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Abstract. S100A10, a member of the S100 protein family, 
commonly forms a heterotetrameric complex with Annexin 
A2. This is essential for the generation of cellular plasmin from 
plasminogen, which leads to a cascade of molecular events 
crucial for tumor progression. S100A10 upregulation has been 
reported in a number of cancers, suggesting that it may have 
potential as a prognostic biomarker, as well as predicting 
sensitivity to anticancer drugs. This review evaluates the 
direct and indirect relationships between S100A10 and cancer 
progression by investigating its role in cancer. Research papers 
published on PubMed and Google Scholar between 2007‑2017 
were collated and reviewed. We concluded that S100A10 
affects the development of the hallmarks of cancer as explained 
by Hanahan and Weinberg in 2011, most notably by activating 
the invasion and metastasis of cancer cells. However, further 
studies are required to explore the underlying biological 
mechanisms of S100A10.
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1. Introduction

Genomic analysis is an important tool used in the development 
of therapies against cancer. Current therapies for cancer often 
fail, which eventually leads to a high mortality rate. A study by 

Kim et al (2010) revealed that distinct subtypes of breast cancer 
exhibit different sensitivities to systemic chemotherapy (1). 
Causative gene mutations may also affect the sensitivity of 
cancer cells towards certain chemotherapeutic drugs (2), and 
so developing genomic biomarkers specific to each cancer 
subtype is essential for screening, diagnosis, predicting patient 
prognosis and selecting effective cancer treatments (2,3).

S100A10, a member of the S100 proteins family, forms a 
homodimer comprising two EF‑hand motifs; an N‑terminal 
S100‑specific EF hand and a C‑terminal canonical EF hand, 
linked by a hinge region known as the Ca2+‑binding loop (4). 
The function of the EF hand remains elusive due to limited 
knowledge regarding its structural effects on downstream 
targets, despite thorough studies of the interaction between the 
EF hand and Ca2+ (5). Genetic mutations, such as substitutions 
and deletions, have been identified in the calcium‑binding 
residues of the EF hand, which render S100A10 unable to bind 
to calcium (6). S100A10 has been reported to interact with 
numerous ion channels, such as TRPV5 and TRPV6 for Ca2+ 
and Mg2+ transport, as well as the serotonin 5‑HT1B receptor, 
which is involved in the regulation of serotonin signaling (7).  
Additionally, the expression of S100A10  in epithelial and 
stromal cells of the endometrium might promote embryo 
implantation  (8). Furthermore, S100A10 upregulation is 
involved in the progression of angiogenesis of the embryo (9). 
Based on these reports, it appears that S100A10 is involved in 
a variety of normal functions in several tissues via interactions 
with various biomolecules.

Annexin 2 (ANXA2) is the most common ligand of S100A10, 
which, along with other ligands, forms a heterotetrameric complex 
known as AIIt (A2 heterotetramer). Several studies have reported 
that the ANXA2‑S100A10 complex prevents ubiquitinylation of 
S100A10 (10,11). Allt is an essential regulator of cellular plasmin 
generation. Plasminogen circulates in the blood it its inactive 
form, and the conversion of S100A10‑bound plasminogen to 
plasmin is mediated by tissue plasminogen activator (tPA) and 
urokinase‑type plasminogen activator (uPA) (11‑13). Binding to 
Allt prevents inactivation of the plasmin, which may eventually 
contribute to cancer progression (14‑18).

2. Tumor‑promoting activities of S100A10 in cancer

It has been established that cancer cells undergo modifica-
tions that make them functionally different to normal cells. 
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These modifications result in certain characteristics, known 
as the ‘Hallmarks of Cancer’. In 2011, Hanahan and Weinberg 
reported the hallmarks of cancer as well as the enabling char-
acteristics of cancer cells, which are: i) Sustained proliferative 
signaling; ii) resistance to cell death; iii) evasion of growth 
suppressors; iv) replicative immortality; v) tumor‑promoting 
inf lammation; vi)  avoidance of immune destruction, 
vii) angiogenesis induction; viii) invasion and metastasis acti-
vation; ix) deregulation of cellular energetics and x) genome 
instability and mutations (19). In order to evaluate the role of 
S100A10 in cancer, the effects of S100A10 in the development 
of these hallmarks need to be investigated.

