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Abstract: In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic
vector is developed, which can greatly improve the matching probability and positioning precision,
even when the geomagnetic entropy information in the matching region is small or the geomagnetic
contour line’s variety is obscure. The vector iterative closest contour point (VICCP) algorithm that
is proposed here has better adaptability with the positioning error characteristics of the inertial
navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine
transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on
Bayesian statistical analysis is introduced into VICCP to improve matching performance further.
Simulations based on the actual geomagnetic reference map have been performed for the validation
of the proposed algorithm.

Keywords: geomagnetic matching; inertial navigation system; iterative closest contour point;
Bayesian theory

1. Introduction

Geomagnetic matching is a key aiding navigation technology that can rectify the indication trace
of the Inertial Navigation System (INS) by comparing the geomagnetic profile acquired on board
with the stored geomagnetic map, which is an ideal autonomous navigation candidate for long range
Unmanned Aerial Vehicle (UAV) application due to its merits such as the all-weather, whole-day
working consistentency [1,2].

There is a kind of scalar matching method often used [3–11], which minimizes the square of the
differences between the norms of magnetometer outputs and the magnitude of stored geomagnetic
reference field in correcting the indication trace. Those methods convert the matching problem into
a state estimation problem by using datasets collected in the candidate matching region, most of
which are not feasible for long time and long range application because the selection of matching
region along the expected trace with high adaptability is difficult, and the estimated algorithm might
diverge because of insignificant geomagnetic characteristics [3]. At present, there are three types of
scalar geomagnetic matching algorithms: the Extended Kalman Filter (EKF) based algorithm [4–6],
the Correlation Matching (CM) algorithm [7–9] and intelligent algorithm [10]. The conventional EKF
and CM based algorithm usually lead to the local optimum solutions, depending on the geomagnetic
entropy in the matching region and the matching probability and positioning precision will reduce a
lot. The intelligent algorithm generally needs a large number of sample data sets for training, which
will result in an inconsistent solution with the small matching region. Recent work in [11] developed a
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particle filter algorithm based the measurement of static H-field that can only be applied to ground
vehicles due to the long time preparation of local magnetic field maps. Due to the development of
a low cost, light weight three-axis magnetoresistive magnetometer and flux-gate magnetometer, the
onboard measurement accuracy of the geomagnetic vector field has been improved to the order of
nanotesla in recent years [12,13]. Therefore, a vector geomagnetic matching method that utilizes the
multidimensional geomagnetic element is developed, which aims at obtaining relatively stable and
precise positioning performance with geomagnetic terrain uncertainty.

This paper presents a significant improvement upon previous methods which is based on the
geomagnetic field vector measurement. The affine transformation, which is often used in machine
vision, is adopted to ICCP for the first time to deal with the scale error of INS. The error models of
geomagnetic field vector measurement and INS combined effect of all linear time-invariant distortions
will firstly be described. Then, the vector matching algorithm, namely Vector Iterative Closest Contour
Point (VICCP), is adopted to estimate the trace with an accuracy and robustness solution. Finally,
we will present the simulation results for the validation of the proposed algorithms.

2. The Error Model of Geomagnetic Vector Matching System

2.1. Geomagnetic Field Vector Measurement Error

The error model of geomagnetic field vector measurement combines the effect of all linear
time-invariant distortions, which can be described as follows [14]:

hM “ Ce
s pCOCS pDSIhE `DHIq ` bSq ` nS (1)

where hEp3ˆ 1q is the error-free geomagnetic field in the sensor frame, and whereas hMp3ˆ 1q is the
readings from the triad of magnetometer in the earth frame. The triangular matrix COp3ˆ 3q stands
for the nonorthogonality of three-axis magnetometer. The diagonal matrix CSp3ˆ 3q is scale factor and
bsp3ˆ 1q is the zero offset of the magnetometer. DHIp3ˆ 1q and DSIp3ˆ 3q stand for the hard magnetic
iron and soft magnetic iron interference respectively. Ce

sp3ˆ 3q is external attitude information of the
vehicle. nS is Gaussian noise following ~N(0, σ2

n). After introducing matrix CMp3ˆ 3q and vector
dMp3ˆ 1q, the error model can be simplified as:

hM “ CMhE ` dM ` nS (2)

where
#

CM “ Ce
sCOCSDSI

dM “ Ce
s pCOCSDHI ` bSq

(3)

CM and dM are a linear combination of above-mentioned errors, which can be determined prior to its
application or by onboard calibration.

