requirements based on the
semantic proof.

Sensors 2020, 20, 6471 15 of 32

4.1. Protocol Simulation Using AVISPA Toolset

We verify the security properties of the proposed protocol by employing Automated Validation of
Internet Security Protocols and Applications (AVISPA) [59]. AVISPA tool uses HLPSL [60] as its formal
language, and integrates different back-ends in the verification techniques. The back-ends includes
On-the-fly Model-Checker (OFMC), Constraint Logic based Attack Searcher (CL-AtSe), SAT-based
ModelChecker (SATMC), and Tree Automata based on automatic approximations for the analysis
of security protocols (TA4SP). However, the SATMC and TA4SP back-ends are not frequently used
since they cannot verify the protocols using algebraic properties of modular exponentiation and XOR
operator. In this simulation, AVISPA tool is integrated with Security Protocol Animator (SPAN) for
providing a user-friendly application interface.

In our protocol, single signature verifications conducted by the gateway, the user and the
blockchain sever are identical. We therefore only simulate the verification of the user in the log
unsigncryption phase. Moreover, since the gateway and the sever just merely receives and verifies
the signature, and they do not make any changes to the signature, we assume that the user directly
receives signature from the sensor. We use the similar arguments of single signature verification for
verifying the correctness of the batch signature.

HLPLS codes in the simulation was specified with three roles: authority (A), sensor (S), and
user (U). The symmetric key Kau is used to protect the information in user registration phase. Based
on our protocol, (α, β, us) are secret keys of the authority, but for simplicity of the simulation, we
only include α. Since AVISPA only support three types of operators (concatenation, exclusive or, and
exponentiation), the multiplication and paring function can be performed as hash functions. We also
assume ECDSA and inv(ECDSA) are public key and private key respectively, for performing ECDSA
algorithms. Specific HLPSL specifications of the user, the authority, and the sensor are provided in
Figures 3–5 respectively.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 32

4. Security Analysis

In this section, we use AVISPA toolset and GNY logic to verify security correctness of the
proposed protocol. In addition, we prove that our protocol meets various security requirements
based on the semantic proof.

4.1. Protocol Simulation Using AVISPA Toolset

We verify the security properties of the proposed protocol by employing Automated Validation
of Internet Security Protocols and Applications (AVISPA) [59]. AVISPA tool uses HLPSL [60] as its
formal language, and integrates different back-ends in the verification techniques. The back-ends
includes On-the-fly Model-Checker (OFMC), Constraint Logic based Attack Searcher (CL-AtSe),
SAT-based ModelChecker (SATMC), and Tree Automata based on automatic approximations for the
analysis of security protocols (TA4SP). However, the SATMC and TA4SP back-ends are not
frequently used since they cannot verify the protocols using algebraic properties of modular
exponentiation and XOR operator. In this simulation, AVISPA tool is integrated with Security
Protocol Animator (SPAN) for providing a user-friendly application interface.

In our protocol, single signature verifications conducted by the gateway, the user and the
blockchain sever are identical. We therefore only simulate the verification of the user in the log
unsigncryption phase. Moreover, since the gateway and the sever just merely receives and verifies
the signature, and they do not make any changes to the signature, we assume that the user directly
receives signature from the sensor. We use the similar arguments of single signature verification for
verifying the correctness of the batch signature.

HLPLS codes in the simulation was specified with three roles: authority (A), sensor (S), and user
(U). The symmetric key Kau is used to protect the information in user registration phase. Based on
our protocol, (𝛼, 𝛽, 𝑢௦) are secret keys of the authority, but for simplicity of the simulation, we only
include 𝛼. Since AVISPA only support three types of operators (concatenation, exclusive or, and
exponentiation), the multiplication and paring function can be performed as hash functions. We also
assume ECDSA and inv(ECDSA) are public key and private key respectively, for performing ECDSA
algorithms. Specific HLPSL specifications of the user, the authority, and the sensor are provided in
Figures 3–5 respectively.

role user (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel (dy))

played_by U def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% User registration phase

1. State = 0 /\ RCV(start) =|>

State’:= 1

/\ IDi’:= new() /\ SND({IDi’}_Kau) /\ secret(IDi’,idi,{A,U})

2. State = 1 /\ RCV({exp(G,Add(Alpha’.TIDi’))}_Kau) =|>

State’:= 2

%/\ Store SK % Log verification phase

3. State = 0 /\ RCV(exp(G,Ss’).Mul(M.exp(Y,Ss’)).({X’.IP.T}_inv(ECDSA))) =|>

State’:= 1

%/\ Use ECDSA to verify ECDSA signature %/\ Use Y and C = Mul(M.exp(Y,S)) to verify log signature

/\ request(S,U,ss,Ss’)

Figure 3. Cont.

Sensors 2020, 20, 6471 16 of 32

Sensors 2020, 20, x FOR PEER REVIEW 16 of 32

% Log unsigncryption phase

/\ Ys’:= Pair(SK.exp(G,Ss’))

%/\ Use Ys to decytp C and obtain view the log data M

end role

Figure 3. HLPLS specification of user role.

role authority (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel

(dy))

played_by A def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% User registration phase

1. State = 0 /\ RCV({IDi’}_Kau) =|>

State’:= 1

%/\ Verify IDi

/\ Alpha’:= new() /\ TIDi’:= new() /\ SK’:= exp(G,Add(Alpha’.TIDi’))

%/\ The value SK’ is computed for three attributes A, B, C

/\ SND({SK’}_Kau)

/\ secret(SK’,sk,{U,A}) /\ secret(Alpha’,alpha,{A})

end role

Figure 4. HLPLS specification of attribute authority role.

role sensor (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel (dy))

played_by S def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% Log signcryption phase

1. State = 0 /\ RCV(start) =|>

State’:= 1

/\ Ss’:= new() %/\ Choose Ss for computation of three attributes A, B, C; M is the log data

/\ Ce’:= exp(G,Ss’) /\ C’:= Mul(M.exp(Y,Ss’)) /\ Hs’:= H(C’) /\ X’:= exp(Hs’,Mul(Y.Ss’)) %/\ X: log signature

/\ Sig’:= {X’.IP.T}_inv(ECDSA) %/\ IP: IP adrress of the Sensor; T: timestamp

/\ SND(Ce’.C’.Sig’)

/\ secret(Ss’,ss,{S})

/\ witness(S,U,ss,Ss’)

end role

Figure 5. HLPLS specification of sensor role.

Figure 3. HLPLS specification of user role.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 32

% Log unsigncryption phase

/\ Ys’:= Pair(SK.exp(G,Ss’))

%/\ Use Ys to decytp C and obtain view the log data M

end role

Figure 3. HLPLS specification of user role.

role authority (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel

(dy))

played_by A def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% User registration phase

1. State = 0 /\ RCV({IDi’}_Kau) =|>

State’:= 1

%/\ Verify IDi

/\ Alpha’:= new() /\ TIDi’:= new() /\ SK’:= exp(G,Add(Alpha’.TIDi’))

%/\ The value SK’ is computed for three attributes A, B, C

/\ SND({SK’}_Kau)

/\ secret(SK’,sk,{U,A}) /\ secret(Alpha’,alpha,{A})

end role

Figure 4. HLPLS specification of attribute authority role.

role sensor (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel (dy))

played_by S def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% Log signcryption phase

1. State = 0 /\ RCV(start) =|>

State’:= 1

/\ Ss’:= new() %/\ Choose Ss for computation of three attributes A, B, C; M is the log data

/\ Ce’:= exp(G,Ss’) /\ C’:= Mul(M.exp(Y,Ss’)) /\ Hs’:= H(C’) /\ X’:= exp(Hs’,Mul(Y.Ss’)) %/\ X: log signature

/\ Sig’:= {X’.IP.T}_inv(ECDSA) %/\ IP: IP adrress of the Sensor; T: timestamp

/\ SND(Ce’.C’.Sig’)

/\ secret(Ss’,ss,{S})

/\ witness(S,U,ss,Ss’)

end role

Figure 5. HLPLS specification of sensor role.

Figure 4. HLPLS specification of attribute authority role.

Sensors 2020, 20, x FOR PEER REVIEW 16 of 32

% Log unsigncryption phase

/\ Ys’:= Pair(SK.exp(G,Ss’))

%/\ Use Ys to decytp C and obtain view the log data M

end role

Figure 3. HLPLS specification of user role.

role authority (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel

(dy))

played_by A def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% User registration phase

1. State = 0 /\ RCV({IDi’}_Kau) =|>

State’:= 1

%/\ Verify IDi

/\ Alpha’:= new() /\ TIDi’:= new() /\ SK’:= exp(G,Add(Alpha’.TIDi’))

%/\ The value SK’ is computed for three attributes A, B, C

/\ SND({SK’}_Kau)

/\ secret(SK’,sk,{U,A}) /\ secret(Alpha’,alpha,{A})

end role

Figure 4. HLPLS specification of attribute authority role.

role sensor (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func, SND, RCV: channel (dy))

played_by S def=

local State: nat,

IDi, TIDi, Ys, Alpha, SK, Ss, Ce, C, Hs, Sig, G, M, Y, X, IP, T: text

init State:= 0

transition

% Log signcryption phase

1. State = 0 /\ RCV(start) =|>

State’:= 1

/\ Ss’:= new() %/\ Choose Ss for computation of three attributes A, B, C; M is the log data

/\ Ce’:= exp(G,Ss’) /\ C’:= Mul(M.exp(Y,Ss’)) /\ Hs’:= H(C’) /\ X’:= exp(Hs’,Mul(Y.Ss’)) %/\ X: log signature

/\ Sig’:= {X’.IP.T}_inv(ECDSA) %/\ IP: IP adrress of the Sensor; T: timestamp

/\ SND(Ce’.C’.Sig’)

/\ secret(Ss’,ss,{S})

/\ witness(S,U,ss,Ss’)

end role

Figure 5. HLPLS specification of sensor role. Figure 5. HLPLS specification of sensor role.