Sustained proliferative signaling, resistance to cell death, 
evasion of growth suppressors and replicative immortality. 
Tumor cells are considered to be persistent due to their ability 
to survive in unfavorable conditions, which is a result of the 
abovementioned modifications. This persistence be achieved 
by direct action via the release of their own growth factors, 
thus preserving autocrine signaling, or indirect action via 
interfering with the apoptotic pathway to inhibit apop-
tosis (19). The intrinsic apoptotic pathway, which involves the 
Bcl‑2 family, regulates apoptosis through the mitochondria. 
Possible mechanisms by which Bcl‑2 family proteins regulate 
apoptosis have been postulated (20), however these mecha-
nisms have yet to be definitely elucidated. It has been reported 
that Bad, a pro‑apoptotic member of the Bcl‑2 family, induces 
cytochrome C release from the mitochondria, activating 
caspase 9 which in turn leads to the activation of caspase‑3 
and the initiation of apoptosis (20). However, S100A10 has 
been reported to interact with Bad and hinder its pro‑apoptotic 
activity, suggesting that S100A10 may have anti‑apoptotic 
effects in cancer cells (21,22). This may explain reports of 
increased caspase‑3 expression following S100A10 down-
regulation in vitro (23) and in S100A10‑knockout mice (24). 
Furthermore, S100A10 downregulation suppresses cell growth 
by reducing the expression of Cyclin D1 (24), which is the 
critical downstream effector protein of epidermal growth 
factor receptor (EGFR) signaling (25). It is important to note 
that S100A10 is overexpressed in patients with mutated EGFR 
in comparison to patients with normal EGFR, suggesting a 
correlation between the two (26). Reduced growth of murine 
Lewis lung carcinoma or T241 fibrosarcoma has also been 
reported in S100A10‑deficient mice (12). In accordance with 
the in vivo evidence, the regulation of tumor cell prolifera-
tion by S100A10 has been observed in patients with a variety 
of cancers, including squamous cell carcinoma  (27) and 
colorectal cancer (28), as well as in COLO201, COLO205, 
COLO320, DLD‑1, HCT‑15, HCT‑116, HT29, LOVO, LS174T, 
SW480, SW620, SW1116 and WiDR colorectal cancer cell 
lines (22). Furthermore, reduced S100A10 expression caused 
by ANXA2 knockdown resulted in decreased tumor growth 
and proliferation in GL621 mouse glioma cells (29).

Tumor‑promoting inflammation and avoidance of immune 
destruction. Inflammation is one of the critical traits that 
contributes to tumor progression and cancer development. 
Chronic inflammation is known to increase the incidence of 
cancer, primarily by causing DNA damage and inducing the 
inflammatory response, which give rise to a pro‑tumorigenic 

microenvironment  (30,31). When tumor growth reaches a 
certain point, tumors begin to produce pro‑inflammatory 
factors, predominantly matrix metalloproteinases (MMPs), 
which induce further inflammation at the tumor site. This 
results in further recruitment of immune cells and cytokine 
production, which in turn promotes tumor progression (32). 
This recurrent positive loop of inflammation in tumorigenesis 
is integral to the rapid progression of cancer.

Tumor cells regulate inflammation via various mechanisms, 
and S100A10 has been identified to serve a pro‑inflammatory 
role. As discussed, AIIt converts plasminogen into plasmin, 
which may lead to inflammation. The amino‑terminal peptide 
is a byproduct of plasmin cleavage  (33). AIIt‑derived cell 
surface plasmin triggers the phosphorylation of PKC signaling 
molecules, which leads to ANXA2 cleavage, resulting in 
the activation of toll‑like receptor 4 (TLR‑4) and NFκB 
signaling (34). This pathway has been reported in hepatocel-
lular carcinoma, in which activation of the Akt/NFκB signaling 
pathway promoted liver carcinogenesis. AIIt disassembly 
occurs after ANXA2 phosphorylation, following which tPA 
binds to the S100A10 subunit within the carboxyl‑terminal 
lysine residue, to activate the CD11b‑dependent integrin‑linked 
kinase (ILK) pathway (13,35). Together with plasmin, ILK can 
induce nuclear translocation of NFκB, which promotes the 
production of pro‑inflammatory factors, including IL‑1, IL‑6 
and TNFα (13,33,36). Although AIIt‑dependent macrophage 
activation may occur via the MAPK and NFκB pathways, 
TLR‑4 knockdown inhibits AIIt‑driven cytokine produc-
tion (16); this suggests that TLR‑4 serves an important role 
in AIIt‑mediated inflammation. TLR‑4 activation induces 
tumor‑associated IL‑6 expression in bladder cancer through 
p38 and Erk signaling (37), which is activated by JAK1/TYK2 
and STAT3 stimulation. Inhibiting JAK, p38, and NFκB 
results in a significant reduction in IL‑6 and TNF‑α expres-
sion, suggesting that this pathway is important for releasing 
plasmin‑dependent cytokines (38).