2.2. Error Model of INS

Since an INS is available in this paper, we will use an INS error propagation model given as
follows [15,16].

.
xptq “ FINSxptq `wptq (4)

omitting the time variable t, then x “ r pφqT pδvnqT pδpqT pεbq
T
p∇bq

T
pδKgq

T
pδKaq

T s
T

,

where platform misalignment angles φ “

”

φE φN φU

ıT
, velocity errors δvn “

”

δvn
E δvn

N δvn
U

ıT
and δp “

”

δL δλ δh
ıT

with δL, δλ, δh represent latitude, longitude

and altitude errors respectively. εb “

”

εb
x εb

y εb
z

ıT
is gyro drift errors expressed in body
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frame and ∇b “

”

∇b
x ∇b

y ∇b
z

ıT
is accelerometer biases expressed in body frame. δKg

can be represented as: δKg “
”

δkgxx δkgyx δkgzx δkgxy δkgyy δkgzy δkgxz δkgyz δkgzz

ıT
,

where δkgii, pi “ x, y, zq are gyro scale factor errors and δkgij, pi, j “ x, y, z, i ‰ jq are gyro actual
axis misalignment angles with respect to ideal body frame axis. δKa can be represented as:

δKa “
”

δkaxx δkayx δkazx δkayy δkazy δkazz

ıT
, δkaii, pi “ x, y, zq are accelerometer scale factor

errors and δkaij, pi, j “ x, y, z, i ‰ jq are accelerometer actual axis misalignment angles with respect
to ideal body frame axis. The components εb, ∇b, δKg, δKa are all assumed to be constant vectors.
wptq are white Gaussian noise sources including the first-order Gauss-Markov bias process for the
accelerometer and gyro.

The FINS in Equation (4) is expressed as:

FINS “

»

—

—

—

–

Maa Mav Map ´Cn
b 03ˆ3 Mag 03ˆ6

Mva Mvv Mvp 03ˆ3 Cn
b 03ˆ9 Mv f

03ˆ3 Mpv Mpp 03ˆ3 03ˆ3 03ˆ9 03ˆ6

021ˆ30

fi

ffi

ffi

ffi

fl

(5)

The specific formulae of FINS are given in Appendix 5.
According to the error model of INS, the positioning errors should grow at least quadratically

over time. However, the matching algorithm usually executes once by using a dozen positioning
points acquired within a very short period of time or in a small region, so that the INS indicated as
trace can be regard as a linear transformation from the true trace during this short period. Then the
relationship between indication trace tracei and real trace tracet can be described as Equation (6) in the
matching region.

tracei “ fSp fRptracet ` δTqq (6)

where fS is the scaling factor, fR is the rotating factor, and δT is the translation.

3. Geomagnetic Matching Algorithm

3.1. The Principle of ICCP Algorithm

The scenario for a UAV using the geomagnetic field to be located is such that the target starts
from a position and travels along a 3D trace. Because that the altitude information of UAV can usually
be given with high accuracy altimeter, Geomagnetic matching method only rectifies the indication
trace of INS with 2D location points, as shown in Figure 1. Let us denote the indicated trace by tHiu

pi “ 1, 2, ¨ ¨ ¨ , Nq (N is the total number of points in matching region), which will be different from the
actual trace tLiu pi “ 1, 2, ¨ ¨ ¨ , Nq due to errors and drifts in instruments and random external effects
referring to Equation (6). At the same time, the magnetic sensor provides the corresponding measured
total geomagnetic intensity tgiu pi “ 1, 2, ¨ ¨ ¨ , Nq, and tCiu pi “ 1, 2, ¨ ¨ ¨ , Nq is the corresponding set
of geomagnetic field contour. If the actual trace tXiu pi “ 1, 2, ¨ ¨ ¨ , Nq is known, the navigational
errors can be corrected by a rigid transformation of the indicated trace into the actual trace. The rigid
transformation T minimizes the distance between the sets tHiu and tXiu [17].

Min Ej “

N
ÿ

i“1

disjpXi ´ Xi´1, Hi ´ Hi´1q ` T
N
ÿ

i“1

disjpXi, Ciq (7)

where dis pX, Hq “ ||X´ H||2. The extraction of the closest contour point is discussed in [16].
The minimization process of Ej is iterated so that in the j-th iteration the set of measured points is
H j “ TH j´1 and the set of points X j is determined from the new points H j. The iteration process is
continued until T becomes negligible.
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where kl  is weighting coefficient, taking 1kl =  without a priori knowledge. { },i kC  stands for 

the contour of each geomagnetic element. If the error model parameter of three-axis magnetometer 
is pre-determined, the geomagnetic vector can be corrected by inversing the measurement model 
with Equation (2).  
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Figure 1. Illustration of inertial navigation system (INS) indication trace, Estimated trace, and Real trace.

