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Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-

associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally

grows inside the uterus grows outside the uterus, and 50% of women with endometriosis

are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of

women with endometriosis compared to women without endometriosis. However, an under-

standing of the physiological effects of ARID1A loss remains quite poor, and the function of

Arid1a in the female reproductive tract has remained elusive. In order to understand the role

of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the

PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development

of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective

embryo implantation and decidualization. The epithelial proliferation was significantly

increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity

and reduced epithelial PGR expression, which impedes maturation of the receptive uterus,

was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis

revealed that ARID1A represses the genes related to cell cycle and DNA replication. We

showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial pro-

liferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulat-

ing epithelial proliferation which is a critical requisite for fertility. This finding provides a new

signaling pathway for steroid hormone regulation in female reproductive biology and fur-

thers our understanding of the molecular mechanisms that underlie dysregulation of hor-

monal signaling in human reproductive disorders such as endometriosis.
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Author Summary

Endometriosis afflicts about 10% of women of reproductive age and is a major cause of
pain and infertility. We showed attenuation of endometrial ARID1A in women with endo-
metriosis as compared to women without endometriosis, and thus hypothesized that
ARID1A plays an important role in ensuring normal fertility in the uterus. To test this
hypothesis, we generated uterine-specific Arid1a knock-out mice, which were infertile due
to defective implantation and decidualization. The mutant mice demonstrated increased
endometrial epithelial proliferation with enhanced estrogen signaling and attenuation of
epithelial PGR. Microarray and ChIP analysis revealed that Arid1a suppresses epithelial
proliferation with PGR by regulating Klf15 expression. These data suggest that Arid1a
plays an important role in steroid hormone signaling in endometrial function and dys-
function. Further investigation of ARID1A will be important for understanding altered
endometrial function in infertility and endometriosis and in developing therapies for these
disorders.

Introduction
Endometriosis is one of the most significant diseases affecting females of reproductive-age and
affects an estimated 5 million women in the United States. Endometriosis is defined as the pres-
ence of endometrium-like tissue outside of the uterine cavity. The incidence increases up to
50% in patients with infertility and up to 45% in patients with chronic pelvic pain [1,2]. Infer-
tility and pregnancy loss are major public health concerns for reproductive-age women. Estab-
lishment of uterine receptivity by the sequential actions of estrogen (E2) and progesterone (P4)
on uterine cells is critical for successful embryo apposition, attachment, implantation, and
pregnancy maintenance. Lack of sufficient E2 and P4 action can result in infertility and preg-
nancy loss in humans [3,4] and mice [5]. One of the primary effects of E2 on the endometrium
is stimulation of epithelial proliferation, while the primary effects of P4 are to inhibit epithelial
proliferation and induce differentiation to an embryo receptive state [6,7]. Cellular E2 and P4
actions can occur directly on a specific cell type and indirectly via paracrine activity mediated
by another cell type. P4 through its cognate receptor, the progesterone receptor (PGR), have
important roles in the establishment and maintenance of pregnancy [7–10]. P4 attenuates E2
stimulated epithelial cell proliferation by epithelial PGR [11].

At the time of embryo implantation, the expression of PGR is promptly downregulated in
the luminal epithelium in both humans and mice, and its expression is increased in stromal
cells, anticipating the role of PGR in induction of decidualization [12]. Epithelial PGR acts to
inhibit E2-induced epithelial proliferation. Epithelial PGR female mice are infertile due to
embryo implantation defects indicating that epithelial PGR is essential for uterine function
[11].

Endometriosis regression was found in some patients with endometriosis during pregnancy
or who were exposed to progestin-based therapeutics [13,14]. However there are endometriosis
patients who do not respond to treatment due to progesterone resistance. The molecular
changes by P4 in the eutopic endometrium from women with endometriosis are either blunted
or undetectable. P4 cannot inhibit E2-dependent growth of endometriosis[15]. The previous
microarray studies of comparing women with and without endometriosis reported that many
of the P4 target genes were altered at the time of implantation when P4 levels are highest
[16,17]. P4 therapy also prevents the development of endometrial cancer associated with unop-
posed E2 by blocking E2 actions [18]. Expression of PGR was known as positively correlated
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with a good prognosis and responsiveness to progestin treatment [19]. However, more than
30% of patients with progestin treatment did not respond to progestin due to de novo or
acquired progestin resistance [20–24]. The mechanism of progestin resistance is still unknown.
Understanding the molecular mechanisms regulating E2 and P4 actions in the endometrium is
critical in developing therapeutic approaches to alleviate this women’s health crisis.

Ovarian clear-cell and endometrioid carcinomas are associated with endometriosis through
distinct but currently unknown mechanisms [25–27]. One of the possible mechanisms is linked
to mutation of the AT-rich interactive domain 1A gene (ARID1A) [28]. ARID1A encodes
BAF250a (ARID1A) protein which is one of the subunits in the switch/sucrose non-ferment-
able (SWI/SNF) chromatin remodeling complex [29]. ARID1Amutations leading to loss of the
protein expression [30] have been found in 46% of ovarian clear-cell carcinomas and 30% of
endometrioid ovarian carcinomas [28,31]. ARID1A is also critical for embryogenesis in mice
and the maintenance of ES cell self-renewal, as well as lineage-specific differentiation of ES
cells in vitro [32]. Embryos lacking one allele resulted in late embryonic lethality, complete loss
of ARID1A led to developmental arrest around E6.5 without formation of a primitive streak
and mesoderm. Ablation of ARID1A in mice ES cells led to altered cell morphology and prolif-
eration [33]. However, little is known about the physiological or pathological effects of
ARID1A expression in the endometrium.

We found that ARID1A levels are remarkably lower in endometrium from women with
endometriosis compared to women without endometriosis. In an effort to overcome embry-
onic lethality of Arid1a knock-out mice, we have used conditional Arid1a knock-out mice in
the uterus. In this study, we observed that the mutant mice are sterile due to increased epithelial
cell proliferation which resulted in implantation defects. Our results suggest that Arid1a sup-
presses E2 signaling with PGR by modulating KLF15 expression indicating the critical role of
Arid1a in the peri-implantation period.

