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Abstract: Cardiovascular disease has become one of the main diseases threatening human life and
health. This disease is very common and troublesome, and the existing medical resources are
scarce, so it is necessary to use a computer-aided automatic diagnosis to overcome these limitations.
A computer-aided diagnostic system can automatically diagnose through an electrocardiogram
(ECG) signal. This paper proposes a novel deep-learning method for ECG classification based
on adversarial domain adaptation, which solves the problem of insufficient-labeled training
samples, improves the phenomenon of different data distribution caused by individual differences,
and enhances the classification accuracy of cross-domain ECG signals with different data distributions.
The proposed method includes three modules: multi-scale feature extraction F, domain discrimination
D, and classification C. The module F, constitutive of three different parallel convolution blocks,
is constructed to increase the breadth of features extracted from this module. The module D is
composed of three convolutional blocks and a fully connected layer, which is to solve the problem
of low model layers and low-feature abstraction. In the module C, the time features and the
deep-learning extraction features are concatenated on the fully connected layer to enhance feature
diversity. The effectiveness of the proposed method is verified by experiments, and the classification
accuracy of the experimental electrical signals reaches 92.3%.

Keywords: ECG classification; deep learning; multi-scale; time features; adversarial domain adaptation

1. Introduction

Cardiovascular disease has become one of the main diseases threatening human life and health [1].
Clinically, cardiovascular disease is often accompanied by arrhythmia. Serious arrhythmia can lead to
sudden death or heart failure [2]. Therefore, timely and accurate detection of arrhythmia is urgent and
necessary. Electrocardiogram (ECG), as a physiological signal that characterizes the condition of the
heart, is of great significance for the detection and diagnosis of arrhythmia. Moreover, high-precision
automatic diagnosis is crucial to the prevention and auxiliary diagnosis and treatment of cardiovascular
diseases. The clinical significance of heartbeat classification is that, when a complete ECG signal of
a patient is not available and there are only multiple single heartbeats or a small part of the ECG
signals, the results of the heartbeat classification will be used to judge the current patient’s heart
condition. When an abnormal heartbeat occurs, it is selected as an important heartbeat signal to
provide a diagnostic basis for the doctor.
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Currently, automatic classification technology mainly includes two categories, namely methods
based on computer signal processing technology and methods based on deep learning. The first
type of automatic ECG analysis method consists of frequency analysis, decision trees, k-nearest
neighbors, support vector machines, artificial neural networks (ANNs), etc. [3–7]. For example,
Martis et al. [8] performed an independent component analysis (ICA) on normal, atrial fibrillation,
and atrial flutter ECG signals. Compared with the k-nearest neighbor classifier, its classification
effect was significantly improved. Acharya et al. [9] proposed a computer-aided diagnosis (CAD)
system for the automatic diagnosis of severe arrhythmia, mainly detecting and identifying four
kinds of electrocardiogram (normal (N), Atrial Fibrillation(A-Fib), Atrial Flutter(AFL), and ventricular
fibrillation(V-Fib)). They extracted entropy features from the ECG signal. After feature selection and
extraction, 14 important features were classified through a decision tree. Ye et al. [10] used morphological
and dynamic feature methods, which made the detection accuracy reach 86.4%. Shi et al. [11] proposed
a hierarchical classification method based on weighted extreme gradient boosting (XGBoost). A large
number of features from six categories were extracted from the preprocessed heartbeats. Then,
recursive feature elimination was used for selecting features. Afterwards, a hierarchical classifier was
constructed in the classification stage. The hierarchical classifier was composed of a threshold and
XGBoost classifiers. The final classification accuracy rate reached 92.1%. Although the above traditional
classification methods achieved good results, the process of extracting key features from ECG signals
and then constructing medical-specific ECG feature vectors is complicated and time-consuming.
Secondly, the effect of classification is highly related to the selection of features, which is easily affected
by subjective factors, and this method usually shows overfitting [12]. Therefore, they are unreliable
in practice, and it is difficult to achieve the expected accuracy and operating efficiency. In contrast,
deep-learning methods show more advantages than traditional methods. They can minimize the
signal processing and feature extraction process and achieve better classification performance and
generalization ability. With the development of deep learning in the computer field, a large number of
researchers apply it to the automatic detection and classification of ECG signals. Acharya et al. [12]
designed a nine-layer convolutional neural network to realize the automatic diagnosis of arrhythmia
and used wavelet transform to reduce the noise. Yildirim et al. [13] used a long short-term memory
neural network (LSTM) to identify and classify the ECG. Chu J and Wang Hd et al. [14] first proposed a
two-dimensional-convolutional neural network (CNN) for multi-lead ECG signals to extract cross-lead
ECG features. The improved multi-lead LSTM network is more convenient than extracting the
LSTM features of each lead separately. Features extracted by CNN and LSTM are integrated with
traditional features, and binary particle swarm optimization algorithm (BPSO) is used to distinguish
and select the features. Finally, a weighted support vector machine is selected as the classifier.
Mathews et al. [15] used restricted Boltzmann machines (RBM) and deep belief networks (DBN) to
detect supraventricular (S) and ventricular (V) abnormal heartbeats. The sensitivity of the S category
was as high as 88.39%. Sellami et al. [16] adopted Resnet to automatically classify ECG signals and
proposed a batch-weighted loss to deal with the problem of data imbalance, thus eliminating the
complex process of data augmentation. Each input data contained two beats for the model to learn the
relevant features better. The overall classification accuracy reached 89%. Wang et al. [17] presented
an improved convolutional neural network (CNN) model for accurate classification. The experiment
demonstrated that this proposed method had high performance for arrhythmia detection; the accuracy
was 99.06%. Golrizkhatami et al. [18] proposed a novel system that exploited multi-stage features from
a trained convolutional neural network (CNN) and precisely combined these features with a selection
of handcrafted features.