Sensors 2020, 20, 6471 17 of 32

In addition, Figure 6 provides the specification of the session role where its composition consisting
of all main roles is specified. Environment role illuminated in Figure 7 specifies all relevant components
within the communication environment including symmetric keys, functions, protocol id, and intruder
knowledge. In simulated environment, we can see that the intruder in turn replaces the roles of the
authority, the sensor and the user in respective sessions in which, he/she attempts to compromise
the simulated system. We consider four secrecy goals and one authentication goal described in
the following:

• “secrecy_of idi” represents the identity IDi that the user uses to register with the authority via a
secure channel, it is kept secret to the user and the authority.

• “secrecy_of sk” represents SKIDi that the authority sends to the user, it is also kept secret to the user
and the authority.

• “secrecy_of alpha” represents the secret value α, it is kept secret to the authority.
• “secrecy_of ss” represents the secret key s, it is kept secure to the sensor.
• “authentication_on ss”: the user authenticates the sensor on s.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 32

In addition, Figure 6 provides the specification of the session role where its composition
consisting of all main roles is specified. Environment role illuminated in Figure 7 specifies all relevant
components within the communication environment including symmetric keys, functions, protocol
id, and intruder knowledge. In simulated environment, we can see that the intruder in turn replaces
the roles of the authority, the sensor and the user in respective sessions in which, he/she attempts to
compromise the simulated system. We consider four secrecy goals and one authentication goal
described in the following:

• “secrecy_of idi” represents the identity 𝐼𝐷௜ that the user uses to register with the authority via a
secure channel, it is kept secret to the user and the authority.

• “secrecy_of sk” represents 𝑆𝐾ூ஽೔ that the authority sends to the user, it is also kept secret to the
user and the authority.

• “secrecy_of alpha” represents the secret value 𝛼, it is kept secret to the authority.
• “secrecy_of ss” represents the secret key 𝑠, it is kept secure to the sensor.
• “authentication_on ss”: the user authenticates the sensor on 𝑠.

role session (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func) def=

local SA, RA, SS, RS, SU, RU: channel (dy)

composition

authority (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SA,RA) /\ sensor (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SS,RS)

/\ user (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SU,RU)

end role

Figure 6. HLPLS specification of session role.

role environment() def=

const a, s, u, i: agent,

kau, kui: symmetric_key,

ecdsa, ki: public_key,

h, add, mul, pair: hash_func,

idi, sk, alpha, ss: protocol_id

intruder_knowledge = {a,s,u,ki,inv(ki)}

composition

session(a,s,u,kau,ecdsa,h,add,mul,pair) /\ session(i,s,u,kui,ecdsa,h,add,mul,pair)

/\ session(a,i,u,kui,ecdsa,h,add,mul,pair) /\ session(a,s,i,kui,ecdsa,h,add,mul,pair)

end role

goal

secrecy_of idi, sk, alpha, ss authentication_on ss

end goal

environment()

Figure 7. HLPLS specification of environment role.

After defining certain communication sessions in environment role, we execute the tool to check
the security correctness. The results of OFMC backend and CL-AtSe backend are shown in Figure 8.
We claim that the proposed protocol is provably secure under AVISPA simulation.

Figure 6. HLPLS specification of session role.

Sensors 2020, 20, x FOR PEER REVIEW 17 of 32

In addition, Figure 6 provides the specification of the session role where its composition
consisting of all main roles is specified. Environment role illuminated in Figure 7 specifies all relevant
components within the communication environment including symmetric keys, functions, protocol
id, and intruder knowledge. In simulated environment, we can see that the intruder in turn replaces
the roles of the authority, the sensor and the user in respective sessions in which, he/she attempts to
compromise the simulated system. We consider four secrecy goals and one authentication goal
described in the following:

• “secrecy_of idi” represents the identity 𝐼𝐷௜ that the user uses to register with the authority via a
secure channel, it is kept secret to the user and the authority.

• “secrecy_of sk” represents 𝑆𝐾ூ஽೔ that the authority sends to the user, it is also kept secret to the
user and the authority.

• “secrecy_of alpha” represents the secret value 𝛼, it is kept secret to the authority.
• “secrecy_of ss” represents the secret key 𝑠, it is kept secure to the sensor.
• “authentication_on ss”: the user authenticates the sensor on 𝑠.

role session (A, S, U: agent, Kau: symmetric_key, ECDSA: public_key, H, Add, Mul, Pair: hash_func) def=

local SA, RA, SS, RS, SU, RU: channel (dy)

composition

authority (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SA,RA) /\ sensor (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SS,RS)

/\ user (A,S,U,Kau,ECDSA,H,Add,Mul,Pair,SU,RU)

end role

Figure 6. HLPLS specification of session role.

role environment() def=

const a, s, u, i: agent,

kau, kui: symmetric_key,

ecdsa, ki: public_key,

h, add, mul, pair: hash_func,

idi, sk, alpha, ss: protocol_id

intruder_knowledge = {a,s,u,ki,inv(ki)}

composition

session(a,s,u,kau,ecdsa,h,add,mul,pair) /\ session(i,s,u,kui,ecdsa,h,add,mul,pair)

/\ session(a,i,u,kui,ecdsa,h,add,mul,pair) /\ session(a,s,i,kui,ecdsa,h,add,mul,pair)

end role

goal

secrecy_of idi, sk, alpha, ss authentication_on ss

end goal

environment()

Figure 7. HLPLS specification of environment role.

After defining certain communication sessions in environment role, we execute the tool to check
the security correctness. The results of OFMC backend and CL-AtSe backend are shown in Figure 8.
We claim that the proposed protocol is provably secure under AVISPA simulation.

Figure 7. HLPLS specification of environment role.

After defining certain communication sessions in environment role, we execute the tool to check
the security correctness. The results of OFMC backend and CL-AtSe backend are shown in Figure 8.
We claim that the proposed protocol is provably secure under AVISPA simulation.

Sensors 2020, 20, 6471 18 of 32

Sensors 2020, 20, x FOR PEER REVIEW 18 of 32

% OFMC

% Version of 2006/02/13

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

PROTOCOL

/home/span/span/testsuite/results/Autonomous_log_management.if

GOAL

as_specified

BACKEND

OFMC

COMMENTS

STATISTICS

parseTime: 0.00s

searchTime: 7.64s

visitedNodes: 2432 nodes

depth: 12 plies

SUMMARY

SAFE

DETAILS

BOUNDED_NUMBER_OF_SESSIONS

TYPED_MODEL

PROTOCOL

/home/span/span/testsuite/results/Autonomous_log_management.if

GOAL

As Specified

BACKEND

CL-AtSe

STATISTICS

Analysed: 166 states

Reachable: 51 states

Translation: 0.03 s

Computation: 0.01 s

Figure 8. Verification results using OFMC and CL-AtSe backends.

4.2. Logical Analysis Using GNY Logic

This sub-section proves security completeness and correctness of our proposed protocol through
Gong-Needham-Yahalom (GNY) logic [61]. For our protocol, the analysis consists of two phases in
the logic sequence: message freshness verification and message origin verification. Based on GNY
logic, the assumptions and logical rules of our protocol are described in Table 2 and Table 3
respectively [1,62]. ∋

Table 2. The assumptions of the proposed protocol.

(A1) 𝑈௜ ϶ 𝑌௦: The user 𝑈௜ possesses secret key 𝑌௦

(A2) 𝑠𝑒𝑛𝑠𝑜𝑟௜ ϶ 𝑠: The 𝑠𝑒𝑛𝑠𝑜𝑟௜ possesses private keys 𝑠

(A3) 𝑈௜ ϶ 𝑔௦: The user 𝑈௜ know of public key 𝑔௦

(A4) 𝑈௜ |≡ ∅ 𝜎஼்: The user 𝑈௜ believes that 𝜎஼் is recognizable

(A5) 𝑈௜ |≡ # (𝑚௘): The user 𝑈௜ believes that 𝑚௘ is fresh

(A6) 𝑈௜ |≡ # (𝐼𝑃ூ௢்): The user 𝑈௜ believes that 𝐼𝑃ூ௢் is fresh

(A7) 𝑈௜ |≡ # (𝑡஼்): The user 𝑈௜ believes that timestamp 𝑡஼் is fresh

Figure 8. Verification results using OFMC and CL-AtSe backends.

4.2. Logical Analysis Using GNY Logic

This sub-section proves security completeness and correctness of our proposed protocol through
Gong-Needham-Yahalom (GNY) logic [61]. For our protocol, the analysis consists of two phases in the
logic sequence: message freshness verification and message origin verification. Based on GNY logic,
the assumptions and logical rules of our protocol are described in Tables 2 and 3 respectively [1,62].

Table 2. The assumptions of the proposed protocol.