Results

Attenuation of ARID1A in eutopic endometrial tissue from women with
endometriosis
We examined the levels of ARID1A in endometrium from spontaneously cycling women using
immunohistochemical analysis. We observed the most abundant levels of ARID1A protein
throughout the menstrual cycle in women without endometriosis (S1 Fig). ARID1A proteins
were strongly detected in the stromal and epithelial cells of endometrium from the proliferative
phase and early, mid, and late secretory phases in women without endometriosis (n = 7 per
stage). However, the levels of ARID1A were significantly lower in both the stromal and epithe-
lial cells of endometrium from proliferative and secretory phase endometriosis patients
(n = 28) compared to women without endometriosis (n = 28) (Fig 1).

To determine whether ARID1A is expressed during pregnancy, we next examined the
mRNA and protein levels of ARID1A in the uteri of wild-type mice during early pregnancy by
real-time RT-PCR and immunohistochemical analysis (S2 Fig). The initiation of pregnancy
was marked by the presence of the postcoital vaginal plug (0.5 dpc). The expression of Arid1a
mRNA was strongly detected on 0.5 dpc, which consistently expressed until 6.5 dpc in the
uterus. To further investigate the spatiotemporal expression profiles of ARID1A protein in the
uterus during early pregnancy, we performed immunohistochemistry analysis during sequen-
tial time points. Consistent with the real-time PCR results, ARID1A proteins were also consis-
tently strong in the nucleus of epithelial and stromal cells during early pregnancy. These data
suggest that ARID1A may play an important role during early pregnancy.
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Fertility defect of mice with ablation of Arid1a in the PGR-expressing
cells
Arid1a knock-out mice resulted in embryo lethality [33]. Therefore, in order to investigate the
role of Arid1a in the uterus, we generated a mouse model in which Arid1a gene expression is
ablated specifically in the PGR-expressing cells (Pgrcre/+Arid1af/f; Arid1ad/d). ARID1A proteins
were remarkably reduced in Arid1ad/d mice by western blot (S3A Fig). The uteri of Arid1af/f

control mice showed abundant ARID1A proteins at the luminal epithelium, glandular epithe-
lium and stroma, whereas this staining was absent in the Arid1ad/d mice (S3B Fig). These
results confirm our successful ablation of Arid1a within the uterus of Arid1ad/dmice.

To investigate the impact of ablation of Arid1a on female fertility, female control (Arid1af/f)
and Arid1ad/dmice were mated with wild-type male mice for 6 months. Arid1af/fmice (n = 9) had
an average of 7.21± 0.29 pups/litter, whereas Arid1ad/dmice (n = 9) had no pups (S1 Table).
These results revealed that Arid1ad/dmice were sterile. To test for an ovarian phenotype, female
Arid1ad/dmice were examined for their ability to ovulate normally in response to a superovulatory
regimen of gonadotropins [34]. Arid1ad/dmice yielded 19.86 ± 0.99 oocytes which did not differ
significantly from Arid1af/fmice (19.50 ± 1.85) (S2 Table). Also, histological analysis of the Ari-
d1ad/d ovary did not show any alterations in ovarian morphologyArid1ad/dmice showed normal
development of corpora lutea (n = 5) (S4A Fig). The serum level of E2 and P4 were 4.40± 0.71 pg/
ml and 11.57± 1.88 ng/ml, respectively inArid1af/fmice, meanwhile 5.43± 0.50 pg/ml and 15.69±
1.96 ng/ml, respectively in Arid1ad/dmice. The serum level of E2 and P4 showed no significant
statistical difference between the mice at 3.5 dpc (n = 3 per genotype) (S4B Fig). This result shows
that ovarian morphology and functioning were not affected in the Arid1ad/d females suggesting
that the fertility defect is primarily due to a uterine defect.

Implantation defect in Arid1ad/dmice
To determine the cause of infertility in Arid1ad/dmice, 8-week-old female Arid1af/f and Arid1ad/d

mice were mated with intact wild-type male mice. Females were euthanized at 5.5 dpc of preg-
nancy, and the numbers of implantation sites were counted. Implantation sites were detected in
the uterine horn of Arid1af/fmice, whereas there were no implantation sites in Arid1ad/dmice (Fig
2A). Histological analysis revealed that embryos could not attach to the uterine horn of Arid1ad/d

mice while embryos were attached well in Arid1af/fmice and surrounded by decidualized cells

Fig 1. ARID1A loss in eutopic endometrial tissue from infertile women with endometriosis. (A) The immunohistochemical histological score (H-score)
of ARID1A proteins. The results represent the mean ± SEM. *** p<0.001. (B) Representative photomicrograph of immunohistochemical staining of ARID1A
proteins in human endometrium with and without endometriosis.

doi:10.1371/journal.pgen.1005537.g001
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Fig 2. A failure of implantation in Arid1ad/d mice. (A) Implantation sites were not detected in the uteri of
Arid1ad/d mice (n = 5), compared with Arid1af/f mice at 5.5 dpc (n = 5). Arrow heads indicate implantation
sites. (B) Histology of implantation site in Arid1af/f (a and c) and Arid1ad/d mice (b and d) at 5.5 dpc. (C) While
well-attached embryos were found in Arid1af/f (a and c), free-floating embryos were found in the uterine cavity
of Arid1ad/d mice at 4.5 dpc (b and d).

doi:10.1371/journal.pgen.1005537.g002
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(n = 5) (Fig 2B). To address a defect of embryo implantation in Arid1ad/dmice, mice were dis-
sected at 4.5 dpc. Free-floating embryos (4.67 ± 1.33 per mouse) were found in the uterine horn of
Arid1ad/d, whereas well attached embryos (5.50 ± 0.65 per mouse) were found in the uterine horn
of Arid1af/fmice (n = 5) (Fig 2C). These results suggest that a failure of embryo attachment is one
of the causes of the infertility observed in Arid1ad/dmice.

Decidualization defect in Arid1ad/d mice
Embryo invasion transforms endometrial stromal cells into a decidual phenotype [35–37].
Patients with gynecological pathologies contributing to infertility, such as endometriosis, dis-
play markedly reduced decidualization and impaired uterine receptivity [38]. To access
ARID1A function in stroma cells, we examined the levels of ARID1A in human primary endo-
metrial stromal cells (hESCs) from patients with or without endometriosis by Western blot. All
6 hESCs from women without endometriosis showed strong expression of ARID1A in hESCs
from women without endometriosis. Interestingly, 5 of 6 hESCs from women with endometri-
osis did not detect ARID1A protein (Fig 3A). This result suggests that ARID1A loss may cause
an impaired decidualization in patients with endometriosis. Therefore, we next examined the
role of Arid1a in decidualization.