With the development of wearable technology, the acquisition of ECG data is more convenient
and efficient. However, due to the high cost of data labeling, many labels are incomplete, and sufficient
training data cannot be obtained. There also exist differences in ECG data distribution for individual
differences and different data collection sources and methods. The domain adaptive method in transfer
learning has advantages in dealing with less labeled data and differences in data distribution. Therefore,
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the idea of transfer learning is introduced into the classification of ECG signals. With a focus on
automatic classification technology based on transfer learning, this paper uses a large number of
labeled samples as the source domain data and a small number of unlabeled samples as the target
domain data, which improves the interdomain transfer through domain adaptation. Multi-scale
feature extractors are helpful to better learn the complex features of signals and improve the model
classification performance.

The three main contributions of this paper are listed as follows:

(1) A new ECG signal classification method based on adversarial domain adaptive learning
is proposed to solve the problem of insufficient labeled training samples and improve the
phenomenon of different data distribution caused by individual differences.

(2) Each component of this method, the F, D, and C modules, is optimized, respectively, to improve
the feature diversity and feature abstraction.

(3) Six crucial time features are proposed and concatenated with deep-learning features to increase
the richness of the features.

The present paper is organized as follows: Section 2 outlines the ECG dataset and two types of
division schemes. Then, input data preprocessing is introduced. The proposed deep-learning structure
and training process is described in Section 3. The experiment, evaluation method, and results are
presented in Section 4. Finally, Section 5 concludes this paper.

2. Materials and Data Preprocessing

Figure 1 shows the flowchart of the ECG signal classification task. First, the signal in the ECG
record is preprocessed to generate input data, and then, it is passed into the adversarial domain
adaptive model for training. The automatically extracted features of the model and the manually
extracted time features are fused and input into the classifier to obtain the final classification result.

Figure 1. Flowchart of the proposed system. ECG: electrocardiogram. DA: domain adaptation

2.1. ECG Dataset

The ECG signals used in this study were derived from the Massachusetts Institute of
Technology-Beth Israel Hospital (MIT-BIH) arrhythmia database. All records contain the original
ECG signals, which are marked by two or more cardiologists [2]. These heartbeats are divided
into 15 different types, as shown in Table 1. According to the American National Standards
Institute/Association for the Advancement of Medical Instrumentation (ANSI/AAMI EC57:2012) [19],
the above 15 types of arrhythmia can be divided into five categories in Figure 2, namely: normal
heartbeat (N), supraventricular ectopic heartbeat (S), ventricular ectopic heartbeat (V), fusion heartbeat
(F), and unknown heartbeat (Q). In the MIT-BIH database, since the normal QRS complex of modified
limb lead II (ML II) is usually prominent, this experiment only uses 44 recorded MLII leads to classify
the ECG.
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Table 1. A summary table of electrocardiogram (ECG) beats categorized as per the American National
Standards Institute/Association for the Advancement of Medical Instrumentation (ANSI/AAMI EC57:
2012) standard. Normal heartbeat (N), supraventricular ectopic heartbeat (S), ventricular ectopic
heartbeat (V), fusion heartbeat (F), and unknown heartbeat (Q).