TLR‑4 activation triggers AIIt to recruit and activate 
macrophages  (16) via extravasation and migration within 
extravascular tumor tissues. The effects of S100A10 in cellular 
migration and invasion may significantly contribute to the 
recruitment of immune cells at the tumor inflammation site by 
inducing fibrinolysis. It has been hypothesized that S100A10 
expression in macrophages induces the production of plasmin 
by cell surface plasminogen receptors, which allows for the 
migration of macrophages by facilitating the proteolysis of 
basement membrane and extracellular matrices (21). S100A10 
has also been observed to have a direct effect in macrophage 
infiltration in vivo; S100A10‑/‑ mice exhibited a significant 
reduction in macrophage recruitment compared with wild 
type mice (39). In addition, S100A10 indirectly stimulates the 
release of MCP‑1 under hypoxic conditions (40), which might 
aid in the recruitment of monocytes in the tumor microenvi-
ronment via chemotaxis (33).

Prolonged inflammation at the tumor site suppresses the 
anti‑tumoral activities of immune cells due to the secretion 
of tumor‑promoting cytokines, including IL‑1, IL‑6 and 
TNF‑α (41). The release of these cytokines and prostaglandin 
E2 (PGE2) stimulates the infiltration of myeloid derived 
suppressor cells (MDSCs) into the tumor microenviron-
ment  (42). Infiltrating MDSCs elicit immunosuppressive 
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effects via a number of mechanisms, such as inducing anergy 
in NK cells via membrane‑bound TGF‑β, STAT‑5 activity 
and ARG‑1. Furthermore, it can suppress the cytotoxicity of 
NK cells by inhibiting interferon‑γ (IFN‑γ) production (43) 
and downregulating NKG2D, as is observed in glioma (44). 
TGF‑β also been reported to induce the activation of induced 
Treg (iTreg) cells by MDSC (45). Moreover, together with 
IL‑6, TGF‑β is able to stimulate Th17 and enhance the 
pro‑tumoral effects of MDSC (41). The binding of TNF‑α 
to its receptor on CD11b+Gr1+ myeloid cells results in TGF‑β 
release, which in turn suppresses the anti‑tumoral activity 
of CD8+ T cells  (46), intensifying immunosuppression in 
the tumor microenvironment. S100A10's ability to release 
these pro‑inflammatory cytokines indirectly facilitates 
immune‑escape mechanisms by mitigating T cell cytotoxicity 
and evading immunosurveillance (36).

Angiogenesis induction. Due to its altered metabolism, the 
tumor microenvironment is hypoxic. This triggers the release 
of hypoxia inducible factor‑1α (HIF‑1α), which stimulates 
oxygen delivery to the hypoxic site by promoting angiogen-
esis by regulating pro‑angiogenic genes, including vascular 
endothelial growth factor (VEGF), platelet‑derived growth 
factor (PDGF) and monocyte chemoattractant protein 1 
(MCP‑1) (40,47). This results in increases in vascular perme-
ability, endothelial cell proliferation and sprouting, creating a 
vast tumor vasculature (47). However, tumor vessels typically 
function poorly due to their irregular and leaky structure (48). 
Inadequate tumor vessels leads to the stabilization of HIF‑1α, 
which further promotes angiogenesis to generate a posi-
tive feedback loop (47). The feedback loop is exacerbated 
by HIF‑1α‑induced ANXA2 transcription, which occurs 
via binding to the hormone response element of ANXA2 
gene (18,49). ANXA2 upregulation leads to the stabilization 
of S100A10 (10,18). Together, the heterotetrameric complex 
of ANXA2 and S100A10 enhances the generation of plasmin, 
which is able to activate a number of MMPs (50,51). Both 
plasmin and MMPs further promote angiogenesis via the 
extracellular matrix (ECM) ‑associated pro‑angiogenic 
growth factors (36,52‑54).