We next examined the ability of Arid1ad/d mice to undergo decidualization after artificial
hormonal induction. Ovariectomized Arid1af/f and Arid1ad/d mice were treated with E2+P4,
and the uteri were mechanically stimulated to mimic the presence of an implanting embryo
and to induce decidualization [34]. Control mice showed a decidual uterine horn that
responded well to this artificial induction. However, Arid1ad/d mice exhibited a significant
defect of decidual response. The weight ratio of stimulated to control horn was highly
decreased in Arid1ad/dmice compared to Arid1af/f mice (Fig 3B). Histological analysis con-
firmed that well-developed decidual cells were detected in the decidual uterine horn of Arid1af/
fmice, while differentiation of uterine stromal cells to decidual cells was not observed in the
decidual uterine horn of Arid1ad/dmice (Fig 3C). In addition, the expression of known markers
of decidualization, Bmp2, Fst, and Fkbp5, were significantly decreased in the decidual uterine
horn of Arid1ad/dmice compared to the decidual uterine horn of Arid1af/f mice (Fig 3D).
These data show that Arid1ad/dmice have a decidualization defect.

Aberrant activation of proliferation in the uterine epithelial cells of
Arid1ad/d mice
In normal pregnant uteri, abundant proliferation was detected in epithelial cells and stromal
cells at 2.5 dpc. Proliferation is markedly reduced in epithelial cells at 3.5 dpc for embryo
attachment [39]. To determine whether a defect of embryo attachment is caused by an alter-
ation in cell proliferation, we examined the expression of Ki67, a proliferative marker, at 3.5
dpc by immunohistochemistry. Ki67 immunohistochemistry showed that proliferation was
highly increased in uterine epithelial cells of Arid1ad/d mice compared to Arid1af/f mice (Fig 4).
These results suggest that abnormal epithelial proliferation in Arid1ad/d mice is one of the
causes of the embryo attachment defect.

Estrogen receptor activity is enhanced in the uterine epithelium of
Arid1ad/d mice
E2 promotes epithelial cell proliferation in the uterus [6]. Since an increase of epithelial prolif-
eration is observed in Arid1ad/d mice, we further investigated whether excess E2 signaling is
caused by Arid1a ablation. To address excess E2 signaling, the expression of E2 responsive
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Fig 3. Arid1ad/dmice exhibited an altered decidualization. (A) The ARID1A expression were lower in infertile women with endometriosis (n = 6) compared
to women without endometriosis (n = 6). (B) The decidualization is highly induced in Arid1af/f mice (a) but not Arid1ad/dmice. Arrow heads indicate stimulated
horns. (b). The uterine weight ratio was significantly decreased in Arid1ad/dmice as compared to Arid1af/f (C) Histology of control and stimulated horn in
Arid1af/f (a and c) and Arid1ad/dmice (b and d) at day 5, respectively (D) The expression of decidualization marker genes, Bmp2, Fst and Fkbp5was
measured in the uteri of control and stimulated horn. The results represent the mean ± SEM of three independent RNA sets. **, p < 0.01; ***, p < 0.001.

doi:10.1371/journal.pgen.1005537.g003
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genes, C3, Clca3,Muc-1, and Ltf, were examined by real-time RT-PCR analysis. The expression
of C3, Clca3,Muc-1, and Ltf were highly increased in Arid1ad/d mice compared to Arid1af/f

mice (Fig 5A). An increase of phospho-ESR1, MUC1 and LTF protein expression was detected
in the epithelium of the Arid1ad/dmice compared to the Arid1af/f mice, but ESR1 was not
changed between the mice (Fig 5B). Arid1af/f mice had an average of 71.39± 2.58%, meanwhile
Arid1ad/d mice had an average 69.02± 2.90% of positive stromal pESR1 cells. There are no sig-
nificant differences. These results demonstrate that estrogen receptor activity is enhanced in
the uterine epithelial cells of the Arid1ad/d mice.

Epithelial PGR is reduced in the uteri of Arid1ad/d mice
Since excess E2 signaling is detected in the Arid1ad/dmice, we next investigated whether Arid1a
ablation altered the expression of PGR. We performed PGR immunohistochemistry and real-time
RT-PCR to assess the expression of PGR and its target genes in Arid1ad/dmice. Interestingly, epi-
thelial PGR expression was highly reduced inArid1ad/dmice compared to control mice (Fig 6A
and 6B). The mRNA expression level of epithelial P4 target genes, Fst, Gata2, Areg, and Lrp2 were
highly downregulated in Arid1ad/dmice. However the expression of Il13ra2 andHand2 which are
known as stromal P4-target genes were not changed (Fig 6C). These results suggest that Arid1a
mediates estrogen activity by regulating epithelial PGR expression.

ARID1A suppresses E2 induced epithelial cell proliferation through
KLF15
In order to identify the pathways that Arid1a regulates at implantation, we performed high
density DNA microarray analysis on the uteri from Arid1af/f and Arid1ad/d mice at 3.5 dpc

Fig 4. The epithelial proliferation is highly increased in Arid1ad/d mice. (A) Immunohistochemical analysis of Ki67 in Arid1af/f (a) and Arid1ad/dmice (b).
(B) Quantification of Ki67 positive cells in epithelial and stroma cells. The results represent the mean ± SEM. ***, p < 0.001.

doi:10.1371/journal.pgen.1005537.g004
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(GEO accession number: GSE72200). The microarray analysis showed that 1,358 were more
highly expressed in Arid1ad/d mice and 1,198 genes were decreased by more than 1.5-fold.
From the pathway analysis using Ingenuity Pathway Analysis (QIAGEN, Redwood City, CA),
the altered pathways including cell-cycle control, DNA replication, and modification processes
were identified (Table 1 and S3 Table). The results have been validated by qPCR analysis (Fig
7A). The immunohistochemistry results showed that the levels of MCM2 and MCM6 were
increased in Arid1ad/dmice at 3.5 dpc (Fig 7B).