N S V F Q

Normal Atrial premature
Premature
ventricular
contraction

Fusion of
ventricular
and normal

Paced

Left bundle
branch block

Aberrant atrial
premature Ventricular escape Fusion of paced

and normal
Right bundle
branch block

Nodal (junctional)
premature Unclassifiable

Atrial escape Supra-ventricular
premature

Nodal (junctional)
escape

Figure 2. Five types of heartbeat instance diagrams that meet the Association for the Advancement of
Medical Instrumentation (AAMI) standards.

The current mainstream dataset division schemes are mainly divided into two types, namely the
intrapatient paradigm [20–22] and interpatient paradigm [23–25]. In order to make the experimental
results more authentic and persuasive, the dataset used in this experiment was divided into an
interpatient paradigm. The records 102, 104, 107, and 217 were removed [26,27], since they did not
contain stimulated beats from the sinus node of the heart. These 44 records were divided into two
groups: DS1 and DS2. The ECG record numbers contained in DS1 were 101, 106, 108, 109, 112, 114,
115, 116, 118, 119, 122, 124,201, 203, 205, 207, 108, 109, 215, 220, 223, and 230; the ECG record numbers
contained in DS2 were 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212,213, 214, 219, 221, 222,
228, 231, 232, 233, and 234. Table 2 summarizes the dataset evaluation paradigm in this experiment.
Since the Q-type data is very small and cannot be used as a basis for judging the classification results,
it was removed, and only four types of data: N, S, V, and F were used.



Healthcare 2020, 8, 437 5 of 16

Table 2. Interpatient evaluation paradigm of the MIT-BIH arrhythmia database. MIT-BIH: Massachusetts
Institute of Technology-Beth Israel Hospital.

Datasets Number of Heartbeats Total

N S V F

DS1 45824 943 3787 414 50,968
DS2 44213 1836 3219 388 49,656
Total 90,037 2779 7006 802 100,624

2.2. Data Preprocessing

The original data needs to be preprocessed before being passed into the model for training.
This stage mainly includes the following steps, as shown in Figure 3 below. In the heartbeat segmentation
stage, because the average interval among the adjacent R peaks of different individuals is different,
the method of using a fixed number of data points to divide the heartbeat will miss some important
signal characteristics of the heartbeat. Therefore, the method of heartbeat segmentation and heartbeat
unification proposed below is adopted to solve this problem.

Figure 3. The process of input data generation.

(1) Data denoising: Use the band pass filter F_{band} with a cutoff frequency of (0.5,40) and the
discrete wavelet transform (DWT) with a basis function of db6 to eliminate the influence of
electrode artifact noise (EMG), muscle artifact noise (MA) and baseline wander noise (BW) on the
ECG signal.

(2) Heartbeat segmentation: First, read the R peak position provided in the heartbeat label. Suppose

Ri is the position of the ith heartbeat R peak. The start position of the heartbeat is
⌊

1
2 (Ri−1 + Ri)

⌋
,

and the end position of the heartbeat is
⌊

1
2 (Ri + Ri+1)

⌋
, where bnc represents rounding down to n.

Then, the current number of heartbeat sampling points is Hi =
⌊

1
2 (Ri + Ri+1)

⌋
−

⌊
1
2 (Ri−1 + Ri)

⌋
+ 1.

(3) Heartbeat alignment: After the heartbeats are divided, the number of sampling points Hi for each
heartbeat becomes different. In order to pass into the deep-learning model, the heartbeats must
be aligned. Suppose the number of sampling points after unification is D; if Hi is less than D,
then fill with zero to D, and if Hi is greater than D, then crop to D [28], and the heartbeat after
final processing is H f . In the experiment of this paper, D is 411.



Healthcare 2020, 8, 437 6 of 16

(4) Data standardization: The aligned heartbeats H f are standardized by the formula H f =
H f−µ

σ for
the Z-score to eliminate offset and amplitude scaling problems in the signal.

