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In order for brain-computer interface (BCI) systems to maximize functionality, users will
need to be able to accurately modulate grasp force to avoid dropping heavy objects
while also being able to handle fragile items. We present a case-study consisting of
two experiments designed to identify whether intracortical recordings from the motor
cortex of a person with tetraplegia could predict intended grasp force. In the first task,
we were able classify neural responses to attempted grasps of four objects, each of
which required similar grasp kinematics but different implicit grasp force targets, with
69% accuracy. In the second task, the subject attempted to move a virtual robotic arm
in space to grasp a simple virtual object. For each trial, the subject was asked to grasp
the virtual object with the force appropriate for one of the four objects from the first
experiment, with the goal of measuring an implicit representation of grasp force. While
the subject knew the grasp force during all phases of the trial, accurate classification
was only achieved during active grasping, not while the hand moved to, transported,
or released the object. In both tasks, misclassifications were most often to the object
with an adjacent force requirement. In addition to the implications for understanding
the representation of grasp force in motor cortex, these results are a first step toward
creating intelligent algorithms to help BCI users grasp and manipulate a variety of objects
that will be encountered in daily life.

Clinical Trial Identifier: NCT01894802 https://clinicaltrials.gov/ct2/show/NCT018
94802.

Keywords: brain-computer interface, neuroprosthetics, motor cortex, intracortical, grasp force

INTRODUCTION

Brain-computer interfaces (BCI) have shown promise as assistive devices to restore a level of
independence to people with tetraplegia (Collinger et al., 2012, 2013; Hochberg et al., 2012;
Wodlinger et al., 2014; Blabe et al., 2015; Ajiboye et al., 2017). However, one significant limitation
of the work to date is that control is limited to the kinematic domain where only the position or
speed of the arm and hand are controlled (Collinger et al., 2012; Hochberg et al., 2012; Wodlinger
et al., 2014). To achieve independence, users will need to modulate grasp force to maintain stable
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grasp postures and to handle objects that vary in weight,
compliance, or fragility. Additionally, with the recent
demonstration that intracortical microstimulation in
somatosensory cortex can convey graded tactile percepts
from many different locations on the hand (Flesher et al., 2016),
it is now possible to provide feedback about grasp force through
the BCI.

There is evidence from rats (Khorasani et al., 2016),
non-human primates (Maier et al., 1993; Hepp-Reymond
et al., 1999; Hendrix et al., 2009), and human subjects (Flint
et al., 2014; Murphy et al., 2016) that grasp force-related
information can be recorded from primary motor cortex
(M1). Here we explore the representation of implicit grasp
force from extracellular recordings in M1 of a single BCI
user with tetraplegia, who is physically unable to generate
overt grasping movements. We evaluate whether the visual
presentation of objects of varying compliance and weight can
elicit discriminable patterns of activity. We also investigate
whether grasp force-related information is present during a
multi-phase object transport task where no visual feedback
about object identity is provided. During attempted grasping
movements, M1 recordings clearly discriminated between
objects with different force requirements, though this
information was not present during reaching and object
transport.

MATERIALS AND METHODS

This study was conducted under an Investigational Device
Exemption from the U.S. Food and Drug Administration for
this clinical trial (NCT01894802). The study was approved
by the Institutional Review Boards at the University of
Pittsburgh and the Space and Naval Warfare System Center
Pacific. All procedures were conducted in accordance
with the policies and guidelines associated with these
approvals.

Subject
A 28 year-old male with C5 motor/C6 sensory ASIA B spinal cord
injury provided written informed consent prior to participation.
He had two 4 × 4 mm, 88-channel microelectrode arrays
(Blackrock Microsystems, Salt Lake City, UT, United States)
implanted in the hand and arm area of M1 in the left hemisphere
(Locations shown in Figure 1C of Flesher et al., 2016). He also had
two microelectrode arrays implanted into somatosensory cortex
for stimulation that were not used in this experiment (Flesher
et al., 2016).

Neural Recording
Extracellular potentials were hardware filtered between
0.3–7500 Hz and sampled at 30,000 Hz, then digitally high-
pass filtered at 750 Hz with a first order Butterworth filter. At
the beginning of each test session the spike threshold was set to
−4.5 times the root-mean-square voltage on each channel. The
number of threshold crossings on each channel were binned in
20 ms increments.