The rigid transformation T consists of the rotation matrix and the translation vector as shown in
Equation (2), which can be solved with the quaternion method.

Hi`1 “

˜

tx

ty

¸

`

˜

cosθ ´sinθ

sinθ cosθ

¸

Hi (8)

where θ refers to the rotation angle. tx and ty are translation.

3.2. VICCP Algorithm

In order to make full use of geomagnetic vector information, the rule of approaching of indicated
trace toward closest contour points should be adjusted because there are three contours for the
geomagnetic vector. We define an overall match error that must be minimized with respect to all tHiu:

Ej “
N
ř

i“1
dj pXi ´ Xi´1, Hi ´ Hi´1q

`TA
3
ř

k“1

N
ř

i“1
λkdj

`

Xi, Ω
`

Ci,k
˘˘

{
N
ř

i“1
λk

(9)

where λk is weighting coefficient, taking λk “ 1 without a priori knowledge.
 

Ci,k
(

stands for the
contour of each geomagnetic element. If the error model parameter of three-axis magnetometer is
pre-determined, the geomagnetic vector can be corrected by inversing the measurement model with
Equation (2).

hE “ C´1
M phM ´ dMq (10)

Then define corresponding contours extracted with the corrected geomagnetic vector as Ω
`

Ci,k
˘

.
Since we introduce more geomagnetic information in ICCP, a more complicated transformation

can be adopted to improve the adaptability with the error characteristics of INS described with
Equation (6), and without causing the divergence of the algorithm. The simplified affine transformation
TA is used in this paper to solve the problem that traditional ICCP cannot reduce the scaling error of
indication track in INS. Defining rotation matrix R, translation t and scale factor S, the matching process
of the indication track sequence Hi to the real track sequence Li of each iterative can be performed
with Equation (11).

Li “ SRHi ` t (11)
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The least squares solution of this transformation can be given by solving the Procrustes
problem [18]. The cost function can be written as:

f pS, R, tqi “
n
ř

i“1
||Li ´ pSRHi ` tq||2

“ n||L0 ´ pSRH0 ` tq||2
`

n
ř

i“1
||L1i ´

`

SRH1i ` t
˘

||2
(12)

where L0 and H0 denote the centroids of Li and Hi, L1i and H1i is the relative vectors relative to their
centroids. Then normalize Li and Hi:

Ls,i “ Li{

b

ÿ

L2
0 , Hs,i “ Hi{

b

ÿ

H2
0 (13)

Define the matrix A “ LsHT
s , where Ls = [Ls,1 Ls,2 . . . Ls,n] and Hs = [Hs,1 Hs,2 . . . Hs,n]. The least

squares estimate of the rotation matrix R is Equation (14) when A is nonsingular.

R “ A
´

AT A
¯´1{2

(14)

In terms of the singular value decomposition of A as UΛVT, the optimal rotation matrix R can be
expressed as:

R “ V

»

—

–

1 0 0
0 1 0
0 0 det pUqdet pVq

fi

ffi

fl

UT (15)

The scale factor S is
S “ tr pΛq ¨

b

ÿ

L2
0{

b

ÿ

H2
0 (16)

Then minimize the first term contribution in Equation (12) by

t “ L0 ´ SRH0 (17)

4. Simulation

The simulation flow is as shown in Figure 2, and the effectiveness of the proposed matching
method can be examined by this numerical simulation. The reference matching maps are generated
with Enhanced Magnetic Model (EMM 2015) of order 720, and disturbed by a certain level of Gaussian
noise. The simulated magnetic vector data are acquired based on the geomagnetic reference field
and disturbed by inherent sensor errors and external interferences, with key parameters shown in
Table 1. The INS simulation in this paper is carried out for a route under the condition shown in
Table 2. The condition includes initial errors and measurement error. Note that this simulation only
reveals the geomagnetic aiding process in the matching region, where the INS already has a large
deviation before entering into the match regions.

Table 1. The parameters of simulation.