Two Kruppel-like factors (KLFs) have been implicated in E2 and P4 modulation of uterine
proliferation [40,41]. Klf4 is increased by E2 and promotes DNA replication, whereas Klf15 is
increased by P4 and inhibits growth via regulation ofMcm2 [41]. The down-regulation of PGR
by ARID1A loss coincides with the down-regulation of Klf15 transcript abundance, which led
to the hypothesis that ARID1A positively regulates Klf15 expression with PGR. To determine

Fig 5. An increase of E2 signaling in Arid1ad/d mice. (A) Real-time RT-PCR analysis of C3, Clca3,Muc-1, and Ltf were performed on uteri of Arid1af/f and
Arid1ad/d mice at 3.5 dpc. The results represent the mean ± SEM of six independent mouse sets. *, p < 0.05; **, p < 0.01. (B) Immunohistochemical analysis
of ESR1 (a and e), pESR1 (b and f), MUC-1 (c and g) and LTF (d and h) in uteri of Arid1af/f and Arid1ad/d mice at 3.5 dpc.

doi:10.1371/journal.pgen.1005537.g005
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whether ARID1A and PGR bind to the putative Klf15 promoter, ChIP was performed on uter-
ine chromatin from Arid1af/f and Arid1ad/d mice at 3.5 dpc. ChIP analysis exhibited that
recruitment of PGR on HRE is significantly decreased by the absence of Arid1a indicating that
klf15 is directly regulated by ARID1A and PGR (Fig 8A). We examined whether ARID1A
physically interacts with PR-A or PR-B protein using immunoprecipitation analysis. We trans-
fected with PGR constructs expressing either human PR-A or PR-B into Ishikawa cells. The
lysates were then immunoprecipitated with anti-ARID1A antibodies, and then performed
western blot analysis using anti-PGR antibodies. The immunoprecipitation results showed that
ARID1A physically interacts with PR-A, not PR-B (Fig 8B). Next, we examined the protein

Fig 6. Decreased epithelial PGR expression in Arid1ad/dmice. (A) Immunohistochemical analysis of PGR in Arid1af/f (a) and Arid1ad/dmice (b). (B)
Quantification of PGR positive cells in epithelial and stroma cells. The results represent the mean ± SEM. ***, p < 0.001. (C) Real-time RT-PCR analysis of
Fst,Gata2, Areg, Lrp2, Il13ra2, andHand2were performed on uteri of Arid1af/f and Arid1ad/dmice at 3.5 dpc.

doi:10.1371/journal.pgen.1005537.g006
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levels of KLF4 and KLF15 to determine whether their dys-regulation might contribute to aber-
rant epithelial proliferation in Arid1ad/d mice. The expression of KLF4 was remarkably
increased in Arid1ad/dmice compared to Arid1af/f mice while the expression of KLF15 was
decreased in Arid1ad/dmice (Fig 8C). These results suggest that ARID1A regulates transcrip-
tional activation of KLF15 through physical interaction with PR-A.

To better understand the integration of ARID1A in endometriosis, immunohistochemistry
analysis for KLF4 and KLF15 was performed with eutopic endometrium from secretory phase
women with and without endometriosis (Fig 8D and 8E). As shown in the Arid1ad/dmice,
eutopic endometrium from women with endometriosis showed increased KLF4 levels com-
pared to control endometrium. The expression of KLF15 was very weak in eutopic endome-
trium from women with endometriosis, while its expression was strong in endometrial cells in
control endometrium. These data suggest that KLF15 is a downstream mediator of the anti-
proliferative action of P4 on E2-induced epithelial cell proliferation and ARID1A regulates
KLF15 expression with PGR.

Discussion
Somatic ARID1A mutations are uniquely associated with endometriosis-related ovarian neo-
plasms [42–45]. ARID1A is located within chromosomal region 1p36, a region frequently
deleted in a variety of human cancers [46,47]. Indeed, many studies have analyzed ARID1A
expression in a variety of human cancers and demonstrated loss of ARID1A expression
[43,48–50]. ARID1A was mutated in 46% of ovarian clear-cell carcinomas and 30% of endome-
trioid ovarian carcinomas [28,31]. Loss of ARID1A is also frequent in endometrial carcinoma
[51–53]. Interestingly, Arid1ad/dmice showed aberrant active epithelial proliferation, but did
not develop endometrial hyperplasia or cancer. Our results suggest that Arid1a loss alone is
not enough to lead to the development of endometrial cancer.

Table 1. Dysregulation of genes associated with cell cycle and DNA replication whose transcripts are
up-regulated by Arid1a ablation.

Symbol Name Fold Change

DNA pre-replicative complex licensing genes

Mcm2 Minichromosome maintenance deficient 2 2.57

Mcm3 Minichromosome maintenance deficient 3 1.98

Mcm4 Minichromosome maintenance deficient 4 1.90

Mcm5 Minichromosome maintenance deficient 5 2.52

Mcm6 Minichromosome maintenance deficient 6 2.88

Chromatin assembly and modification genes

Chaf1b Chromatin assembly factor 1, subunit B (p60) 2.17

Hells Helicase, lymphoid specific 3.91

DNA replication genes

Fen1 Flap structure specific endonuclease 1 2.12

Pcna Proliferating cell nuclear antigen 1.72

Other cell-cycle-related genes

Mad2l1 MAD2 (mitotic arrest deficient, homolog)-like 1 2.54

Myb Myeloblastosis oncogene 4.16

Tk1 Thymidine kinase 1 2.04

Ccnb1 Cyclin B1 1.67

Klf4 Kruppel-like factor 4 1.72

Klf15 Kruppel-like factor 15 -1.61

doi:10.1371/journal.pgen.1005537.t001
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Endometriosis is a common cause of infertility [54]. However, the roles of ARID1A in infer-
tility and endometrial function have not been studied. In the present study, we report that
ARID1A protein levels are significantly lower in the eutopic endometrium of women with
endometriosis compared to women without endometriosis, and mice with conditional ablation
of Arid1a in PGR positive cells (Arid1ad/d) were sterile. These results suggest a relationship
between ARID1A loss and infertility. Since PGRCre mice show Cre recombinase activity in the
pituitary, ovary, uterus and mammary glands, these mice may have infertility due to a defect of
Arid1a in any of these tissues [55]. Arid1ad/d mice had normal ovarian function indicating that
the conditional loss of Arid1a in the granulosa cells of the ovary did not influence ovarian func-
tion. Although our study does not rule out a pituitary defect, a failure of embryo attachment
and decidualization in Arid1ad/dmice suggest that the fertility defect is primarily due to a uter-
ine defect.