Attempted Grasp vs. Object Observation
The subject was asked to watch a television screen where images
of four different objects were presented: a large marshmallow, a
tomato, an orange, and a can of soup (Figure 1A). These objects
were chosen in consultation with the subject to have varying
levels of compliance and weight, which resulted in evenly spaced
perceived levels of grasp force required to lift them. These objects
were chosen, as opposed to explicitly named force levels, because
previous work has shown that implicit force targets lead to more
consistent grasp force exertion in able-bodied subjects (Thumser
et al., 2018). The objects were approximately the same size, and
the subject was instructed to attempt a 5-finger power grasp for
all objects, even though his hand was paralyzed, in an attempt to
keep grasp kinematics consistent. For all trials, the target object
was shown for 4 s, followed by 4 s of rest during which a fixation
cross was displayed before the next trial started (Figure 1B).
During attempted grasp trials, an audio cue was played 1.5 s after
the object appeared to instruct the subject to attempt to grasp
the object with the amount of force necessary to lift the object
without crushing it. This strategy of attempting a movement even

FIGURE 1 | Experimental design. (A) Images of the four objects selected to
represent different levels of required grasp force. (B) Task presentation and
timing of the attempted grasp and object observation trials. (C) Object
transport trial example. For this task, the name of one of the four objects was
played at the start of the trial and the subject was then asked to attempt to
use the virtual arm to grasp and transport the virtual object with the
appropriate amount of force. Five position targets were used including a
center target and four others approximately 20 cm above, below, left, and
right of center.
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when no overt movement is generated is commonly used for
BCI calibration (Taylor et al., 2002; Velliste et al., 2008; Collinger
et al., 2012). During object observation trials, the subject was
instructed to simply observe the objects without attempting to
grasp. Across three test sessions (332, 372, and 378 days post-
implant), 132 trials (33 per object) of both attempted grasp and
object observation conditions were collected.

Object Transport Task
To study implicit grasp force representation in the context
of whole arm movement, we adapted a virtual reality task
(Wodlinger et al., 2014) where the arm moved in a two-
dimensional (2D) vertical plane with a single grasp dimension
(flexion or extension of all fingers). The task consisted of a
sequence of reaching to, grasping, transporting, and releasing
a virtual object. The arm was moved automatically while the
subject attempted to make the movements, as occurs during BCI
calibration (Collinger et al., 2012; Wodlinger et al., 2014). At
the start of each trial, one of the four objects (Figure 1A) was
spoken as a computer-generated audio cue. Next, a red ellipsoid
appeared at a target position (Figure 1C). Once the hand reached
the ellipsoid (reach phase), an audio cue prompted the subject
to attempt to grasp the object (grasp phase). The instructions
to the subject were to attempt a 5-finger power grasp of the
virtual object with the amount of force appropriate to hold the
spoken object without letting it slip, even though his hand was
paralyzed. A green plane then appeared and the subject attempted
to move the ellipsoid to that location (transport phase). Finally,
an audio cue instructed the subject to release the ellipsoid (release
phase). The subject completed two sessions (374 and 576 days
post-implant) of 99 trials each for a total of 198 trials.

Classification of Object-Related Grasp
Force
To determine whether implicit grasp force was represented in M1
during attempted grasp and object observation, we performed
naïve Bayes classification (Bishop et al., 2014; Perge et al., 2014)
on 1 s of neural data starting 2 s after the start of the trial
(Figure 1B). Thresholded channels with average firing rates
higher than 2.5 Hz were used for classification; on average
125 channels were used for classification from each session.
For attempted grasp and observation trials, the 1 s window
started 2 s after the object was presented (0.5 s after the
grasp cue in grasp trials). This time period was selected based
on a preliminary analysis showing chance-level classification
prior to attempted grasp, with classification accuracy increasing
during the 500 ms after the grasp cue. For cross-validation,
we left out one random trial from each class (i.e., object
type) during classifier training and then tested the classifier on
the left-out trials, repeating until all trials had been left out.
This process was repeated five times for each session to get
multiple combinations of left-out trials. We estimated the 95%
confidence intervals of chance level classification by shuffling
the object labels and repeating the classification process 500
times.

We performed the same classification on neural data from the
grasp and transport phases of the object transport task. We used
157 channels for classification in session 1 and 131 channels in
session 2. For the grasp phase, the last 1 s of data were used for
classification. For the transport phase, we selected 1 s of active
reaching, which ended 500 ms before the end of the phase.