(5) Extraction of time features: Manually extract six time features, including the previous RR intervals
of the current heartbeats, the post-RR intervals, the local RR intervals lasting 10s, the average RR

intervals of the entire record, and using the formula PRR−PRR
max(PRR)−min(PRR)

, to generate the normalized
previous RR and normalized post-RR after normalization operation.

(6) Data augmentation: In order to overcome the problem of imbalance in the number of samples in
the different categories, the SMOTE algorithm is used to generate different categories of data to
balance the dataset.

3. Methodology

3.1. Model Architecture

Suppose the model is suitable for input samples x∈X and some labels y∈Y and further suppose
there are two distributions S (x; y) and T (x; y)—namely, the source domain distribution and the target
domain distribution. Both distributions are assumed to be complex and unknown and, furthermore,
similar but different. Our goal is to predict the label y from the input x of the target distribution.
During the training process, we can access a large number of training samples from the source domain
distribution and a small number of target domain distributions {X1, X2, X3, . . .XN}. We define di as
the domain label of the ith data sample to indicate whether Xi comes from the source domain or the
target domain. If it comes from the source domain, di = 0; if it comes from the target domain, di = 1.
The implementation principle of the proposed adversarial domain adaptive model is as follows.

Define an improved adversarial domain adaptive model to predict the corresponding label y∈Y
of each input x and their domain label d∈{0,1}. The adversarial domain adaptive model is shown in
Figure 4. The constructed adversarial domain adaptive model includes three modules: multi-scale
feature extraction F, domain discrimination D, and classification C.

Figure 4. The structure of the adversarial domain adaptation model.

3.1.1. Multi-Scale Feature Extraction F

To get sufficient features, the F module is improved, and the original single feature extraction
structure composed of a single set of convolution blocks is expanded to multiple feature extraction
structures composed of three sets of parallel convolution blocks with different convolution kernels.
Effectively increase the breadth and richness of the features. Each feature extraction structure consists
of two convolutional blocks, and each convolutional block contains a Conv layer, a dropout layer,
a Rectified Linear Unit (ReLU) activation function layer, and a Maxpool layer. We transfer the input
data H f generated in Section 2.2 into the model to extract three features and then concatenate them as
features f —namely, f = [Fs1; Fs2; Fs3]. The specific structure is shown in Figure 5, where k represents
the size of the convolution kernel. Table 3 summarizes the architecture of the F Block and output of
each layer.
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Figure 5. The structure of the feature extractor block. ReLU: Rectified Linear Unit.

Table 3. A summary table of the multi-scale feature extractor (F) block. ReLU: Rectified Linear Unit.

Block Layers Output Size

Input (preprocessed ECG signal) 411 × 1

L1 block


Conv_3_16, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_16, stride = 2

 204 × 16

L1 block


Conv_5_32, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_32, stride = 2

 100 × 32

L2 block


Conv_5_16, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_16, stride = 2

 203 × 16

L2 block


Conv_8_32, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_32, stride = 2

 98 × 32

L3 block


Conv_8_16, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_16, stride = 2

 202 × 16

L3 block


Conv_10_32, stride = 1

Dropout, 0.2
ReLU

Maxpool_2_32, stride = 2

 96 × 32

Concatenate 9408 × 1

The convolutional layer and Maxpool layer are represented as Conv_(kernel size)_(kernel number) and
Maxpool_(kernel size)_(kernel number).

3.1.2. Domain Discrimination D

Aiming at the problem that the number of original model layers is small and the abstraction of
features is low, the D module is optimized, and the original two fully connected layers are expanded
into three convolutional blocks and one fully connected layer. The specific structure is shown in Figure 6.
The three convolution blocks are as follows: the first convolution block includes: a convolutional layer
with a kernel of 3, a ReLU activation layer, and a Maxpool layer. The second and third convolutional
blocks have the same structures and are composed of a convolutional layer with a kernel of 3, a ReLU
activation layer, a Maxpool layer, and a batch normalization layer. We transferred the features extracted
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by the F module from the source domain and target domain data to the domain discrimination module
D, and we could discriminate the extracted feature source d ∈ {0,1}. Table 4 summarizes the architecture
of the D Block and output of each layer.

Figure 6. The structure of the domain discriminator block. ReLU: Rectified Linear Unit. FC: fully connect.