Studies have reported the significance of ANXA2 and 
S100A10 in the initiation and progression of angiogenesis. 
ANXA2‑deficient mice exhibited decreased angiogenic 
activity (55,56). This disturbance in angiogenic activity may 
occur due to the impaired plasmin‑MMP axis of angiogenesis. 
Inhibition of heterotetramer formation via competitive binding 
results in a substantial reduction in vascular branching (57). 
It can therefore be inferred that the ANXA2‑S100A10 
complex plays a pivotal role in the initiation and progression 
of angiogenesis.

Cell‑cell interactions are mediated by interactions between 
cancer cells and opposing endothelial cells via Annexin 2 
and S100A10. This has been observed in breast cancer, where 
interactions between Annexin 2 and S100A10 resulted in the 
generation of activated plasmin, promoting ECM proteolysis 
and initiating the release of ECM‑sequestered VEGF via 
MMP‑9 activation (13,58,59).

Activation of invasion and metastasis. Cancer malignancy 
is determined by its metastasis and invasion potential. This 

hallmark of cancer relies on the ability of cancer cells to 
modify ECM and induce epithelial to mesenchymal transition 
(EMT) (19). In order to invade and metastasize, cancer cells 
must cross the basement membrane. ECM is promoted by 
proteases, such as plasmin and MMPs (60). Plasmin proteo-
lytic activity allows for the degradation of fibronectin and 
laminin within the basement membrane, simultaneously initi-
ating a proteolytic cascade via the activation of proteases such 
as MMPs (61), which helps to remodel the ECM. An essential 
process in MMP regulation is the conversion of zymogen into 
active proteolytic enzyme, which is mediated by plasmin (62). 
S100A10 directly effects MMP regulation to influence plasmin 
generation. Following the binding of plasminogen to AIIt, the 
uPA‑mediated generation and activation of plasmin upregu-
lates MMP‑1 via the Erk1/2, p38, cyclooxygenase‑2 and PGE2 
pathways (51). Specifically, extracellular AIIt allows cancer 
cells to utilize plasmin, cathepsin B and MMPs to degrade 
cellular adhesion factors (21). Plasmin‑dependent ECM prote-
olysis activates uPA, which binds to the uPA receptor (uPAR) 
to cleave and activate plasmin  (21,63). Activated plasmin 
subsequently activates pro‑uPA, generating a positive feed-
back loop once again (21).

The positive feedback loop is intensified by pathways regu-
lated by oncogenic Ras. It has been reported that oncogenic 
HRas upregulates MMP‑2 and MMP‑9 via increasing the 
expression of uPAR, suggesting that invasion and metastasis 
may be Ras‑dependent. Although oncogenic Ras is a key 
regulator of plasmin generation, S100A10 knockdown results 
in a significant reduction in Ras‑dependent plasmin genera-
tion (64). This verifies the existence of a positive feedback loop 
between S100A10, plasmin generation and oncogenic Ras. 
S100A10 overexpression has been reported to induce invasion 
and metastasis in lung adenocarcinoma and is correlated with 
higher TNM stages (65), thyroid neoplasms (66) and acute 
promyelocytic leukemia (APL) (36). S100A10 overexpression 
is observed in the breast cancer cell line MDA‑MB‑435 (67) 
and colorectal cancer (28). S100A10 downregulation, on the 
other hand, reduces plasmin generation, which leads to a loss 
of invasiveness of cancer cells (67).

S100A10 is an independent prognostic biomarker for serous 
ovarian cancer. A previous study reported that high S100A10 
mRNA levels and S100A10 cytoplasmic positivity was corre-
lated with decreased overall patient survival and a 2‑fold 
increase in ovarian cancer mortality (68). In APL patients, 
S100A10 overexpression and activation promotes the migra-
tion of cancerous leukemic cells as well as hyperfibrinolysis, 
often causing excessive bleeding  (13). One study reported 
that the AIlt overexpression resulted in forced expression of 
leukemia/retinoic acid receptor a (PML/RARα) fusion protein, 
which led to a 27.6% increase in cell invasiveness, whereas 
antibodies inhibiting Allt reduced invasion and migration (36). 
It has been reported that the invasion of CCL‑222 colorectal 
cells via ECM degradation was significantly reduced by 
a loss of S100A10  (69). S100A10 knockdown in HT‑1080 
cells results in the depletion of metastatic lung foci, whereas 
S100A10 upregulation increases the metastatic potential of 
these cells (61).