Receptivity in the mouse endometrium is dependent on ovarian steroid hormones. On 0.5
and 1.5 dpc, E2 promotes uterine epithelial cell proliferation and growth. On 2.5 dpc, P4 inhib-
its this epithelial proliferation, promoting receptivity, and inducing stromal cell proliferation
[56]. We observed increased proliferation in the epithelium of Arid1ad/d mice at 3.5 dpc indi-
cating enhanced epithelial E2 signaling. It is reported that enhanced epithelial E2 activity leads
to implantation failure [57,58]. We also showed that conditional ablation of Arid1a results in
elevated levels of phospho-ESR1, the active form of ESR1, and ESR1 target genes, C3, Clca3,
Muc-1, and Ltf which plays an essential role in uterine receptivity and embryo attachment

Fig 7. The confirmation of dysregulated genes by Arid1a ablation. (A) The validation of microarray
analysis by qPCR in Arid1af/f and Arid1ad/d mice at 3.5 dpc. The results represent the mean ± SEM. *,
p < 0.05, **, p < 0.01, ***, p < 0.001. (B) Immunohistochemical analysis of MCM2 and MCM6 in the uteri of
Arid1af/f (a and b) and Arid1ad/d (c and d) mice at 3.5 dpc.

doi:10.1371/journal.pgen.1005537.g007
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[59–61]. These results indicate that the attachment defect observed in Arid1ad/d mice is due to
a failure of P4 to squelch E2 signaling in luminal epithelium as indicated by altered expression
of MUC-1 and LTF which is tightly regulated at pre-implantation [62,63]. COUP-TF II medi-
ates Bmp2 expression by controlling ESR1 activity in the murine uterus [58], and its expression
is promoted by SWI/SNF in vascular endothelium [64]. Thus, we examined the expression of
COUP-TF II in Arid1ad/dmice at 3.5 dpc by immunohistochemistry. COUP-TF II immunos-
taining were not different in uterine stroma cells of Arid1ad/dmice compared to Arid1af/f mice.

Previous studies have shown that PGR has an important role in inhibiting E2 induced epithe-
lial proliferation [65,66]. A decrease of epithelial PGR is observed inArid1ad/dmice resulting in

Fig 8. ARID1A regulates epithelial proliferation via modulating KLF15 expression with PGR (A) ChIP assay performed with uterine chromatin
isolated Arid1af/f and Arid1ad/d mice at 3.5 dpc using IgG, PGR, and ARID1A antibodies followed by qPCR. The results represent the mean ± SEM. **,
p < 0.01. (B) Protein interaction between ARID1A and PGRwas examined by immunoprecipitation and transient transfection in Ishikawa cells. (C)
Immunohistochemical analysis of KLF4 and KLF15 were performed on uteri of Arid1af/f (a and b) and Arid1ad/d (c and d) mice at 3.5 dpc. (D) The
immunohistochemical histological score (H-score) of KLF4 and KLF15 proteins (n = 21 per group at secretory phase). The results represent the mean ± SEM.
*** p<0.001. (E) The level of KLF4 and KLF15 in human endometrium without (a and b) and with (c and d) endometriosis were performed by
immunohistochemical analysis.

doi:10.1371/journal.pgen.1005537.g008
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down-regulated PGR target genes, Fst, Gata2, Areg, and Lrp2 [67]. Gata2, Areg, and Lrp2 localiza-
tion is limited to the epithelium [68–70]. We examined the expression of Il13ra2 andHand2 [71]
which are known as stromal P4-target genes by RT-qPCR. These mRNA levels were not different
between Arid1af/f and Arid1ad/dmice. These data suggest that Arid1a is mainly functional in the
epithelial cells at the peri-implantation stage. However, ARID1A is expressed both in epithelium
and stroma. It will be useful to ascertain its cell type specific role using epithelium cell specific
knockout mouse models [72–74]. Stromal functions including proliferation and the expression of
Hand2 and Il13ra2 are not altered at the peri-implantation stage of Arid1ad/dmice. However, its
function in stroma cells may play an important role because the phenotypes of COUP-TFII [58]
andHand2 [71] knockout mice have a similar phenotype.

SWI/SNF complexes interact with several nuclear receptors, including glucocorticoid recep-
tors, estrogen receptors and vitamin D3 receptors, to activate transcription of specific target
genes [47,75]. Several studies have linked SWI/SNF and ARID1A to transcriptional regulation,
particularly nuclear hormone-induced transcription and expression of cell-cycle regulators
[76–78]. Our results suggest that ARID1A is pivotal to regulating transcription of PGR target
genes to prepare receptivity in the uterus. Loss of ARID1A may have many effects on SWI/SNF
complexes that lead to transcriptional dysfunction, including disruption of nucleosome sliding
activity, assembly of variant SWI/SNF complexes, targeting to specific genomic loci, and/or
recruitment of coactivator/corepressor activities. An impaired P4 response is seen in the endo-
metrium of women with infertility and endometriosis [79–81]. However, molecular mecha-
nisms of aberrant PGR function in uterine diseases remain uncertain. Although this study has
not clearly addressed why the epithelium PGR was decreased in the Arid1a knockout uterus,
our results show that ARID1A regulates PGR signaling to prepare receptivity in the uterus.
ARID1A may regulate stability of PGR proteins. However, it is also possible that PGR is a tar-
get gene of ARID1A. Further investigation is required to elucidate the exact mechanism under-
lying a possible regulatory role of ARID1A in the regulation of steroid hormone signaling.

Interestingly, this Arid1ad/d phenotype is similar toWnt7a-Cre PGRf/- mice, with epithelial-
specific ablation of PGR.Wnt7a-Cre PGRf/-mice were infertile due to defects in embryo attach-
ment, stromal cell decidualization, the inability to cease estrogen-induced epithelial cell prolif-
eration, and the lack of P4 regulated expression of its epithelial target genes [11]. Stromal-
epithelial cross talk is critical in pregnancy [11,82] and P4 achieves inhibition of E2-induced
epithelial cell proliferation by coordinating stromal-epithelial cross-talk [7,9,10]. The Stromal
functions including proliferation and the expression ofHand2 and Il13ra2 in Arid1ad/dmice
are not altered at 3.5 dpc. These results suggest that Arid1a is mainly functional in the epithelial
cells of the peri-implantation stage. An epithelium cell specific Arid1a knockout mouse model
using Wnt7a-cre or Lactoferrin-iCre mouse [72–74] will be an invaluable approach to ascertain
its cell type specific role. However, ARID1A is expressed both in epithelium and stroma. Its
function in stroma cells may play an important role because the phenotypes of Hand2 [71] and
COUP-TFII [58] knockout mice have similar phenotypes. Determining the role of Arid1a in
stromal-epithelial cross talk will be critical in understanding the role of steroid hormone signal-
ing and dysfunction associated with infertility and endometriosis.