Table 4. A summary table of the domain discriminator (D) block. FC: fully connect

Block Layers Output Size

Input (the output of the F model) 9408 × 1

Conv block 2

 Conv_8_6, stride = 1
ReLU

Maxpool_2_6, stride = 2

 4691 × 6

Conv block 3


Conv_10_6, stride = 1

ReLU
Maxpool_2_6, stride = 2

BatchNorm

 2336 × 6

Conv Block 3


Conv_10_6, stride = 1

ReLU
Maxpool_2_6, stride = 2

BatchNorm

 1159 × 6

FC layer (3474,100) 100 × 1

Sigmoid 2

The convolutional layer and Maxpool layer are represented as Conv_(kernel size)_(kernel number) and
Maxpool_(kernel size)_(kernel number).

3.1.3. Classification C

In order to improve the dimensions and richness of the features, the C module is optimized. Before
the Softmax layer, the features extracted from the fully connected layer in the source domain data are
spliced with the six time features extracted in Section 2.2 as the final feature input to the classifier,
which combines time features and deep-learning extraction features, which increases the diversity of
the features. The specific structure is shown in Figure 7. Table 5 summarizes the architecture of the C
Block and output of each layer.

Figure 7. The structure of a classification block. ReLU: Rectified Linear Unit. The convolutional
layer and Maxpool layer are represented as Conv_(kernel size)_(kernel number) and Maxpool_(kernel
size_(kernel number).
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Table 5. A summary table of the C block.

Block Layers Output Size

Input (the output of the F model) 9408 × 1

FC block


FC(9408, 100)
Dropout, 0.2
BatchNorm

ReLU

 100 × 1

FC block


FC(100, 10)
Dropout, 0.2
BatchNorm

ReLU

 10 × 1

Add(10,6) 16 × 1

Softmax 4

The convolutional layer and Maxpool layer are represented as Conv_(kernel size)_(kernel number) and
Maxpool_(kernel size)_(kernel number).

3.2. Training Process{
(xs

i , ys
i )
}ns

i=1
is defined as a labeled instance sample in the source domain Ds, and

{
xt

j

}nt

j=1
refers

to an unlabeled instance sample in the target domain Dt. F(•) and C(•) are corresponding feature
extractors and classifiers. In the learning phase, the goal is to learn a feature extractor F and task
classifier C to minimize the expected target loss, align the data distribution of the source domain
with the data distribution of the target domain, and reduce the differences among the domains.
Among them, the network mappings corresponding to the three modules of F, D, and C are G f , Gd,
and Gc, respectively. The joint loss function E(ω f ,ωc,ωd) is introduced, as shown in Equation (1).

E(ω f ,ωc,ωd) =
∑

i = 1..N
di = 0

Lc(Gc(G f (Xi;ω f );ωc), yi) −λ
∑

i=1..N
Ld(Gd(G f (Xi;ω f );ωd), yi)

=
∑

i = 1..N
di = 0

Li
c(ω f ;ωc) − λ

∑
i=1..N

Li
d(ω f ;ωd)

(1)

The loss function mainly includes two parts—namely, the classification loss Lc(•, •) and the
domain discrimination loss Ld(•, •). Li

c and Li
d represent the corresponding loss function calculated

in the ith training sample. The Lc choose a focal loss instead of using traditional cross-entropy loss.
ω f ,ωc,ωd are the parameters of the multi-scale feature extraction module, the parameters of the
classification module, and the parameters of the domain discrimination module. λ represents the
weight between the two learning objectives. di = 0 indicates that the ith sample is a source domain
sample. The training process is shown in Formulas (2) and (3).

(
_
ω f ,

_
ωc) = argmin

ω f ,ωc
E(ω f ,ωc,

_
ωd) (2)

(
_
ωd) =argmax

ωd
E(
_
ω f ,

_
ωc,ωd) (3)

The specific training steps are listed as follows:

(1) The first step is to keep the parameters of the domain discrimination module ωd unchanged and
calculated by Formula (2) to maximize the loss of the domain discrimination module to update the
parameters of the multi-scale feature extraction moduleω f to obtain the domain-invariant features.
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In this way, the invariant features can be fully obtained, which can summarize the source domain
data and target domain data at the same time. Minimize the loss of the classification module to
update the parameters of the classification module ωc to obtain a classifier that accurately predicts
the label.

_
ω f ,

_
ωc,and

_
ωd are the parameter values of the saddle point ω f , ωc, and ωd, respectively.