(A1) Ui Ys: The user Ui possesses secret key Ys

(A2) sensori s: The sensori possesses private keys s
(A3) Ui gs: The user Ui know of public key gs

(A4) Ui |≡ ∅ σCT: The user Ui believes that σCT is recognizable
(A5) Ui |≡ # (me): The user Ui believes that me is fresh
(A6) Ui |≡ # (IPIoT): The user Ui believes that IPIoT is fresh
(A7) Ui |≡ # (tCT): The user Ui believes that timestamp tCT is fresh

Table 3. The logical rules of the proposed protocol.

(F) U|≡#(M)

U|≡#(M,Y),U|≡#(F(M))
: U believes message M is fresh, which means U can believe that any (M, N) including

message M is fresh, then U believes F(M), which is computed from message M, is also fresh

(P) UCM
U3M : U can see the message M, indicating that U really possesses the message M

(R) U|≡∅(M)

U|≡∅(M,N), U|≡∅(F(M))
: U believes message M is recognizable, indicating that U can believe that any (M, N)

including message M is recognizable, and U believes that any F(M) computed from message M is also
recognizable)

(T1) UC∗M
UCM : when U obtains a non-original value *M, it means U may obtain the original M

(T3) UC{M}K , U3Y
UCM : U uses secret key Y to encrypt, decrypt to obtain message M

Sensors 2020, 20, 6471 19 of 32

Main communication of our protocol can be presented in logic as follows.

sensori → Ui :
(
hY. xs , (M)e(g, g)αs, gBλeQ j

−r j , gs, gr j , me, IPIoT, tCT
)

sensori → gateway : hY. xs , (M)e(g, g)αs, gBλeQ j
−r j , gs, gr j , me, IPIoT, tCT

)
Specific phases and corresponding goals of the protocol are described in the following.

• Phase 1: Message freshness authentication, proving the authenticity of the message.

Goal 1: Other than the authority, only the user Ui can read the content of the message transmitted
by the sensori. Goal 1 (G1) is described as follows.

Ui

∣∣∣∣≡ ∅
(
hY. xs , (M)e(g, g)αs, gBλe Q j

−r j , gs, gr j , me, IPIoT, tCT
)

• Phase 2: Message origin authentication, proving that the message is transmitted by the legitimate
sensori.

Goal 2: The user Ui can verify that only the sensori can generate the message received by the Ui.
Description of Goal 2 (G2) is as follows.

Ui |≡ sensori | ∼
(
hY. xs , (M)e(g, g)αs, gBλe Q j

−r j , gs, gr j , me, IPIoT, tCT
)

Goal 3: The gateway can verify that only the sensori can generate the message received by the
gateway. Goal 3 (G3) is described as follows.

Gateway |≡ sensori | ∼
(
hY. xs , (M)e(g, g)αs, gBλe Q j

−r j , gs, gr j , me, IPIoT, tCT
)

Based on the assumptions and logical rules, we have the protocol achieve above goals as follows.
Since Ui knows of the message, we have that.

Ui C ∗
(
∗σCT , C, C j, C′, D j, me, IPIoT, tCT

)
, (1)

According to (T1), we have that.

Ui C
(
σCT , C, C j, C′, D j, me, IPIoT, tCT

)
, (2)

According to (2), (A1) and (T3), the user Ui can compute secret key Ys and use it to decrypt
C = MYs, we have that.

Ui C
(
hY. xs , (M)e(g, g)αs, gBλe Q j

−r j , gs, gr j , me, IPIoT, tCT
)
, (3)

According to (3) and (P), we have that.

Ui 3 hY. xs, (M)e(g, g)αs, gBλeQ j
−r j , gs, gr j , me, IPIoT, tCT, (4)

Based on (4), (A2) and (A3), hY. xs is truly recognizable. Therefore, according to (A4) and (R), we
have that.

Ui

∣∣∣∣≡ ∅
(
hY. xs , (M)e(g, g)αs, gBλe Q j

−r j , gs, gr j , me, IPIoT , tCT), (5)

Based on (5), (A5), (A6), (A7), and (F) we achieve G1. Due to (6), (8), (A3), (A4), (A5), (A6), (A7),
and (F), G2 is achieved. Using similar arguments of G2, we realize G3. As a result, the proposed
protocol realizes all goals G1, G2 and G3.

Sensors 2020, 20, 6471 20 of 32

4.3. Semantic Proof

Our proposed protocol provides secure decryption key, signature verification and data integrity,
signature unforgeability, data confidentiality, non-repudiation, tamper proof, and perfect forward
secrecy. The specific semantic security proof of the protocol is presented in the following.

• Secure decryptionkey: Based on ECDLP, the adversary cannot retrieve the secret values s from C′.
The secret value α is also hidden in Ki, and Ki is even kept secret to the user and the authority
only. Therefore, the adversary is not able to obtain gs and gα for computing the decryption key
Ys = e(g, g)sα. The key is successfully computed only when the legitimate user performs correct
pairing operation with appropriate attributes. Thus, we claim the proposed protocol achieves
secure decryption key.

• Robustverification and data integrity: In our protocol, the signature of the ciphertext is verified
to assure the authenticity of the log. The verification correctness of single signature σCT1 is proved
as follows.

e(h, Y.xC′)

= e(h, Y.xgs)

= e
(
h, gY.xs

)
= e

(
hY.xs, g

)
= e

(
σCT1 , g

)
,

(6)

Suppose there have two signatures for the batch signing, the following equation proves the
correctness of batch signature verification (including σCT1 and σCT2).

e
(
h1h2, Y.xY.xC′1C′2

)
= e(h1h2, Y.xgsY.xgs)

= e
(
h1h2, gY.xsgY.xs

)
= e

(
h1

Y.xsh2
Y.xs, gg

)
= e

(
σCT1σCT2 , gg

)
= e(BSig, gg),

(7)

Therefore, the signature is verifiably correct. After verifying that the log and its signature is
originally sent and signed by the sensor, the integrity is achieved. Thus, the conclusion is established.

• Signatureunforgeability: If the adversary wants to forge the signature σ = hY.xs, he must obtain
the correct s. However, as stated, the value s is protected by ECDLP. The adversary therefore is
not able to compute s for forging signature σ. So, our work achieves signature unforgeability.

• Dataconfidentiality: If the adversary wants to restore the log M from the ciphertext, he/she
must obtain SKIDi =(Ki, Li, Ki

j) and compute Ys to unsigncrypt C. However, only the user who
has registered with the authority possesses correct attributes and the key SKIDi . As stated, the
security of the decryption key Ys is also guaranteed. Moreover, the adversary does not know of
MSK = (α, β, us) to compromise the system. Thus, the confidentiality of the logs is fully achieved.

• Non-repudiation and tamper resistance: During the communication in our protocol, private key
s is only known to the sensor. Therefore, the sensor cannot repudiate the signature signed by itself.
The signature is furthermore uploaded to public blockchain. Once recorded, it is not possible
for block data to be altered retroactively. In this way, the signature cannot be tampered with.
Therefore, we claim non-repudiation and data tampering resistance in the proposed protocol.

• Perfect forward secrecy: In log signcryption phase, the sensor chooses the key s to compute the
ciphertext and generate the decryption key Ys. Since s is a randomly selected, the key Ys is

Sensors 2020, 20, 6471 21 of 32

computed as a nonce. Therefore, even though the adversary has obtained the decryption key of
the current session, he/she cannot recover keys of the past communication sessions. Thus, perfect
forward secrecy is achieved in our protocol.

4.4. Comparison with Related Works

We furthermore indicate contributions of this paper by a comparative study of our work and
recently published works discussed in Section 1.2. The comparison is described in Table 4. Symbol

√

denotes the protocol achieves the corresponding property, and symbol × denotes the property is not
provided by the protocol. Besides, symbol – denotes the property is not available in the protocol. The
results show that the proposed protocol satisfies all essential requirements of security and functionality.
Especially, only our protocol provides signature chain with evidence legality, which is useful for digital
forensic investigations. Public-private blockchain and signcryption method are also not available in all
others works except ours. In addition, autonomous model is only introduced in our work, and Hang
and Kim [31]’s work.

Table 4. Comparison on security and functionality of our work and related works.

[13] [29] [30] [31] [32] [33] [34] [35] Ours

Autonomous model × × ×
√

× × × ×
√

Signcryption method × × × × × × × ×
√

Fine-grained access control with ABE × × × ×
√ √ √ √ √

Blockchain mechanism
√ √ √ √

×
√

× ×
√

Integration of private and public
blockchain × × × × – × – –

√

Signature chain × × × × × × × ×
√

Evidence legality × – – × – – – –
√

Signature unforgeability
√

– – – – – – –
√

Data non-repudiation
√

– –
√

– – – –
√

Data integrity
√

–
√ √

– – – –
√

Data tampering resistance
√ √ √

× ×
√

× ×
√

Perfect forward secrecy – – – –
√ √ √ √ √

Protocol simulation using
AVISPA/ProVerif × × × × × × × ×

√

Protocol implementation × × ×
√

×
√

× ×
√

5. Performance Analysis

In this section, we analyze performance of the proposed protocol based on computation cost.
Computation times of major cryptographic functions and operations used in the proposed protocol are
defined as follows.

• TE: Time of performing an exponentiation operation in G1.
• TBP: Time of performing a bilinear paring operation.
• TH: Time of performing a hash function.
• TECDSA_Gen: Time of performing an ECDSA generation algorithm.
• TECDSA_Veri: Time of performing an ECDSA verification algorithm.