To investigate the global impact on gene expression caused by the loss of Arid1a, we con-
ducted microarrays at the peri-implantation stage and identified over 2,500 misregulated genes
in the absence of Arid1a. Dr. Pollard’s group demonstrated that P4 blocks E2-induced DNA
synthesis through the inhibition of replication licensing including MCM proteins [83,84].
There is a significant overlap in the list of genes associated with cell cycle and DNA replication
between Dr. Pollard’s and our microarray results. In the uterine epithelium, E2 stimulates the
expression of the MCMs while P4 inhibits the transcript abundance of MCM 2 to 6 [83,85].
The immunohistochemistry results showed aberrant overexpression of MCM2 and MCM6 in
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the epithelial cells of Arid1ad/d mice at the peri-implantation stage. A similar action can be
ascribed to P4 and E2 in human endometrial epithelium as a loss of MCM proteins occurs in
the secretory phase, and therefore P4 dominated this phase of the menstrual cycle [81,86].
However, aberrant overexpression of MCM2 and MCM6 may cause abnormal epithelial prolif-
eration and early pregnancy loss. Despite the importance of this regulation in mice and
humans, the molecular basis for the P4 and E2 regulation of DNA replication licensing is not
understood. Our results demonstrate that ARID1A loss results in increased E2 sensitivity of
the uterus in the presence of P4.

Kruppel-like factors (KLF) family play important roles in cellular proliferation, survival, dif-
ferentiation, pluripotency, and epithelial-to-mesenchymal interactions [87]. The members of
the KLF family are ubiquitously expressed in the uterus and have been increasingly implicated
as critical co-regulators and integrators of steroid hormone actions [88]. The expression of
KLF9 is lower in eutopic endometrium of women with endometriosis and endometrial KLF9
deficiency promotes endometriotic lesion establishment by the coincident deregulation of
Notch-, Hedgehog-, and steroid receptor-regulated pathways [89–91]. However, the expression
of Klf9 is not altered in Arid1ad/d mice.

Klf4 and Klf15 play a critical role in uterine proliferation by modulating E2 and P4 [40,41]. E2
induces Klf4 expression and promotes DNA replication, whereas Klf15 is induced by P4 and
inhibits growth via regulation ofMcm2 [41]. Therefore, we focused on transcriptional regulation
of Klf15 as an E2 regulated transcription factor. KLF15 binds to theMCM2 promoter in a P4 and
E2 dependent fashion, which negatively regulates RNA Pol II association [41]. Klf15 expression
suppresses E2 mediatedMCM2 transcription. In vivo, Klf15 expression in the E2 exposed uterus
mimics P4 action by inhibitingMcm2 expression and epithelial cell DNA synthesis. ChIP analysis
demonstrated that ARID1A and PGR directly bind to the PRE region of Klf15 promoter. Immu-
nohistochemistry analysis showed an increase of KLF4 and a decrease of KLF15 expression in Ari-
d1ad/dmice at the peri-implantation stage. These data establish Klf15 as a downstreammediator
of the anti-proliferative action of P4 on E2-induced epithelial cell proliferation and ARID1A regu-
lates E2-induced epithelial proliferation by modulating klf15 expression with PGR.

Following embryo attachment, the uterus again changes during a process known as decidua-
lization whereby the epithelium undergoes apoptosis and the stroma proliferates and differen-
tiates into a more epitheliod cell type [66]. We demonstrated that Arid1ad/d mice exhibited a
defect of the decidual response. Bmp2 and Fkbp4 null females exhibited a defect of implanta-
tion and decidualization suggesting a critical role in decidualization [92–94]. Fst is a known
Bmp2 target [95]. The decidualization markers, Bmp2, Fst, and Fkbp5, were significantly
decreased in Arid1ad/dmice indicating that uterine specific ablation of Arid1a caused a signifi-
cant decidualization defect.

In conclusion, ARID1A has a key role in implantation and decidualization, and that
ARID1A expression is lost in endometriosis. Ablation of Arid1a affects epithelial proliferation
in part via dysregulating KLF15 expression with PGR. Aberrant proliferative conditions of the
human endometrium are common. Inappropriate proliferation of the uterus is one cause lead-
ing to endometriosis [96]. Determining the mechanism of Arid1a in uterine dysfunction asso-
ciated with infertility and endometriosis will be critical to understanding both of these
common uterine diseases for future therapy.

Materials and Methods

Ethics statement
The study has been approved by Institutional Review Committee of Michigan State University
(IRB number: 07–712; r047700), Greenville Health System (IRB number: Pro00013885 and
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Pro00000993) and University of North Carolina (IRB number: 05–1757), and written informed
consent was obtained from all participants. All protocols related to animals were overseen and
approved by the Institutional Animal Care and Use Committee at Michigan State University
(AUF number: 11/13-248-00). Animals were maintained in a designated animal care facility in
accordance with Michigan State University’s institutional guidelines.

Human endometrium samples
The human endometrial samples were collected from Michigan State University’s Center for
Women’s Health Research Female Reproductive Tract Biorepository, the Greenville Hospital
System, and the University of North Carolina. Samples were collected as previously reported
[97,98]. Briefly, to compare gene expression patterns of eutopic endometrium between those
with and without endometriosis, 28 samples were collected from proliferative, early, mid, and
late secretory phases (n = 7 per phase). For endometriosis eutopic endometrium, 28 samples
were collected from proliferative, early, mid, and late secretory phases (n = 7 per phase). Endo-
metrial biopsies were obtained at the time of surgery from regularly cycling women between
the age of 18 and 45. The presence or absence of disease was confirmed during surgery.
Women laparoscopically negative for this disease were placed into the control group, whereas
women laparoscopically positive for this disease were placed in the endometriosis group. Use
of an intrauterine device (IUD) or hormonal therapies in the 3 months preceding surgery was
exclusionary for this study. Histologic dating of endometrial samples was done based on the
criteria of Noyes [99] and confirmed by subsequent histo-pathological examination by an
experienced Fertility specialist (B.A.L.).