(2) The second step is to fix the parameters ω f and ωc, and keep them unchanged. Use Formula (3)
to minimize the loss of the domain discrimination module and update the parameters of the
domain discrimination module ωd to obtain a strong discriminator that can distinguish the source
of the feature.

(3) The third step is to repeat the operation of the first step, the parameters of the fixed
domain discrimination module ωd are unchanged, and the feature extraction module and
the classification module are trained through Equation (2). Use this training process and update
the parameters alternately.

(4) In the end, the network maintains a dynamic balance. After reaching the preset number of
iterations, the optimal value is obtained, and the optimal model is saved. Input the new heartbeat
sample into the saved optimal model to obtain the final classification result. The training process
is shown in Figure 8.

Figure 8. The training process of the adversarial domain adaptation model. Lc: classifier loss. Ld:
discriminator loss. ∂L

∂ω : derivative.

4. Results and Discussion

4.1. Experimental Setting

Based on the MIT-BIH database, experiments were carried out to verify the effectiveness of the
proposed method. In terms of data division, all heartbeat samples in DS1 were defined as source
domain data, and the heartbeat samples in the first five min of each record in DS2 were regarded
as target domain data. The training data included the source domain data and its label and target
domain data, and the test data was the entire DS2 data. After training, the optimal model was
saved, and all the heartbeat samples of DS2 were transferred to the saved optimal model for testing.
In the training process, the grid search method was used to select the optimal parameters from the
mass parameters. The entire model was trained using Stochastic Gradient Descent (SGD) optimizer
with default parameters and the learning rate of 0.001 at the beginning. Dropout, as a widely used
regularization method, was beneficial to the model’s generalizability and was set as 0.2. λ was set to
0.2 to balance the weight of the two classifier parameter updates. The batch size of the training was set
to 128 for better updating model parameters.
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The experiment was trained on a server equipped with Tesla V100-SXM2 GPU. The dynamic memory
of the computer was 32480MiB and the Ubuntu 16.04 operating system. The network was implemented
through the Pytorch Advanced Neural Network Application Programming Interface (API).

4.2. Performance Metrics

As a multi-class classification problem, it is different from binary classification. For a category,
TP represents the number of heartbeats that are correctly detected, TN represents the number of
heartbeats that are not detected correctly, FP contains the number of heartbeats of other categories
that were classified as this category, and FN contains the number of heartbeats of this category that
were classified as other categories. Under AAMI’s classification standards, the ratio of Q data is very
small (less than 1%). The classification performance of this class has a negligible impact on the overall
performance. At the same time, the proportion of S, V, and F classes is much higher (about 10%).
These three categories contain most of the arrhythmia. Therefore, we focused on the classification
accuracy of the four categories N, S, V, and F.

Following the guidelines provided by the AAMI, three performance indicators were calculated—
namely, accuracy (Acc), sensitivity (Sen), and positive predictive value (PPV), as below:

Acc =
TP + TN

TP + TN + FP + FN
(4)

Sen =
TP

TP + FN
(5)

PPV =
TP

TP + FP
(6)

4.3. Experiments Results and Discussion

This section is divided into three parts to illustrate the effectiveness and efficiency of the proposed
adversarial domain adaptive network. The first part is the algorithm validity experiment. The second
part is a comparison of the different models experiment, which verifies the efficiency of the proposed
algorithm by changing the feature extraction module and adding time features. The third is a comparison
of other paper methods experiment. By comparing with different algorithms, the effectiveness of the
proposed algorithm is further validated.

4.3.1. Experiment 1: Algorithm Validity

The algorithm validity experiment of the paper was proposed. The results of this method were as
follows: Figure 9 shows the changes in the loss curve and accuracy curve during the model training
and testing process. It can be seen from the figure that the loss of the test set had the same trend as
the training set. At the same time, the accuracy of the train set and the test set gradually increased
towards the expected direction. There was no sharp decline in the accuracy of the test set, indicating
that there was no overfitting. The confusion matrix of the proposed algorithm is shown in Figure 10.
It can be seen from the figure that, in order to improve the classification accuracy of the S and V
heartbeats, the accuracy of the N heartbeats was sacrificed. Among the N heartbeats, 501 heartbeats
were mistakenly classified as S and 1979 heartbeats as Class V. The main reason is the waveform
characteristics of some signals.