Due to SSO solution, computation cost of our protocol is independent of the number of servers.
Since generating and verifying the ECDSA are performed using private key and public key, we assume
their computation costs are similar to asymmetric encryption and decryption algorithms respectively.
Suppose finding the nonce value in private blockchain (computing the hash) is straightforward. As
shown in Table 5, total cost of the proposed protocol is (5mTE + 2m(n + 1)TH + (2mni+ 5mn+ 2m)TBP +

3mTECDSA_Gen + (3mn + 2m)TECDSA_Veri). Especially, the sensors consume only (5TE + TH + TECDSA_Gen)
for signcrypting a single log.

Sensors 2020, 20, 6471 22 of 32

Table 5. Execution time complexities of the proposed protocol.

Sensor Gateway User Server

Log signcryption phase (5TE + TH +
TECDSA_Gen)m – – –

Log verification phase – (2TBP + TECDSA_Gen
+ TECDSA_Veri)m

– –

Log unsigncryption
phase – – (2iTBP + 3TBP +

TH)mn –

Private block
calculation phase – – –

(TECDSA_Gen +
TECDSA_Veri +

TH)m
Private block

verification phase – – (TH + 2TBP +
3TECDSA_Veri)mn –

Total time complexities 5mTE + 2m(n + 1)TH + (2mni + 5mn + 2m)TBP + 3mTECDSA_Gen +
(3mn + 2m)TECDSA_Veri

Total time estimation
(ms) 0.5244mni + 3.47346mn + 7.72938m

m: no. of logs that can be accessed by a single user; n: no. of users; i: no. of attributes; –: not available. Based
on [1,63]: TE ≈ 0.72036ms, TBP ≈ 0.2622ms, TH ≈ 0.00069ms, TECDSA_Gen ≈ 0.72036ms, and TECDSA_Veri ≈ 0.72036ms.

Based on the data of Table 5, we further conduct experiments of protocol performance with two
scenarios: (a) a single user with i attributes signcrypts a single log, and (b) a single user with certain
number of attributes (suppose i = 3) signcrypts m logs. In the former scenario (depicted in Figure 9a),
the cost is slightly increased when i increases. In the latter scenario (depicted in Figure 9b), when m
increases, the cost is significantly increased.

Sensors 2020, 20, x FOR PEER REVIEW 22 of 32

Due to SSO solution, computation cost of our protocol is independent of the number of servers.
Since generating and verifying the ECDSA are performed using private key and public key, we
assume their computation costs are similar to asymmetric encryption and decryption algorithms
respectively. Suppose finding the nonce value in private blockchain (computing the hash) is
straightforward. As shown in Table 5, total cost of the proposed protocol is (5𝑚𝑇ா + 2𝑚(𝑛 + 1)𝑇ு + (2𝑚𝑛𝑖 + 5𝑚𝑛 + 2𝑚)𝑇஻௉ + 3𝑚𝑇ா஼஽ௌ஺_ீ௘௡ + (3𝑚𝑛 + 2𝑚)𝑇ா஼஽ௌ஺_௏௘௥௜). Especially, the sensors consume
only (5𝑇ா + 𝑇ு + 𝑇ா஼஽ௌ஺_ீ௘௡) for signcrypting a single log.

Table 5. Execution time complexities of the proposed protocol.

 Sensor Gateway User Server
Log signcryption

phase
(5𝑇ா + 𝑇ு + 𝑇ா஼஽ௌ஺_ீ௘௡)𝑚

-- -- --

Log verification phase --
(2𝑇஻௉ + 𝑇ா஼஽ௌ஺_ீ௘௡

+ 𝑇ா஼஽ௌ஺_௏௘௥௜)𝑚
-- --

Log unsigncryption
phase

-- --
(2𝑖𝑇஻௉ + 3𝑇஻௉ + 𝑇ு)𝑚𝑛

--

Private block
calculation phase

-- -- --
(𝑇ா஼஽ௌ஺_ீ௘௡ + 𝑇ா஼஽ௌ஺_௏௘௥௜ + 𝑇ு)𝑚

Private block
verification phase

-- --
(𝑇ு + 2𝑇஻௉ +

3𝑇ா஼஽ௌ஺_௏௘௥௜)𝑚𝑛
--

Total time
complexities

5𝑚𝑇ா + 2𝑚(𝑛 + 1)𝑇ு + (2𝑚𝑛𝑖 + 5𝑚𝑛 + 2𝑚)𝑇஻௉ + 3𝑚𝑇ா஼஽ௌ஺_ீ௘௡ + (3𝑚𝑛 +2𝑚)𝑇ா஼஽ௌ஺_௏௘௥௜
Total time estimation

(𝑚𝑠)
0.5244𝑚𝑛𝑖 + 3.47346𝑚𝑛 + 7.72938𝑚 𝑚: no. of logs that can be accessed by a single user; 𝑛: no. of users; 𝑖: no. of attributes; --: not available.

Based on [1,63]: 𝑇ா ≈ 0.72036𝑚𝑠, 𝑇஻௉ ≈ 0.2622𝑚𝑠, 𝑇ு ≈ 0.00069𝑚𝑠, 𝑇ா஼஽ௌ஺_ீ௘௡ ≈ 0.72036𝑚𝑠,
and 𝑇ா஼஽ௌ஺_௏௘௥௜ ≈ 0.72036𝑚𝑠.

Based on the data of Table 5, we further conduct experiments of protocol performance with two
scenarios: (a) a single user with 𝑖 attributes signcrypts a single log, and (b) a single user with certain
number of attributes (suppose 𝑖 = 3) signcrypts 𝑚 logs. In the former scenario (depicted in Figure
9a), the cost is slightly increased when 𝑖 increases. In the latter scenario (depicted in Figure 9b), when 𝑚 increases, the cost is significantly increased.

It is observed that our protocol bears a reasonable cost with various components and a lot of
functionalities. Moreover, it is important to note that the proposed protocol is designed with ECC
small key size, rapid BLS signature, signcryption method, and SSO solution. Our work therefore
bears low computation and storage cost, and is well suited for the IoT.

Figure 9. Total computation cost of the proposed protocol: (a) 𝑛 = 1 and 𝑚 = 1; (b) 𝑛 = 1 and 𝑖 = 3.
Figure 9. Total computation cost of the proposed protocol: (a) n = 1 and m = 1; (b) n = 1 and i = 3.

It is observed that our protocol bears a reasonable cost with various components and a lot of
functionalities. Moreover, it is important to note that the proposed protocol is designed with ECC
small key size, rapid BLS signature, signcryption method, and SSO solution. Our work therefore bears
low computation and storage cost, and is well suited for the IoT.

6. Implementation

Our implementation simulates log protection of air conditioner Sensor1 in the context of a
laboratory in Chang Gung University (Taiwan). Sensor1 is allowed to signcrypt its log based on
an access policy. Attributes generated by the attribute authority including Chang Gung University,
Department of Information Management, Professor and Student are set to att1, att2, att3 and att4 respectively.
User U1 attempts to access the log produced by Sensor1. The user is able to view the log only if he/she

Sensors 2020, 20, 6471 23 of 32

possesses appropriate attributes. We include practical implementation and system construction in the
following sub-sections.

6.1. Practical Procedure of the Proposed Protocol

Access policy of the sensors are determined with Boolean formula in the beginning. The access
policy of Sensor1 is illuminated in Figure 10.

Sensors 2020, 20, x FOR PEER REVIEW 23 of 32

6. Implementation

Our implementation simulates log protection of air conditioner 𝑆𝑒𝑛𝑠𝑜𝑟ଵ in the context of a
laboratory in Chang Gung University (Taiwan). 𝑆𝑒𝑛𝑠𝑜𝑟ଵ is allowed to signcrypt its log based on an
access policy. Attributes generated by the attribute authority including Chang Gung University,
Department of Information Management, Professor and Student are set to 𝑎𝑡𝑡ଵ, 𝑎𝑡𝑡ଶ, 𝑎𝑡𝑡ଷ and 𝑎𝑡𝑡ସ
respectively. User 𝑈ଵ attempts to access the log produced by 𝑆𝑒𝑛𝑠𝑜𝑟ଵ. The user is able to view the
log only if he/she possesses appropriate attributes. We include practical implementation and system
construction in the following sub-sections.

6.1. Practical Procedure of the Proposed Protocol

Access policy of the sensors are determined with Boolean formula in the beginning. The access
policy of 𝑆𝑒𝑛𝑠𝑜𝑟ଵ is illuminated in Figure 10.

Figure 10. Access policy 𝐵𝐹ଵ of 𝑆𝑒𝑛𝑠𝑜𝑟ଵ.