DLC‑1, a Rho GTPase‑activating protein, is a ligand that 
competitively binds wit S100A10 at the ANXA2 binding site. 
The coupling of S100A10 and DCL‑1 prevents ANXA2 from 
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inhibiting the ubiquitin‑dependent degradation of S100A10, 
resulting in a decrease in S100A10 and, consequently, reduced  
migration and invasion in non‑small‑cell lung cancer lines (A549 
and H1395) (70). This confirms that plasmin generation and plas-
minogen‑dependent cell invasion occurs due to the surface protein 
loss of S100A10, not ANXA2. However, ANXA2 expression has 
been reported to be an independent predictor of metastasis in 
clear‑cell renal cell carcinoma. It was demonstrated that the 5‑year 
metastasis‑free rate is significantly lower in ANXA2‑negative 
tumors compared with ANXA2‑positive tumors (71). As ANXA2 
expression is proportional to S100A10 expression (10,18,29), and 
S100A10 is highly expressed in renal cancer (72), it could be that 
renal cancer metastasis is initiated by the interaction between 
S100A10 and ANXA2. This has also been suggested in pancre-
atic (73) and gastric cancers (38,74,75). S100A10 expression is 
increased in advanced pancreatic tumors compared with benign 
pancreatic tumors (15) and, furthermore, is correlated with the 
proportion of lymph node metastases and the depth of gastric 
cancer (38). However, the exact mechanism of S100A10 in cancer 
invasiveness requires further investigation. ANXA2 has been 
found to have an invasion‑promoting role in in pancreatic ductal 
adenocarcinoma, which is achieved via the initiation of hedgehog 
signaling, inducing the binding of tenascin C to ANXA2 (76).

Deregulating cellular energetics. One of the factors that 
allow cancer cells to survive in unfavorable conditions is their 
ability to alter metabolic processes (19). Altered metabolism in 
cancer cells occurs via upregulation of glucose transporter 1 
(GLUT1), which results in an elevated glucose intake to support 
energy production (77‑79). A direct role of S100A10 in altering 
cellular metabolism has not yet been identified; however, the 
aforementioned metabolism dysregulation is highly associ-
ated with oncogenic Ras and HIF‑1α (77,78), suggesting an 
indirect effect of S100A10. As discussed above, S100A10 
influences oncogenic Ras expression and HIF‑1α stabilization, 
resulting in KRas mutations that cause GLUT1 upregulation 
and consequently increased glucose uptake (80). As well as 
S100A10‑mediated HIF‑1α stabilization, Ras activation also 
induces HIF‑1α translation via the Ras/Raf/Mek/Erk kinase 
signaling cascade (81). HIF‑1α then binds to hypoxia‑response 
elements in the promoter region of the GLUT1 gene to increase 
GLUT1 expression (80).

In ovarian cancer, S100A10 has eight potential binding 
motifs for c‑Myc transcriptional factor (82), which play an 
important role in the regulation of glycolysis via targeting 
the lactate dehydrogenase A (LDHA)  (83). Overexpression 
and stabilization of c‑Myc by S100A10 amplifies glycolysis, 
resulting in a persistent increase in the availability of nutrients 
necessary for cancer cell proliferation. There is a clear correla-
tion between S100A10 expression and altered metabolism in 
tumor cells. However, further studies are required in order 
to explore the potential mechanisms by which S100A10 may 
directly affect tumor cellular energetics.

Genome instability and mutation. The hallmarks and 
characteristics of cancer develop via genetic or epigenetic 
modifications. Simply put, these modifications allow tumor 
cells to gain abilities that are beneficial for their growth. The 
underlying mechanism by which tumor cells obtain these 
characteristics is via mutations in caretaker genes. However, 

tumorigenesis may also be initiated by epigenetic changes 
that result in a downregulation of tumor suppressor genes (19). 
The location of the S100A10 gene is susceptible to epigenetic 
changes that may contribute to cancer development. These 
changes may affect the regulation of S100A10 expression, 
which corresponds to tumor malignancies (84).