Healthcare 2020, 8, 437 12 of 16

Figure 9. Training/test accuracy and loss curves.
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Figure 10. Confusion matrix. Normal heartbeat (N), supraventricular ectopic heartbeat (S), 

ventricular ectopic heartbeat (V), and fusion heartbeat (F). 

 

 
 

Figure 10. Confusion matrix. Normal heartbeat (N), supraventricular ectopic heartbeat (S), ventricular
ectopic heartbeat (V), and fusion heartbeat (F).

Class N are similar to those of Class S and V, but the overall, the classification effect is still within
an acceptable range. The overall accuracy of the program is 92.3%. For the four categories of N, S,
V, and F, the positive predictive value of the system is 97.4%, 73.2%, 57.8%, and 44.9%, respectively.
The sensitivities of the four categories are 94.0%, 76.6%, 85.2%, and 38.4%, respectively. Due to the
small amount of data in Class F, insufficient training in this category cannot be avoided even using
the data augmentation method, so the classification accuracy is slightly lower. Fortunately, the PPV
value of class F is relatively high, indicating that not as many other classes are misclassified into Class
F. Specific evaluation indicators are shown in Table 6.

Table 6. The results of the proposed method. Accuracy (Acc), sensitivity (Sen), and positive predictive
value (PPV).

Type Sen (%) PPV (%) Acc (%)

N 94.0 97.4 91.8
S 76.6 73.2 98.0
V 85.2 57.8 93.5
F 38.4 44.9 99.0

Average 73.6 68.3 95.5

4.3.2. Experiment 2: Comparison of Different Models

In order to verify the influence of the multi-scale feature extractor and the addition of time features
on the experimental results, the following three models are used for comparison experiments:

(1) Single-scale Model A. Among them, Model A uses three convolutional layers, three pooling
layers, and two fully connected layers to build. The kernel size of the convolutional layer is 3.
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(2) Model A+RR. The six time features proposed in Section 2.2 are added to the last fully connected
layer of Model A, and the stitched overall features are input into the Softmax classifier
for classification.

(3) The model proposed in the paper. During the experiment, with the use of the same input data,
the comparison of the classification results is shown in Table 7 below.

Table 7. The results on the proposed method compared with the single-scale method. RR: six time features.

Model Acc N (Sen, PPV) S (Sen, PPV) V (Sen, PPV) F (Sen, PPV)

Model A 89.0 90.1, 97.6 63.5, 35.7 90.4, 54.6 20.6, 28.4
Model A+RR 91.3 92.5, 97.8 81.9, 59.1 88.8, 56.1 23.7, 43.8

Proposed 92.3 93.9, 97.4 76.6, 73.2 85.1, 57.8 38.4, 44.9

It can be seen from the table that the first group uses a single-scale Model A compared with the
second group with added time features. The second group of models has higher training accuracy.
The reason is that the time features are manually obtained based on professional knowledge; the time
features are similar to adding expert knowledge to the classifier, so that the accuracy of the classification
is effectively improved. Since the waveform characteristics of many signals in class S are similar to
those of class N, the biggest difference lies in the disappearance of P waves and the change of RR
intervals compared with class N. That is to say, the addition of time features plays a key role in the
discrimination of class S heartbeats, and the accuracy of the S class is significantly improved.

Comparing the second group of single-scale models with the third group of multi-scale models,
it can be seen that the multi-scale feature extraction module can effectively improve the classification
accuracy. This is because the complex network structure can extract the overall characteristics of the
signal more comprehensively rather than partial characteristics, and it can also extract more detailed
features that are easily overlooked. Table 7 shows that the overall accuracy of the training results
is 92.3%, and the positive predictive values of the four types of heartbeats are significantly higher
than the second group. Although the recall rates of the S and V categories in the second group of
single-scale models are slightly higher, many heartbeats in the N category are classified into the S
category, resulting in a significantly lower positive predictive value of the S category, and the overall
classification accuracy rate is also declined due to the decreasing accuracy of the N category.

In summary, the classification performance of the multi-scale adversarial domain adaptive model
proposed in this paper is better than the other two models.