We further examined how classification accuracy evolved over
the duration of object transport trials using a sliding window of
neural data. Since the reach and transport phases were different
lengths across trials, data were aligned to the grasp and release
cues. A 500 ms trailing window with 100 ms step sizes was
used to classify grasp force level for 1.6 s before and 0.8 s after
the grasp and release cues. Confidence intervals on chance level
performance were estimated for each classification window using
shuffled object labels as described above.

RESULTS

Object Observation vs. Attempted Grasp
The subject, who was unable to move his own hand voluntarily,
was asked to attempt to grasp visually presented objects
(marshmallow, tomato, orange, or can of soup) with an
appropriate amount of force to lift them. We could predict
with 69% accuracy which object he was attempting to grasp
using 1 s of neural data starting 500 ms after the grasp cue.
This was significantly better than the chance rate of 25 ± 9%
(95% confidence interval). Additionally, 97% of misclassified
trials were predicted to be an object with an adjacent implicit
grasp force level (95% confidence bounds on chance: 51 ± 10%,
Figure 2A). When the subject simply observed the objects, but
did not attempt to grasp, classification accuracy was 29%, which
was no better than chance (95% confidence bounds on chance:
25 ± 9%).

Object Transport Task
We also examined whether grasp force information could
be classified in a more complex task where the subject
attempted reaching to, grasping, and transporting an object
with an appropriate amount of force. During the grasp
phase, object type could be predicted with 51% accuracy and
73% of misclassifications fell within one force level of the
target (Figure 2B). However, classification accuracy during the
transport phase was only 25%, which was no better than chance.
During transport, only 56% of misclassifications were within one
force level of the target.

A sliding window classifier revealed the time course
of classification accuracy. This analysis used 500 ms of
neural data as compared to 1 s for the classification results
presented above. During the reach phase, object identity could
only be classified at chance level (26%). However, over the
course of the grasp phase, classification accuracy improved
from 34% at grasp phase onset to 47% 800 ms into the
grasp phase (95% confidence bounds on chance: 25 ± 7%,
Figure 2C). During the transport phase, classification accuracy
returned to chance level (27%). The subject confirmed that he
continued to attempt to grasp the object with the appropriate
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FIGURE 2 | Classification of object identity for objects of various compliances and grasp force requirements. (A) Confusion matrices showing classification accuracy
for each object from the attempted grasp vs. object observation task. Each row shows the percentage of times the corresponding object was predicted to be each
of the four possible objects (numbers may not add to 100 due to rounding). On the left, classification of the presented object is accurate (69% success) when the
subject is attempting to grasp it. Errors are typically to adjacent objects in terms of compliance and required grasp force. On the right, classification of the presented
object when the subject simply observes the object is within chance and classification errors are randomly distributed. (B) Confusion matrices showing classification
accuracy from the grasp and transport phases of the object transport task. On the left, classification is accurate (50% success) during the grasp phase with errors
typically to an adjacent object in terms of required grasp force. On the right, classification during the transport phase is near chance and classification errors are
randomly distributed. (C) Classification accuracy computed for the object transport task, shown as the blue line aligned to the cue to grasp (left) and release (right).
The red dotted lines bound the 95% confidence interval on chance performance. Classification is above chance during the grasp phase, but is generally within
chance level for the other phases of movement.
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force during the transport phase. Finally, during the release
phase, average classification accuracy remained at chance level
(23%).

DISCUSSION

Here we show that implicit grasp force is represented in M1
during attempted grasp, but not during observation, of objects
of varying compliance, weight and texture. Importantly, implicit
force was not well-represented in M1 during periods where
the force was maintained, such as transport, or when the
object was released. While previous studies identified grasp force
information in EEG signals (Rearick et al., 2001; Murguialday
et al., 2007; Paek et al., 2015; Wang et al., 2017) and intracortical
field potentials of motor-intact subjects (Flint et al., 2014; Murphy
et al., 2016), here we show that this information is present in
multi-unit recordings of a subject with tetraplegia. To identify
information about implicit grasp force in a subject who could not
generate grasp forces, we asked him to attempt to grasp objects
that he was familiar with grasping before his injury. Our result
that M1 contains implicit information about grasp force aligns
well with data from able-bodied subjects showing that the use
of everyday objects as implicit grasp force cues led to a more
consistent separation of executed grasp forces during the initial
dynamic phase of the grasp as compared to trying to match a
visual force target (Thumser et al., 2018).