At first, the authority initializes the corresponding public parameter 𝑃𝑃 =𝑔, 𝐵, 𝑌, 𝐻, 𝑄ଵ, 𝑄ଶ, 𝑄ଷ, 𝑄ସ, 𝑒, 𝐺ଵ, 𝐺், and secret parameter 𝑀𝑆𝐾 = 𝛼, 𝛽, 𝑢௦. 𝑆𝑒𝑛𝑠𝑜𝑟ଵ uses its identity 𝐷𝐼𝐷ଵ
to register with the attribute authority and obtains 𝑃𝑃. The user 𝑈ଵ registers, logs in, and obtains
SSO password from the SSO server for accessing specific blockchain server. In this simulation, the
user 𝑈ଵ possesses three attributes: 𝑎𝑡𝑡ଵ, 𝑎𝑡𝑡ଶ and 𝑎𝑡𝑡ଷ. In the user registration phase, the attribute
authority performs the Algorithm 6 to compute the secret key 𝑆𝐾ூ஽భ = (𝐾ଵ, 𝐿ଵ, 𝐾ଵଵ, 𝐾ଶଵ, 𝐾ଷଵ), and send it
to the user 𝑈ଵ. Based on attribute-based access policy 𝐵𝐹 = “((𝑎𝑡𝑡ଷ 𝑂𝑅 𝑎𝑡𝑡ସ) 𝐴𝑁𝐷 𝑎𝑡𝑡ଶ) 𝐴𝑁𝐷 𝑎𝑡𝑡ଵ”, 𝑆𝑒𝑛𝑠𝑜𝑟ଵ uses Algorithm 7 to perform signcryption procedure. It then generates 𝐶𝑇ଵ =(𝜎஼ భ், 𝐶 ′, 𝐶ଵ, 𝐶ଶ, 𝐶ଷ, 𝐷ଵ, 𝐷ଶ, 𝐷ଷ, 𝐶஼ భ், 𝐼𝑃ூ௢், 𝑡஼்) 𝑤𝑖𝑡ℎ (𝑚ଵ, 𝜌(1))(𝑚ଶ, 𝜌(2))(𝑚ଷ, 𝜌(3)) and 𝛿ூ௢்ଵ =(𝜎ூ௢்ଵ , 𝐼𝑃ூ௢், 𝑡ூ௢்ଵ). The gateway verifies validity of the ciphertext 𝐶𝑇ଵ, sends it to the blockchain server,
and stores the signature 𝛿ீௐଵ = (𝜎ீௐଵ , 𝐼𝑃 ௐ, 𝑡ீௐଵ) after performing Algorithm 8. the user 𝑈ଵ performs
Algorithm 9 to compute the correct key 𝑌௦ based on the key 𝑆𝐾ூ஽భ with appropriate attributes. Thus,
the user 𝑈ଵ is able to unsigncrypt the ciphertext 𝐶𝑇ଵ and view the log 𝑀ଵ.

In private block calculation phase, based on the ciphertext 𝐶𝑇ଵ and the previous hash retrieved
from the private blockchain, the blockchain server generates block 𝑃𝑟𝑖𝐵ଵ =(𝑁𝑜𝑛𝑐𝑒, 𝛿஼்ଵ , 𝛿ௌ௥௩ଵ , 𝛿ீௐଵ , 𝛿ூ௢்ଵ , 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝐻𝑎𝑠ℎ, 𝐷𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦, 𝑂𝑝𝑡𝑖𝑜𝑛𝑎𝑙𝐹𝑖𝑒𝑙𝑑𝑠, 𝑂𝑡ℎ𝑒𝑟𝐹𝑖𝑒𝑙𝑑𝑠), and upload it to
the chain. This procedure is conducted by Algorithm 10. Thereafter, the server obtains the block
number 𝑃𝑟𝑖𝐵𝑙𝑜𝑐𝑘𝑁𝑜ଵ generated by the private blockchain. For verifying the validity of the block
data 𝑃𝑟𝑖𝐵ଵ, the user 𝑈ଵ performs Algorithm 11. Suppose we have private block 𝑃𝑟𝑖𝐵ଶ generated by
the similar procedures. In public block calculation phase, the server then calculates batch signature 𝐵𝑆𝑖𝑔ଵ = 𝜎஼ భ்𝜎஼ మ் . Block data 𝑃𝑢𝑏𝐵ଵ is then calculated by 𝑃𝑢𝑏𝐵ଵ =(𝐵𝑆𝑖𝑔ଵ, 𝑃𝑟𝑖𝐵𝑙𝑜𝑐𝑘𝑁𝑜ଵ, 𝑃𝑟𝑖𝐵𝑙𝑜𝑐𝑘𝑁𝑜ଶ), and is uploaded to the public blockchain. Thereafter, the sever
can obtain the block number 𝑃𝑢𝑏𝐵𝑙𝑜𝑐𝑘𝑁𝑜ଵ generated by the pubic blockchain. The procedure is
performed by Algorithm 12. In public block verification phase, the public block data 𝑃𝑢𝑏𝐵ଵ, the

Figure 10. Access policy BF1 of Sensor1.

At first, the authority initializes the corresponding public parameter PP =

g, B, Y, H, Q1, Q2, Q3, Q4, e, G1, GT, and secret parameter MSK = α, β, us. Sensor1 uses its identity
DID1 to register with the attribute authority and obtains PP. The user U1 registers, logs in,
and obtains SSO password from the SSO server for accessing specific blockchain server. In this
simulation, the user U1 possesses three attributes: att1, att2 and att3. In the user registration
phase, the attribute authority performs the Algorithm 6 to compute the secret key SKID1 =

(K1, L1, K1
1, K1

2, K1
3), and send it to the user U1. Based on attribute-based access policy BF =

“((att3 OR att4) AND att2) AND att1”, Sensor1 uses Algorithm 7 to perform signcryption procedure. It
then generates CT1=(σCT1 , C′, C1, C2, C3, D1, D2, D3, CCT1 , IPIoT, tCT) with (m1,ρ(1))(m2,ρ(2))(m3,ρ(3))
and δ1

IoT =
(
σ1

IoT, IPIoT, t1
IoT

)
. The gateway verifies validity of the ciphertext CT1, sends it to the

blockchain server, and stores the signature δ1
GW =

(
σ1

GW , IPGW , t1
GW

)
after performing Algorithm 8. the

user U1 performs Algorithm 9 to compute the correct key Ys based on the key SKID1 with appropriate
attributes. Thus, the user U1 is able to unsigncrypt the ciphertext CT1 and view the log M1.

In private block calculation phase, based on the ciphertext CT1 and the previous
hash retrieved from the private blockchain, the blockchain server generates block PriB1 =(
Nonce, δ1

CT, δ1
Srv, δ1

GW , δ1
IoT, PreviousHash, Di f f iculty, OptionalFields, OtherFields

)
, and upload it to the

chain. This procedure is conducted by Algorithm 10. Thereafter, the server obtains the block
number PriBlockNo1 generated by the private blockchain. For verifying the validity of the block
data PriB1, the user U1 performs Algorithm 11. Suppose we have private block PriB2 generated by
the similar procedures. In public block calculation phase, the server then calculates batch signature
BSig1 = σCT1σCT2 . Block data PubB1 is then calculated by PubB1 = (BSig1, PriBlockNo1, PriBlockNo2),
and is uploaded to the public blockchain. Thereafter, the sever can obtain the block number PubBlockNo1

generated by the pubic blockchain. The procedure is performed by Algorithm 12. In public block
verification phase, the public block data PubB1, the ciphertexts CT1, CT2, and public parameter PP
are retrieved. Based on these parameters, the user U1 performs Algorithm 13 to verify validity of the
uploaded logs.

6.2. System Construction

In this sub-section, we construct a system deployment for the proposed protocol. The development
environment and system interface of our construction are specifically provided in the following.

Sensors 2020, 20, 6471 24 of 32

6.2.1. Development Environment

• Host: We use Ubuntu Server 18.04.02 LTS as the host operating system (OS). The specification
includes CPU I7-6820 2.7 GHz, 16 GB RAM memory, and 500 GB hard disk.

• Sensor Configuration: Raspberry Pi is the mainboard used in the system architecture. Raspbian
OS is installed with the hardware including Raspberry Pi 3 Model 8 V1.2, CPU ARM Cortex-A53
1.2 GHz Quad Core, 1 GB RAM, and 16 G MicroSD card. Air conditioner sensor YW-51GJ is used
as the device of our simulation. The mainboard and the sensor are integrated and assembled in a
box so that sensor can contact the ambient air. Overview of our setting is shown in Figure 11.

Sensors 2020, 20, x FOR PEER REVIEW 24 of 32

ciphertexts 𝐶𝑇ଵ, 𝐶𝑇ଶ, and public parameter 𝑃𝑃 are retrieved. Based on these parameters, the user 𝑈ଵ
performs Algorithm 13 to verify validity of the uploaded logs.

6.2. System Construction

In this sub-section, we construct a system deployment for the proposed protocol. The
development environment and system interface of our construction are specifically provided in the
following.

6.2.1. Development Environment

• Host: We use Ubuntu Server 18.04.02 LTS as the host operating system (OS). The specification
includes CPU I7-6820 2.7 GHz, 16 GB RAM memory, and 500 GB hard disk.

• Sensor Configuration: Raspberry Pi is the mainboard used in the system architecture. Raspbian
OS is installed with the hardware including Raspberry Pi 3 Model 8 V1.2, CPU ARM Cortex-A53
1.2 GHz Quad Core, 1 GB RAM, and 16 G MicroSD card. Air conditioner sensor YW-51GJ is used
as the device of our simulation. The mainboard and the sensor are integrated and assembled in
a box so that sensor can contact the ambient air. Overview of our setting is shown in Figure 11.

Figure 11. Setting of our implementation.