4.3.3. Experiment 3: Comparison of Other Paper Methods

Table 8 lists the classification results obtained by other papers under the interpatient evaluation
scheme. It can be seen that the results obtained by using the proposed model (method) are significantly
better than the method proposed by Chazal [23], except for the slightly lower positive predictive values
of the N and V types. The method proposed in this paper takes the signal of one lead as the input,
and there is no complicated feature extraction process. The difference with that of Chazal is that he
uses many domain-specific features extracted from the two-lead ECG signal to construct the classifier.
The extracted features are used as the input of the statistical classifier model of each lead signal, and a
third classifier is built to integrate the outputs of the first two classifiers. Therefore, their method is
computationally expensive and time-consuming; it is not suitable for real-time heartbeat classification
on one-lead ECG monitoring equipment.



Healthcare 2020, 8, 437 14 of 16

Table 8. Comparison of the results between the proposed method and previous works. Normal
heartbeat (N), supraventricular ectopic heartbeat (S), ventricular ectopic heartbeat (V), and fusion
heartbeat (F).

Method Year Acc
(%) N S V F

Sen
(%)

PPV
(%)

Sen
(%)

PPV
(%)

Sen
(%)

PPV
(%)

Sen
(%)

PPV
(%)

Chazal 2004 85.8 86.8 99.1 75.9 38.5 77.7 81.9 68.2 26.5
Ye 2012 86.4 88.6 97.5 60.8 52.3 81.5 63.1 19.5 2.5

Mathews 2018 74.81 73.89 99.66 88.39 33.63 77.24 69.20 73.7 4.67
Sellami 2019 88.34 88.51 98.80 82.04 30.44 92.05 72.13 89.4 8.6

Shi 2019 92.1 92.1 99.5 91.7 46.2 95.1 88.1 61.6 15.2
Proposed - 92.3 93.9 97.4 76.6 73.2 85.1 57.8 38.4 44.9

Compared with Ye et al. [10], the method proposed in this paper does not require a complicated
process of manually extracting features, and the overall accuracy and various classification situations
are significantly better than Ye’s method.

In Mathews et al. [14], compared with the results of the method proposed in this article, although
the sensitivity of the S and F categories are significantly improved, the classification accuracies of the
N and V categories are reduced, especially the N category, which only reaches 73.89%. The overall
accuracy also reduced to 74.81% due to the decline of the N category. Therefore, the method proposed
in this paper showed obvious advantages in the classification accuracy of the N class, V class, and the
overall classification accuracy.

In Sellami et al. [16], although the accuracy of Class S, V, and F were higher than that of this paper,
the accuracy of class N was significantly lower. In this dataset, N type accounted for 89%, indicating
that a large part of the data was misclassified. Compared with the method proposed in paper [16],
the classification accuracy of Class N was significantly higher than that of Class A (88.51%), while the
classification accuracy of Class S and Class V was slightly lower but also within the acceptable range,
and the PPV value of class S and F reached 73.2% and 44.9%, respectively, which were significantly
higher than [16] (30.44% and 8.6%).

In Shi [11], compared with the proposed paper, the S, V, and F class classification accuracy was a
certain advantage, as opposed to the overall accuracy, and the N class accuracy was slightly less at the
same time. Meanwhile, this paper needed to manually extract six categories, 168 signal characteristics,
and needed two hierarchical weighted XGBoost classifiers to classify. This undoubtedly increased the
complexity and time-consuming characteristics of the method.

5. Conclusions

Aiming at the problems of less-labeled training data, different data distributions caused by
individual differences and single-feature extraction, a new multi-scale heartbeat classification model
based on adversarial domain adaptation was proposed. Each component of this method, the F, D,
and C modules, was optimized, respectively. The F module was optimized to extract ECG features of
multiple scales from convolution blocks composed of different convolution kernels. The D module
was optimized to three convolutional blocks and a fully connected layer, and the C module was
enhanced by the time feature and the amplitude feature confusion. The proposed method was effective.
The adversarial domain adaptive learning method was used to solve the problem of insufficiently
labeled training samples and improve the phenomenon of different data distribution caused by
individual differences. The design of the multi-scale feature extractor in module F and the fusion of
the time feature and automatic feature in module C can improve the richness and diversity of the
extracted data features. Through experiments, the effectiveness of the improved adversarial domain
adaptive learning classification model is verified.
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Since the classification accuracy of the F class needs to be improved, the primary work in the
future is to further optimize the classification effect of the F class. Secondly, we will focus on adaptive
learning between different datasets and adaptive learning between different leads.
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