We observed that implicit grasp force was not well-
represented in M1 during object transport, which is consistent
with a prior report that grasp force encoding is context dependent
(Hepp-Reymond et al., 1999). However, it is inconsistent
with reports that more neurons were modulated during static
grasp force exertion than during the initial application of
grasp force (Mason et al., 2002). One possibly important
difference between the Mason et al. (2002) study and ours
is that their work did not include object transport while
grasping, which could change the context of the coding in
M1. Another difference is that Mason et al. (2002) used
single electrode recordings in multiple sites of a large window
spanning M1 and dorsal premotor cortex compared to our
microelectrode array recordings from a smaller, fixed location.
This difference could have resulted in Mason et al. (2002)
recording from a more heterogenous population of neurons,
including corticomotor neurons that make monosynaptic
connections to the motoneurons innervating the muscles in the
hand and forearm (Rathelot and Strick, 2009). Identifying the
cause of this change in coding between movement phases will
require additional experiments.

Our study design required the participant to attempt to grasp
familiar objects in order to elicit an implicit representation of
grasp force even though no overt movement was performed due
to his paralysis. The subject was instructed to use consistent
grasp kinematics to pick up the objects without deforming
them, however, there was no way to measure his attempted
kinematics because he could not move his own hand. Because
the movements were performed covertly, there are limitations
to the interpretation of the results. We were unable to measure

the impact that differences in the visualized kinematics or object
properties, such as texture or compliance, had on the neural
activity. The objects were chosen to be equally spaced within
the subject’s reported implicit force range. During attempted
grasping of these objects, nearly all classification errors were
to an object that was directly adjacent to the target object on
the implicit force spectrum. This is despite the fact that the
two cylindrical objects that were most similar in shape (large
marshmallow and can of soup) were at opposite ends of the force
spectrum. Previous work by Schaffelhofer et al. (2015) showed
that cylindrical objects of differing sizes, like our marshmallow
and can of soup, were more likely to be confused with each
other by a classifier using recordings from M1 than with spheres,
like our tomato and orange, of any size when primates planned
and executed movements to a large variety of different sized and
shaped objects. The systematic classification prediction error in
our results suggests that implicit grasp force is represented in M1
in an intuitive way.

The familiar objects used in this study differ in terms of visual
appearance and expected sensory consequences (e.g., texture
and compliance). If the visual and sensory properties of the
objects were the primary driver of neural activity, we would
have expected misclassification errors to be more randomly
distributed. The decision to use familiar objects was motivated by
previous work in able-bodied subjects that found that grasp forces
were applied more consistently when presented with familiar
objects as compared to being instructed to hit explicit force
targets on a single object (Thumser et al., 2018). It is also
important to note that M1 activity was modulated during the
grasp phase of the object transport task, even though the object
being grasped remained visually the same for all trials (i.e., a red
ellipsoid). This provides additional evidence that planning for
slight differences in grasp kinematics or finger placement is not
a primary driver of classification accuracy.

We leveraged the implicit neural representation of grasp force
for familiar objects to identify grasp force information in M1.
The classification accuracies reported here, while above chance,
will need to improve to provide reliable BCI control and give
the user continuous control over grasp force. Additionally, the
BCI will need information about grasp kinematics or state (e.g.,
open/close). Further work is necessary to optimally extract this
information and determine whether this representation of grasp
force generalizes well to other objects. Based on this work, we
believe that decoders will need to include intelligent algorithms
that can recognize when grasp force information is available
in M1 and then exert that force through the prosthesis at the
appropriate times during object manipulation. Similarly, for
BCIs that aim to restore native limb movement through muscle
stimulation, one could modulate stimulation intensity based on
intended grasp force (Bouton et al., 2016; Ajiboye et al., 2017).
Since this study was conducted while the subject was at rest
with only visual feedback of the task, it will also be important to
determine if feedback provided through restored somatosensory
pathways changes the internal representation of grasp force
(Flesher et al., 2016).

We have presented evidence, in a case-study, that attempted
grasping of familiar objects elicits patterns of activity in M1 that
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are informative about implicit grasp force representations. Force-
related activity was most robust during periods of active grasping
and not during periods of static force application.
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