• Blockchain platform: We employ Hyperledger Fabric v1.0 for private blockchain. This
framework provides development foundation, modularity, scalability, and security for the
simulated system. We use open source platform of the Ethereum for public blockchain. Smart
contract can be fully written and published on Ethereum to develop diversified applications. In
this regard, an account with virtual currency is created with Metamask wallet for data
transaction. In addition, the contract is written into blockchain through Infura, an Ethereum

Figure 11. Setting of our implementation.

• Blockchain platform: We employ Hyperledger Fabric v1.0 for private blockchain. This framework
provides development foundation, modularity, scalability, and security for the simulated system.
We use open source platform of the Ethereum for public blockchain. Smart contract can be
fully written and published on Ethereum to develop diversified applications. In this regard, an
account with virtual currency is created with Metamask wallet for data transaction. In addition,
the contract is written into blockchain through Infura, an Ethereum application programming
interface (API).

• Kubernetes: We use Kubernetes as the platform, providing microservices for data management,
deployment, and expansion. Kubernetes is compatible to all OS platforms, which provides
the proper use of system performance. In our simulation, private blockchain is installed with
Kubernetes version 1.13.4.

• Programming language: Languages used in our system includes Golang, HTML and Javascript.
Golang library package was developed by Ben Lynn, who developed the library from the original

Sensors 2020, 20, 6471 25 of 32

Pairing-Based Cryptography (PBC) written in C language. According to the recommendation of
NIST, the selected key length of ECC for security strength is 224-bit type.

6.2.2. System Interface

The device can be configured as an agent with related settings. The configuration file includes
agent IP address, server IP address, server port, and agent type. In addition, the cryptographic module
supports AES, NTRU, RSA and ABSE, based on the choice of specific cryptosystem. Brief description
of device configuration is provided in Figure 12.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 32

application programming interface (API).
• Kubernetes: We use Kubernetes as the platform, providing microservices for data management,

deployment, and expansion. Kubernetes is compatible to all OS platforms, which provides the
proper use of system performance. In our simulation, private blockchain is installed with
Kubernetes version 1.13.4.

• Programming language: Languages used in our system includes Golang, HTML and Javascript.
Golang library package was developed by Ben Lynn, who developed the library from the
original Pairing-Based Cryptography (PBC) written in C language. According to the
recommendation of NIST, the selected key length of ECC for security strength is 224-bit type.

6.2.2. System Interface

The device can be configured as an agent with related settings. The configuration file includes
agent IP address, server IP address, server port, and agent type. In addition, the cryptographic
module supports AES, NTRU, RSA and ABSE, based on the choice of specific cryptosystem. Brief
description of device configuration is provided in Figure 12.

Figure 12. Device configuration.

The user logs in to the SSO sever using his/her password and smart card. After SSO login, the
user has to make another registration with the blockchain sever. To this end, the user enters main
identity, password and an additional identity “m0644013” to register with the server of Chang Gung
university, named “cgu_blockchain”. SSO password is generated in this registration. Figure 13 shows
a registered account with its credential generated by the SSO server for targeted service. Using the
account generated by the SSO server, the user can log in to the server “cgu_blockchain”.

Figure 13. Account generated by SSO server.

Figure 12. Device configuration.

The user logs in to the SSO sever using his/her password and smart card. After SSO login, the
user has to make another registration with the blockchain sever. To this end, the user enters main
identity, password and an additional identity “m0644013” to register with the server of Chang Gung
university, named “cgu_blockchain”. SSO password is generated in this registration. Figure 13 shows
a registered account with its credential generated by the SSO server for targeted service. Using the
account generated by the SSO server, the user can log in to the server “cgu_blockchain”.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 32

application programming interface (API).
• Kubernetes: We use Kubernetes as the platform, providing microservices for data management,

deployment, and expansion. Kubernetes is compatible to all OS platforms, which provides the
proper use of system performance. In our simulation, private blockchain is installed with
Kubernetes version 1.13.4.

• Programming language: Languages used in our system includes Golang, HTML and Javascript.
Golang library package was developed by Ben Lynn, who developed the library from the
original Pairing-Based Cryptography (PBC) written in C language. According to the
recommendation of NIST, the selected key length of ECC for security strength is 224-bit type.

6.2.2. System Interface

The device can be configured as an agent with related settings. The configuration file includes
agent IP address, server IP address, server port, and agent type. In addition, the cryptographic
module supports AES, NTRU, RSA and ABSE, based on the choice of specific cryptosystem. Brief
description of device configuration is provided in Figure 12.

Figure 12. Device configuration.

The user logs in to the SSO sever using his/her password and smart card. After SSO login, the
user has to make another registration with the blockchain sever. To this end, the user enters main
identity, password and an additional identity “m0644013” to register with the server of Chang Gung
university, named “cgu_blockchain”. SSO password is generated in this registration. Figure 13 shows
a registered account with its credential generated by the SSO server for targeted service. Using the
account generated by the SSO server, the user can log in to the server “cgu_blockchain”.

Figure 13. Account generated by SSO server. Figure 13. Account generated by SSO server.

If an administrator enters the system, he/she can see the blockchain status and overall service
through a monitoring interface. The interface is described in Figure 14. Table providing information
of registered devices is also shown in Figure 15. The devices signcrypt the log and uploads it to
blockchain server.

Sensors 2020, 20, 6471 26 of 32Int. J. Mol. Sci. 2020, xx, 5 3 of 7

Figure 2. This is a figure.Figure 14. Blockchain server management interface.

Sensors 2020, 20, 6471 27 of 32
Sensors 2020, 20, x FOR PEER REVIEW 27 of 32

Figure 15. Table of registered devices.

In terms of attribute setting, the attribute authority is allowed to add or delete the attributes, in
order to initialize the system. In this way, the authority can determine attributes for specific users,
and allows them to obtain their attributes during user registration phase.

When the users log in to the system, they can click on the link within private blockchain allocated
at the bottom of the monitoring interface (shown in Figure 16) to see block data. The detailed
information of private blockchain is provided in Figure 17. In addition, the users (including the
administrator and the users who possesses appropriate attributes) can also view the log data at the
bottom of this interface. As shown in Figure 17, the log data produced by the sensor includes dust,
temperature, humidity, and atmospheric carbon dioxide.

Figure 16. Private blocks within the chain.

Click to see contents of private block

Click to see contents of public block

Figure 15. Table of registered devices.

In terms of attribute setting, the attribute authority is allowed to add or delete the attributes, in
order to initialize the system. In this way, the authority can determine attributes for specific users, and
allows them to obtain their attributes during user registration phase.

When the users log in to the system, they can click on the link within private blockchain allocated at
the bottom of the monitoring interface (shown in Figure 16) to see block data. The detailed information
of private blockchain is provided in Figure 17. In addition, the users (including the administrator
and the users who possesses appropriate attributes) can also view the log data at the bottom of this
interface. As shown in Figure 17, the log data produced by the sensor includes dust, temperature,
humidity, and atmospheric carbon dioxide.

Int. J. Mol. Sci. 2020, xx, 5 4 of 7

Figure 3. This is a figure.

Figure 4. This is a figure.

Figure 16. Private blocks within the chain.

Sensors 2020, 20, 6471 28 of 32

Int. J. Mol. Sci. 2020, xx, 5 4 of 7

Figure 3. This is a figure.

Figure 4. This is a figure.Figure 17. Data stored in a private block.

Furthermore, the user can see detailed information stored in public block by clicking on the icon
highlighted in Figure 16. As shown in Figure 18, along with all related information, the data input
from private blockchain is available at the bottom of the content table of the public blockchain.

Sensors 2020, 20, 6471 29 of 32Int. J. Mol. Sci. 2020, xx, 5 5 of 7

Figure 5. This is a figure.

Text
Text

Table 1. This is a table caption. Tables should be placed in the main text near to the first time they are
cited.

Title 1 Title 2 Title 3

entry 1 data data
entry 2 data data

Text
Text

2.3. Formatting of Mathematical Components

This is an example of an equation:

a + b = c (1)

Please punctuate equations as regular text. Theorem-type environments (including propositions,
lemmas, corollaries etc.) can be formatted as follows:

Theorem 1. Example text of a theorem.

The text continues here. Proofs must be formatted as follows:

Proof of Theorem 1. Text of the proof. Note that the phrase ‘of Theorem 1’ is optional if it is clear
which theorem is being referred to.

The text continues here.

Figure 18. Data stored in a public block.

7. Conclusions

The logs produced by IoT devices contain important contents and private information, and can
be used as evidences for digital forensic investigations. Our work has introduced an autonomous
log storage management protocol with blockchain mechanism and access control for the IoT. Various
security properties for the logs including robust identity verification, data integrity, non-repudiation,
insider attack resistance, and the legality are achieved by the integration of blockchain and signature
chain. Moreover, internal security issue has been addressed by fine-grained attribute-based access
control. Security analysis demonstrates that our protocol satisfies various security requirements. Our
work is well suited for the IoT with a good performance due to elliptic curve short key length, short
BLS signature, efficient signcryption method, and multi-server architecture.

In this paper, we propose a protocol with general IoT applications. Domain applications (for
instance, WBANs or smart electricity grids) with specific architectures will be considered for our
future works with similar mechanisms. Autonomous model would be modified to other ones in which
gateways or servers will perform the signscryption. Additionally, protocol performance should also be
taken into account, which further improves communication efficiency of low-power devices in the IoT.