Isolation of human primary endometrial stromal cells (hESCs) has been previously
described [39]. hESCs were isolated from proliferative phase patients with or without endome-
triosis. Proteins were extracted using lysis buffer (150 mMNaCl, 0.125% Nonidet P-40 (vol/
vol), 2.5 mM EDTA, and 10 mM Tris-HCl (pH 7.4) included with both a phosphatase inhibitor
cocktail (Sigma Aldrich, St. Louis, MO) and a protease inhibitor cocktail (Roche, Indianapolis,
IN). Twenty μg of protein lysates were electrophoresed via SDS-PAGE and were then trans-
ferred onto polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA). Western blot
analysis was performed using anti-ARID1A (Abnova, Neihu District, Taipei City, Taiwan) and
anti-Actin (Santa Cruz) antibodies.

Animals and tissue collection
Arid1a conditional knockout mice were generated by crossing Pgrcre/+ [55] with Arid1af/f [8]
mice (Pgrcre/+Arid1af/f; Arid1ad/d). Pregnant uterine samples were obtained by mating Arid1af/f

and Arid1ad/d female mice with C57BL/6 male mice with the morning of a vaginal plug being
designated as 0.5 dpc. Mice were sacrificed at 3.5, 4.5 and 5.5 dpc and the number of implanta-
tion sites identified on 5.5 dpc. The level of progesterone and estrogen in serum were analyzed
by the University of Virginia Center for Research in Reproduction Ligand Core. Uterine tissues
were snap-frozen at the time of dissection and either stored at -80°C for RNA/protein extrac-
tion or fixed with 4% (vol/vol) paraformaldehyde for histology. For the fertility studies, adult
female Arid1af/f and Arid1ad/d female mice were placed with wild-type male mice (n = 9). The
mating cages were maintained for 6 months and the number of litters and pups born during
that period was recorded. For ovulation and fertilization test, female mice (n = 3 per genotype)
were superovulated by i.p. injection of 5 IU of PMSG (Fisher Sci.) followed 48 h later by 5 IU of
hCG (Sigma-Aldrich) and mated with wild-type male mice. The following morning (0.5dpc),
ovulated eggs were flushed from the oviducts on 1.5 dpc.
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Induction of decidualization
The hormonally induced decidual response has been previously described [100]. Briefly, Ari-
d1af/f and Arid1ad/d female mice at 6-weeks of age were ovariectomized (n = 3 per genotype).
Two weeks post ovariectomy, Arid1af/f and Arid1ad/d were subjected to the following hormonal
regimen: 100 ng of E2 per day for three days; two days rest; then, three daily injections of 1 mg
of P4 + 6.7 ng of E2. Six hours following the third P4 and E2 injection, the left uterine horn was
mechanically stimulated by scratching the full length of the anti-mesometrial side with a
burred needle. The other horn was left unstimulated as a control. Daily injections of P4 (1 mg/
mouse) + E2 (6.7 ng/mouse) were continued for five days to maximize the decidual response.
Then, mice were sacrificed on day 5. The uteri were then excised, weighed and fixed in 4%
paraformaldehyde for histological analysis.

Quantitative real-time PCR
RNA was extracted from the uterine tissues using the RNeasy total RNA isolation kit (Qiagen,
Valencia, CA, USA). mRNA expression levels of decidual marker genes (Bmp2, Fst, and
Fkbp5), Esr1 target genes (C3, Clca3,Muc-1, and Ltf) and Pgr target genes (Fst, Gata2, Areg,
Lrp2, Il13ra2, and Hand2) were measured by real-time PCR TaqMan analysis using an Applied
Biosystems StepOnePlus system according to the manufacturer's instructions (Applied Biosys-
tems, Foster City, CA, USA) and using pre-validated probes, primers, 18S RNA and Universal
Master mix reagent purchased from Applied Biosystems (Applied Biosystems). Template
cDNA was produced from 1 μg of total RNA using random hexamers and MMLV Reverse
Transcriptase (Invitrogen Corp.). All real-time PCR was done by using three independent
RNA sets. The mRNA quantities were normalized against 18S RNA using ABI rRNA control
reagents.

Immunohistochemistry
Uterine sections from paraffin-embedded tissues were cut at 5 μm and mounted on silane-
coated slides, deparaffinized, and rehydrated in a graded alcohol series before blocking with
10% normal goat serum in PBS (pH 7.5) and incubating with primary antibody diluted in 10%
normal goat serum in PBS (pH 7.5) overnight at 4°C at the following dilutions: 1:500 for anti-
ARID1A (Sc-98441, SantaCruz), 1:100 for anti-Ki67 (ab15580, Abcam), anti-ESR1 (DAKO
Corp.), 1:100 for anti-phospho-ESR1 (Ab31477, Abcam), 1:1000 for MUC-1 (ab15481,
Abcam), 1:2000 for LTF (07–682, Millipore), MA), 1:20000 for MCM2 (Sc-9839, SantaCruz),
1:20000 for MCM6 (Sc-9843, SantaCruz), 1:5000 for KLF4 (Sc-20691, SantaCruz), 1:5000 for
FLK15 (ab2647, Abcam), and 1:1000 for anti-total PGR antibody (A0098, DAKO Corp.). On
the following day, sections were washed in PBS and incubated with the appropriate species-
specific HRP-conjugated secondary antibody (2 μg/ml; Vector Laboratories) for 1 hr at room
temperature. Immunoreactivity was detected using the Vectastain Elite DAB kit (Vector Labo-
ratories). A semiquantitative grading system (H-score) was used to compare the immunohisto-
chemical staining intensities as previously described [101]. The number of PGR and
Ki67-positive cells was counted in 200 epithelial cells and eight random fields of stromal cells.