No direct correlation between S100A10 and genomic 
changes has been identified. Nonetheless, its interaction with 
ANXA2 is associated with increased susceptibility to human 
papilloma virus (HPV) infection (85‑87), in which integration 
of the viral genome into the host causes the degradation of p53 
and Rb (88,89).

3. Conclusion and future studies

S100A10 is a novel gene that may have potential as a biomarker 
and treatment target due to its persistent overexpression in a 
variety of tumor cells, as well as its contribution to several key 
hallmarks of cancer. Recently, S100A10 expression has been 
recognized as a potential malignancy biomarker in colorectal 
cancer (28), renal cell carcinoma (72), non‑small cell lung 
carcinoma (90) and gallbladder cancer (91).

It is thought that S100A10 might play role in cellular 
differentiation and cell cycle progression, making it a potent 
prognostic biomarker and a potential predictive marker of 
sensitivity to chemotherapeutic drugs. Oxaliplatin‑based 
chemotherapy, which hinders the growth and proliferation of 
advanced cancer by activating certain apoptotic pathways, has 
been reported to be less effective in colorectal cancer with 
forced expression of S100A10 (47). Forced S100A10 expres-
sion significantly increases the 50% inhibitory concentration 
(IC50) of oxaliplatin (22). This suggests that S100A10 expres-
sion may be used to predict resistance to chemotherapeutic 
agents.

S100A10s is often expressed together with ANXA2, whose 
role in cancer has been well studied, as a heterotetramer 
complex localized in the intracellular cytoplasm and extracel-
lular membrane of various cancer cells (13,16,49). Despite the 
observed correlation between S100A10 expression and cancer 
development, little is known with regard to the underlying 
biological mechanisms.

In summary, this review demonstrates that S100A10 inter-
acts with a variety of proteins in different pathways to promote 
cancer development (Fig. 1). One of the persistent roles of 
S100A10 that contributes to the hallmarks of cancer is plasmin 
generation, which significantly remodels the ECM (13,61); this 
ECM modulation occurs in invasion, metastasis, inflammation, 
evasion of immune destruction, and angiogenesis. Furthermore, 
S100A10 appears to serve a greater role in the activation of 
invasion and metastasis compared with the other hallmarks 
of cancer (Table I). These findings may provide a basis for the 
development of effective treatment regimes for advanced cancer.
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Table I. Association between S100A10 expression and the hallmarks of cancer in different cancer types.

	 Hallmarks of cancer
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
		  Immune escape and			   Cellular	 Genome
Types of	 Apoptosis and	 tumor‑promoting		  Invasion and	 energetics	 instability
cancer	 proliferation	 inflammation	 Angiogenesis	 metastasis	 deregulation	 and mutationa

Breast			   �	 �
Colorectal	 �			   �
Gastric				    �
Glioma	 �	 �
Leukemia				    �
Liver		  �
Lung	 �			   �
Ovarian				    �	 �
Pancreas				    �
Renal				    �
SCC	 �
Thyroid				    �

SCC, squamous cell carcinoma. aThere is no direct evidence that S100A10 protein is correlated with genomic modifications.

Figure 1. Cancer progression pathways involving S100A10. AIIt, Annexin A2 and S100A10 heterotetrameric complex; ANXA2, Annexin A2; CD8, CD8+ T 
cells; Cyt C, Cytochrome C; c‑Myc; HIF‑1α, Hypoxia inducible factor‑1α; IL‑1, interleukin 1; IL‑6, Interleukin 6; ILK, integrin‑linked kinase; M2, type 2 
macrophages; LDHA, lactate dehydrogenase A; MCP‑1, monocyte chemoattractant protein 1; MDSC, myeloid‑derived suppressor cells; MMPs, matrix metal-
loproteinases; NFκB, nuclear factor κB; NK, natural killer cells; Onc. Ras, oncogenic Ras; P, phosphate; PDGF, platelet derived growth factor; PKC, protein 
kinase C; Th17, T helper 17 cells; TLR4, toll‑like receptor 4; TNF‑α, tumor necrosis factor α; tPA, tissue plasminogen activator; VEGF, vascular endothelial 
growth factor.
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