Author Contributions: Conceptualization, W.-X.C., and C.-L.H.; protocol, W.-X.C., and C.-L.H.; GNY logic, T.-V.L.;
AVISPA tool, T.-V.L.; semantic security analysis, T.-V.L.; performance analysis, T.-V.L.; implementation, W.-X.C.;
supervision, C.-L.H.; and funding acquisition, C.-L.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was supported in part by Chang Gung Memorial Hospital under Grant No.
CMRPG5D0183 and CMRPD3D0063, and Ministry of Science and Technology in Taiwan under Grant No.
MOST-105-2923-E-182-001-MY3, No. MOST-107-2221-E-182-006, and No. MOST-108-2221-E-182-011. This work
was also supported in part by Healthy Aging Research Center, Chang Gung University from the Featured Areas
Research Center Program within the Framework of the Higher Education Sprout Project by the Ministry of
Education (MOE) in Taiwan under Grant No. EMRPD1I0481, No. EMRPD1H0421, and No. EMRPD1H0551.

Acknowledgments: We would like to thank the support of Chang Gung University, Chang Gung Memorial
Hospital, the Ministry of Science and Technology (MOST), and the Ministry of Education (MOE) in Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 6471 30 of 32

References

1. Wong, A.K.; Hsu, C.L.; Le, T.V.; Hsieh, M.C.; Lin, T.W. Three-Factor Fast Authentication Scheme with Time
Bound and User Anonymity for Multi-Server E-Health Systems in 5G-Based Wireless Sensor Networks.
Sensors 2020, 20, 2511. [CrossRef] [PubMed]

2. Homaei, M.H.; Salwana, E.; Shamshirband, S. An Enhanced Distributed Data Aggregation Method in the
Internet of Things. Sensors 2019, 19, 3173. [CrossRef] [PubMed]

3. Movassaghi, S.; Abolhasan, M.; Lipman, J.; Smith, D.; Jamalipour, A. Wireless Body Area Networks: A
Survey. IEEE Commun. Surv. Tutor. 2014, 16, 1658–1686. [CrossRef]

4. Guo, X.; Lin, H.; Wu, Y.; Peng, M. A new data clustering strategy for enhancing mutual privacy in healthcare
IoT systems. Future Gener. Comput. Syst. 2020, 113, 407–417. [CrossRef]

5. Abdelmoneem, R.M.; Benslimane, A.; Shaaban, E. Mobility-aware task scheduling in cloud-Fog IoT-based
healthcare architectures. Comput. Netw. 2020, 179, 107348. [CrossRef]

6. Babar, M.; Tariq, M.U.; Jan, M.A. Secure and resilient demand side management engine using machine
learning for IoT-enabled smart grid. Sustain. Cities Soc. 2020, 62, 102370. [CrossRef]

7. Kang, L.; Chen, W.; Zheng, Z.; Li, Z.; Liang, W. A Novel Debt-Credit Mechanism for Blockchain-Based
Data-Trading in Internet of Vehicles. IEEE Internet Things J. 2019, 6, 9098–9111.

8. Praveen, M.; Harini, V. NB-IOT based smart car parking system. In Proceedings of the 2019 International
Conference on Smart Structures and Systems (ICSSS), Chennai, India, 14–15 March 2019.

9. Zhang, R.; Cui, S.; Zhao, C. Design of a Data Acquisition and Transmission System for Smart Factory Based on
NB-IoT.; Springer: Singapore, 2018; pp. 875–880.

10. Yang, C.T.; Kristiani, E.; Wang, Y.T.; Min, G.; Lai, C.H.; Jiang, W.J. On construction of a network log
management system using ELK Stack with Ceph. J. Supercomput. 2020, 76, 6344–6360. [CrossRef]

11. Rochim, A.F.; Aziz, M.A.; Fauzi, A. Design Log Management System of Computer Network Devices
Infrastructures Based on ELK Stack. In Proceedings of the ICECOS 2019—3rd International Conference on
Electrical Engineering and Computer Science, Batam Island, Indonesia, 2–3 October 2019.

12. Di Tosto, G.; McAlearney, A.S.; Fareed, N.; Huerta, T.R. Metrics for Outpatient Portal Use Based on Log. File
Analysis: Algorithm Development. J. Med. Internet Res. 2020, 22, e16849. [CrossRef]

13. Ryu, J.H.; Sharma, P.K.; Jo, J.H.; Park, J.H. A blockchain-based decentralized efficient investigation framework
for IoT digital forensics. J. Supercomput. 2019, 75, 4372–4387. [CrossRef]

14. Harbawi, M.; Varol, A. An improved digital evidence acquisition model for the Internet of Things forensic I:
A theoretical framework. In Proceedings of the 2017 5th International Symposium on Digital Forensic and
Security (ISDFS), Tirgu Mures, Romania, 26–28 April 2017.

15. Janjua, K.; Shah, M.A.; Almogren, A.; Khattak, H.A.; Maple, C.; Din, I.U. Proactive forensics in IoT:
Privacy-aware log-preservation architecture in fog-enabled-cloud using holochain and containerization
technologies. Electronics 2020, 9, 1172. [CrossRef]

16. Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on the Use of Blockchain for the Internet of Things.
IEEE Access 2018, 6, 32979–33001. [CrossRef]

17. Yuan, Y.; Wang, F. Towards blockchain-based intelligent transportation systems. In Proceedings of the 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Jeneiro, Brazil, 1–4
November 2016.

18. Gordon, W.J.; Catalini, C. Blockchain Technology for Healthcare: Facilitating the Transition to Patient-Driven
Interoperability. Comput. Struct. Biotechnol. J. 2018, 16, 224–230. [CrossRef] [PubMed]

19. Samaniego, M.; Jamsrandorj, U.; Deters, R. Blockchain as a Service for IoT. In Proceedings of the 2016 IEEE
International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
Chengdu, China, 15–18 December 2016.

20. Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. Blockchain and IoT Integration: A Systematic
Survey. Sensors 2018, 18, 2575. [CrossRef]

21. Queiroz, M.M.; Wamba, S.F. Blockchain adoption challenges in supply chain: An empirical investigation of
the main drivers in India and the USA. Int. J. Inf. Manag. 2019, 46, 70–82. [CrossRef]

22. Wang, Y.; Singgih, M.; Wang, J.; Rit, M. Making sense of blockchain technology: How will it transform supply
chains? Int. J. Product. Econom. 2019, 211, 221–236. [CrossRef]

http://dx.doi.org/10.3390/s20092511
http://www.ncbi.nlm.nih.gov/pubmed/32365543
http://dx.doi.org/10.3390/s19143173
http://www.ncbi.nlm.nih.gov/pubmed/31323905
http://dx.doi.org/10.1109/SURV.2013.121313.00064
http://dx.doi.org/10.1016/j.future.2020.07.023
http://dx.doi.org/10.1016/j.comnet.2020.107348
http://dx.doi.org/10.1016/j.scs.2020.102370
http://dx.doi.org/10.1007/s11227-019-02853-2
http://dx.doi.org/10.2196/16849
http://dx.doi.org/10.1007/s11227-019-02779-9
http://dx.doi.org/10.3390/electronics9071172
http://dx.doi.org/10.1109/ACCESS.2018.2842685
http://dx.doi.org/10.1016/j.csbj.2018.06.003
http://www.ncbi.nlm.nih.gov/pubmed/30069284
http://dx.doi.org/10.3390/s18082575
http://dx.doi.org/10.1016/j.ijinfomgt.2018.11.021
http://dx.doi.org/10.1016/j.ijpe.2019.02.002

Sensors 2020, 20, 6471 31 of 32

23. Zyskind, G.; Nathan, O.; Pentland, A. Enigma: Decentralized Computation Platform with Guaranteed
Privacy. arXiv 2015, arXiv:1506.03471. Available online: https://arxiv.org/abs/1506.03471 (accessed on 10
June 2015).

24. Huang, Z.; Su, X.; Zhang, Y.; Shi, C.; Zhang, H.; Xie, L. A decentralized solution for IoT data trusted exchange
based-on blockchain. In Proceedings of the 2017 3rd IEEE International Conference on Computer and
Communications (ICCC), Chengdu, China, 13–16 December 2017.

25. Axon, L.; Goldsmith, M. PB-PKI: A Privacy-Aware Blockchain-Based PKI.; Oxford University Press: New York,
NY, USA, 2017; pp. 311–318.

26. Kebande, V.R.; Ray, I. A Generic Digital Forensic Investigation Framework for Internet of Things (IoT). In
Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud),
Vienna, Austria, 22–24 August 2016.

27. Perumal, S.; Norwawi, N.M.; Raman, V. Internet of Things(IoT) digital forensic investigation model:
Top.-down forensic approach methodology. In Proceedings of the 2015 Fifth International Conference on
Digital Information Processing and Communications (ICDIPC), Sierre, Switzerland, 7–9 October 2015.

28. MacDermott, A.; Baker, T.; Shi, Q. Iot Forensics: Challenges for the Ioa Era. In Proceedings of the 2018 9th
IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 26–28
February 2018.

29. Taguchi, Y.; Kanai, A.; Tanimo, S. A Distributed Log. Management Method using a Blockchain Scheme. In
Proceedings of the 2020 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
4–6 January 2020.

30. Pourmajidi, W.; Miranskyy, A. Logchain: Blockchain-Assisted Log. Storage. In Proceedings of the 2018 IEEE
11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, USA, 2–7 July 2018.