Microarray analysis
Biotinylated cRNA were prepared according to the standard Affymetrix protocol from 500ng
total RNA (Expression Analysis Technical Manual, 2001, Affymetrix). Following fragmenta-
tion, 15 ug of aRNA were hybridized for 16 hr at 45C on GeneChip Mouse Genome Array.
GeneChips were washed and stained in the Affymetrix Fluidics Station 450. GeneChips were
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scanned using the Affymetrix GeneChip Scanner 3000 7G. The data were analyzed with RMA
using Affymetrix default analysis settings and global scaling as the normalization method. The
trimmed mean target intensity of each array was arbitrarily set to 100. The normalized, and log
transformed intensity values were then analyzed using GeneSpring GX 12.6 (Agilent technolo-
gies, CA). Fold change filters included the requirement that the genes be present in at least
150% of controls for up-regulated genes and lower than 66% of controls for down-regulated
genes. Hierarchical clustering data were clustered groups that behave similarly across experi-
ments using GeneSpring GX 12.6 (Agilent technologies, CA). Clustering algorithm was Euclid-
ean distance, average linkage.

Chromatinimmunoprecipitation (ChIP)
ChIP analysis was conducted by Active Motif (Carlsbad, CA, USA) using frozen mouse uteri of
Arid1af/f and Arid1ad/d at 3.5 dpc. Uterine tissue samples (approximately 180 mg) were sub-
mersed in PBS containing protease inhibitors, cut into small pieces, and treated with fixation
solution for 15 min at room temperature. Fixation was stopped by the addition of stop solution
for 5 min. The tissue pieces were washed twice with PBS washing buffer, incubated with Chro-
matin Prep Buffer containing protease inhibitors and PMSF for 10 min on ice, homogenized
by glass homogenizer for 30 strock, and finally spun down. Chromatin was isolated from dis-
rupting the cells with a ChIP buffer containing protease inhibitors and PMSF. Lysates were
sonicated using a Sonic Dismembrator FB120 (Fisher Scientific, Pittsburgh, PA, USA) to break
chromatin into fragments with an average length of 0.5–1 kb. For each ChIP reaction, 100 μg
of chromatin was immunoprecipitated by 4 μg of antibodies against PGR (sc7208; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) and ARID1A (H00008289-M02; Abnova, Zhongli Dis-
trict, Taoyuan City 320, Taiwan). Following overnight incubation at 4°C, protein G agarose
beads were added, and incubation at 4°C continued for another 3 hours. Immune complexes
were washed five times with Wash Buffer AM1, eluted from the beads with Elution Buffer
AM4 and subjected to RNase treatment and proteinase K treatment. Crosslinks were reversed
by incubation for 30 min at 55°C and for 2 hours at 80°C. ChIP DNA was purified by DNA
purification column. Purified DNA was used for real-time qPCR. Real-time qPCR was carried
out in triplicate using SYBR Green Supermix (Bio-Rad Laboratories, Inc., Hercules, CA). The
sequences of the primers used for HRE binding region [40,102] in Klf15 gene were 5’- TAAC
CATCTGGGAAGTGGCT-3’ and 5’-GCCACTCTGGAACAGGATG-3’, and for negative con-
trol region in Klf15 gene were 5’-TCTCACTCGGGTGTGAAGCC-3’ and 5’-GTGGGAAGC
GATGCACTTTG-3’ (S5 Fig). Immunoprecipitation with normal rabbit IgG was performed as
a negative control. The resulting signals were normalized to input DNA.

Immunoprecipitation analysis
Ishikawa cells were cultured in DMEM/F12 medium (Gibco, Grand Island, NY) containing
10% fetal bovine serum (FBS; Gibco), and 1% penicillin streptomycin (Gibco) at 37°C under
5% CO2. The cells were transfected with the human PR-A and PR-B expression vectors using
Lipofectamine 2000 (Invitrogen Corp.). The transfected cells were lysed by lysis buffer (150
mMNaCl, 0.125% Nonidet P-40 (vol/vol), 2.5 mM EDTA, and 10 mM Tris-HCl (pH 7.4))
included with both a phosphatase inhibitor cocktail (Sigma Aldrich, St. Louis, MO) and a pro-
tease inhibitor cocktail (Roche, Indianapolis, IN). Protein lysates were then immunoprecipi-
tated with ARID1A antibodies (Abnova) with protein A-agarose (Pierce Biotechnology,
Rockford, IL) and incubated overnight at 4°C. Immunocomplexes were washed 5 times with 1
ml of lysis buffer and were then subjected to western blot analysis using anti-PGR antibody
(SantaCruz). The western blot analysis was performed as described previously [103].
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Statistical analysis
For data with only two groups, the Student’s t test was used. For data containing more than
two groups, one way ANOVA was used, followed by Tukey’s post hoc multiple range. All data
are presented as means ± SEM. p< 0.05 was considered statistically significant. All statistical
analyses were performed using the Instat package from GraphPad (San Diego, CA, USA).

Supporting Information
S1 Table. Arid1ad/d mice were sterile.
(PDF)

S2 Table. Arid1ad/d has normal ovulation and fertilization.
(PDF)

S3 Table. List of regulated genes by Arid1a ablation.
(PDF)

S1 Fig. The expression of ARID1A during human menstrual cycle.
(TIF)

S2 Fig. The expression of ARID1A by real-time RT-PCR and immunohistochemistry in
early pregnancy. (A) The expression level of Arid1a was measured in uteri of pseudopreg-
nancy. Total RNA used for the RT-PCR assays was prepared from pseudopregnant uteri. (B)
The localization pattern of ARID1A by immunohistochemical analysis during early pregnancy.
(TIF)

S3 Fig. Generation of uterine specific Arid1a ablation in the murine uterus. (A) Western
blot analysis of ARID1A and Actin in whole uterine of control (Arid1af/f) and Arid1ad/d mice
at 6 weeks of age. Equal amounts of protein were subjected to SDS-PAGE and Western blot
analysis. (B) Immunohistochemical analysis of ARID1A in control and Arid1ad/d mice (a and
b).
(TIF)

S4 Fig. Arid1ad/d mice has normal ovary function. (A) Ovarian histology by H&E staining
exhibited no difference between control (Arid1af/f) (a) and Arid1ad/dmice (b). (B) The serum
level of E2 and P4 were not different between control (Arid1af/f) and Arid1ad/d mice at 3.5 dpc.
The results represent the mean ± SEM.
(TIF)

S5 Fig. Map of PGR (HRE) binding site on the Klf15(A) and the conservation of human
and mouse (B).
(TIF)
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