31. Hang, L.; Kim, D.-H. Design and Implementation of an Integrated IoT Blockchain Platform for Sensing Data
Integrity. Sensors 2019, 19, 2228. [CrossRef]

32. Li, H.; Lan, C.; Fu, X.; Wang, C.; Li, F.; Guo, H. A Secure and Lightweight Fine-Grained Data Sharing Scheme
for Mobile Cloud Computing. Sensors 2020, 20, 4720. [CrossRef]

33. Zheng, H.; Shao, J.; Wei, G. Attribute-based encryption with outsourced decryption in blockchain. Peer-to-Peer
Netw. Appl. 2020, 13, 1643–1655. [CrossRef]

34. Sowjanya, K.; Dasgupta, M. A ciphertext-policy Attribute based encryption scheme for wireless body area
networks based on ECC. J. Inf. Sec. Appl. 2020, 54, 102559. [CrossRef]

35. Zhong, H.; Zhou, Y.; Zhang, Q.; Xu, Y.; Cui, J. An efficient and outsourcing-supported attribute-based access
control scheme for edge-enabled smart healthcare. Future Gener. Comput. Syst. 2020, 115, 486–496. [CrossRef]

36. Panko, R. Digital Signatures and Electronic Signatures. In The Internet Encyclopedia; Bidgoli, H., Ed.; John
Wiley and Sons: Hoboken, NJ, USA, 2004.

37. Nguyen, T.; Kim, K. A survey about consensus algorithms used in Blockchain. J. Inf. Process. Syst. 2018, 14,
101–128.

38. Lewko, A.; Waters, B. New Proof Methods for Attribute-Based Encryption: Achieving Full Security through
Selective Techniques. In Advances in Cryptology—CRYPTO 2012; Springer: Berlin/Heidelberg, Germany, 2012.

39. Beimel, A. Secure Schemes for Secret Sharing and Key Distribution; Technion-Israel Institute of Technology,
Faculty of Computer Science: Haifa, Israel, 1996.

40. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. In Advances in Cryptology; Springer:
Berlin/Heidelberg, Germany, 1985.

41. Sahai, A.; Waters, B. Fuzzy Identity-Based Encryption. In Advances in Cryptology—EUROCRYPT 2005;
Springer: Berlin/Heidelberg, Germany, 2005.

42. Lai, J.; Deng, R.H.; Guan, C.; Weng, J. Attribute-Based Encryption With Verifiable Outsourced Decryption.
IEEE Trans. Inf. Forensics Sec. 2013, 8, 1343–1354.

43. Han, J.; Susilo, W.; Mu, Y.; Yan, J. Privacy-Preserving Decentralized Key-Policy Attribute-Based Encryption.
IEEE Trans. Parallel Distrib. Syst. 2012, 23, 2150–2162. [CrossRef]

44. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the
2007 IEEE Symposium on Security and Privacy (SP’07), Berkeley, CA, USA, 20–23 May 2007.

45. Waters, B. Ciphertext-Policy Attribute-Based Encryption: An. Expressive, Efficient, and Provably Secure
Realization. In Public Key Cryptography—PKC 2011; Springer: Berlin/Heidelberg, Germany, 2011.

https://arxiv.org/abs/1506.03471
http://dx.doi.org/10.3390/s19102228
http://dx.doi.org/10.3390/s20174720
http://dx.doi.org/10.1007/s12083-020-00918-1
http://dx.doi.org/10.1016/j.jisa.2020.102559
http://dx.doi.org/10.1016/j.future.2020.09.021
http://dx.doi.org/10.1109/TPDS.2012.50

Sensors 2020, 20, 6471 32 of 32

46. Han, J.; Susilo, W.; Mu, Y.; Zhou, J.; Au, M.H.A. Improving Privacy and Security in Decentralized
Ciphertext-Policy Attribute-Based Encryption. IEEE Trans. Inf. Forensics Sec. 2015, 10, 665–678.

47. Zheng, Y. Digital signcryption or how to achieve cost(signature & encryption) � cost(signature) +

cost(encryption). In Advances in Cryptology—CRYPTO ‘97; Springer: Berlin/Heidelberg, Germany, 1997.
48. Gagné, M.; Narayan, S.; Safavi-Naini, R. Threshold Attribute-Based Signcryption. In Security and Cryptography

for Networks; Springer: Berlin/Heidelberg, Germany, 2010.
49. Hankerson, D.; Menezes, A. Elliptic Curve Discrete Logarithm Problem. In Encyclopedia of Cryptography and

Security; van Tilborg, H.C.A., Jajodia, S., Eds.; Springer: Boston, MA, USA, 2011; pp. 397–400.
50. Gordon, D. Discrete Logarithm Problem. In Encyclopedia of Cryptography and Security; van Tilborg, H.C.A.,

Jajodia, S., Eds.; Springer: Boston, MA, USA, 2011; pp. 352–353.
51. Boneh, D.; Lynn, B.; Shacham, H. Short Signatures from the Weil Pairing. In Advances in

Cryptology—ASIACRYPT 2001; Springer: Berlin/Heidelberg, Germany, 2011.
52. Al-Zubaidie, M.; Zhang, Z.; Zhang, J. Efficient and Secure ECDSA Algorithm and its Applications: A

Survey. arXiv 2019, arXiv:1902.10313. Available online: https://arxiv.org/abs/1902.10313 (accessed on 27
February 2019).

53. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. Cryptography Mailing List. 2009. Available
online: https://git.dhimmel.com/bitcoin-whitepaper/ (accessed on 10 October 2020).

54. Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Gün
Sirer, E.; et al. On Scaling Decentralized Blockchains. In Financial Cryptography and Data Security; Springer:
Berlin/Heidelberg, Germany, 2016.

55. Eyal, I.; Sirer, E.G. Majority is not enough: Bitcoin mining is vulnerable. Commun. ACM 2018, 61, 95–102.
[CrossRef]

56. Henry, R.; Herzberg, A.; Kate, A. Blockchain Access Privacy: Challenges and Directions. IEEE Sec. Priv. 2018,
16, 38–45. [CrossRef]

57. Yeow, K.; Gani, A.; Ahmad, R.W.; Rodrigues, J.J.P.C.; Ko, K. Decentralized Consensus for Edge-Centric
Internet of Things: A Review, Taxonomy, and Research Issues. IEEE Access 2018, 6, 1513–1524. [CrossRef]

58. Nongbri, I.; Hadem, P.; Chettri, S. A Survey on Single Sign-On. Int. J. Creative Res. Thoughts 2018, 6, 595–602.
59. Team, T.A. Automated Validation of Internet Security Protocols and Applications (AVISPA 1.1). Available

online: http://www.avispa-project.org (accessed on 10 November 2020).
60. Von Oheimb, D. The high-level protocol specification language HLPSL developed in the EU project AVISPA.

In Proceedings of the APPSEM 2005 Workshop, Frauenchiemsee, Germany, 13 September 2005.
61. Gong, L.; Needham, R.; Yahalom, R. Reasoning about belief in cryptographic protocols. In Proceedings of

the 1990 IEEE Computer Society Symposium on Research in Security and Privacy, Oakland, CA, USA, 7–9
May 1990.

62. Arshad, H.; Rasoolzadegan, A. Design of a Secure Authentication and Key Agreement Scheme Preserving
User Privacy Usable in Telecare Medicine Information Systems. J. Med. Syst. 2016, 40, 237. [CrossRef]
[PubMed]

63. Hsu, C.L.; Le, T.V.; Hsieh, M.C.; Tsai, K.Y.; Lu, C.F.; Lin, T.W. Three-Factor UCSSO Scheme With Fast
Authentication and Privacy Protection for Telecare Medicine Information Systems. IEEE Access 2020, 8,
196553–196566. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1902.10313
https://git.dhimmel.com/bitcoin-whitepaper/
http://dx.doi.org/10.1145/3212998
http://dx.doi.org/10.1109/MSP.2018.3111245
http://dx.doi.org/10.1109/ACCESS.2017.2779263
http://www.avispa-project.org
http://dx.doi.org/10.1007/s10916-016-0585-3
http://www.ncbi.nlm.nih.gov/pubmed/27665111
http://dx.doi.org/10.1109/ACCESS.2020.3035076
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Problems
	Related Works
	Main Contributions
	Paper Structure

	Preliminaries
	Linear Secret-Sharing Scheme
	Attribute-Based Encryption
	Signcryption
	Bilinear Map
	Boneh-Lynn-Shacham Signature Scheme
	Blockchain
	Single Sign-on

	The Proposed Log Storage Management Protocol with Blockchain Mechanism and Access Control
	System Model
	Security Goals
	Procedure of the Proposed Protocol
	System Initialization Phase
	SSO Registration Phase
	SSO Login Phase
	SSO Password Generation Phase
	Device Registration Phase
	User Registration Phase
	Log Signcryption Phase
	Log Verification Phase
	Log Unsigncryption Phase
	Private Block Calculation Phase
	Private Block Verification Phase
	Public Block Calculation Phase
	Public Block Verification Phase

	Security Analysis
	Protocol Simulation Using AVISPA Toolset
	Logical Analysis Using GNY Logic
	Semantic Proof
	Comparison with Related Works

	Performance Analysis
	Implementation
	Practical Procedure of the Proposed Protocol
	System Construction
	Development Environment
	System Interface

	Conclusions
	References