Parameter Parameter Values

Matching points 20
Reference map noise ~(0, 25) nT
Matching region size 8 km ˆ 10 km

Center location of matching region (108.98˝ E, 34.91˝ N)
Average altitude ~20 km

Gird size of matching region 100 ˆ 80
Measurement Gaussian noise ~10 nT/axis

Matching tolerance 200% of uncorrected trace’s mean error
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Figure 2. The simulation flow of geomagnetic matching navigation.

Table 2. Simulation condition of INS.

Symbol Quantity Unit

Platform misalignment angles 30 ”
Initial velocity error 0.1 m/s
Initial position error 10 m
Gyro constant bias 0.01 ˝/h
Gyro random walk 0.001 ˝/h

Accelerometor constant bias 100 µg
Accelerometor random walk 10 µg

Scale factor error 10 ppm
Askew installation error 10 ”
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Simulation results of introducing geomagnetic vector into VICCP algorithm shows that the vector
matching method has better positioning precision and matching probability than the traditional ICCP
when the indication trace of INS does not contain scale error, as shown in Figure 3 and Table 3.Sensors 2016, 16, 1120 7 of 12 

 

 

Figure 3. The comparison of geomagnetic matching results with iterative closest contour point 
(ICCP) and vector iterative closest contour point (VICCP). Note that the indication trace of INS does 
not contain scale error in this case. 

The matching probability means the percentage of average positioning errors less than the 
matching tolerance (200% of indication trace’s mean error, as shown in Table 1) in the Monte Carlo 
simulation. Actually, whenever the matching procedure fails, a considerable matching error will be 
generated. As shown in Figure 4, the mean positioning is around 5 km when the ICCP matching 
procedure fails. So the statistical quantities of positioning precision are given in the Tables below 
only when the matching procedure is successful. 

 
Figure 4. A considerable matching error will generate geomagnetic matching fails. 

4.2. The Validity of Affine Transformation Based VICCP 

Simulation results in Figure 5 and Table 4 show that when scale error exists, the traditional 
ICCP algorithm becomes invalid, and the positioning accuracy and matching probability have been 
significantly reduced. In addition, the affine transformation based VICCP increases the 
adaptability with positioning error characteristics of INS, and achieves positioning accuracy of 
less than 200 m instead. 

Figure 3. The comparison of geomagnetic matching results with iterative closest contour point (ICCP)
and vector iterative closest contour point (VICCP). Note that the indication trace of INS does not
contain scale error in this case.



Sensors 2016, 16, 1120 7 of 12

Table 3. Comparison of ICCP and VICCP with 100 times Monte Carlo simulation.

Statistical Quantity Indication Trace of INS VICCP with Rigid
Transformation

VICCP with Affine
Transformation

Mean (m) 679.05 267.66 127.4
Var (m) 530.49 265.65 483.8

Matching probability (percentage) - 93% 98%

The matching probability means the percentage of average positioning errors less than the
matching tolerance (200% of indication trace’s mean error, as shown in Table 1) in the Monte Carlo
simulation. Actually, whenever the matching procedure fails, a considerable matching error will be
generated. As shown in Figure 4, the mean positioning is around 5 km when the ICCP matching
procedure fails. So the statistical quantities of positioning precision are given in the Tables below only
when the matching procedure is successful.
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4.2. The Validity of Affine Transformation Based VICCP

Simulation results in Figure 5 and Table 4 show that when scale error exists, the traditional
ICCP algorithm becomes invalid, and the positioning accuracy and matching probability have
been significantly reduced. In addition, the affine transformation based VICCP increases the
adaptability with positioning error characteristics of INS, and achieves positioning accuracy of less
than 200 m instead.

Table 4. Comparison of VICCP with different transformation for 100 times Monte Carlo simulation.

Statistical Quantity Indication Trace of INS VICCP with Rigid
Transformation

VICCP with Affine
Transformation

Mean (m) 1225.14 600.20 153.16
Var (m) 1726.78 1142.51 50.07

Matching probability (percentage) - 90% 98%
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Figure 5. The comparison of geomagnetic matching results for VICCP with rigid transformation and
affine transformation.

In Figure 6, the effectiveness of proposed algorithm is evaluated with relative flat
geomagnetic terrain, and the simulation results demonstrate the robustness of the proposed method.
The geomagnetic entropy calculated with Equation (18) is much smaller than the matching region
utilized in Figure 3.

HX “ ´

N
ÿ

i“1

pjlogpi, pi “ |hi| {

N
ÿ

i“1

hi (18)

where hi is the intensity of geomagnetic anomaly field.
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4.3. The Comparison of VICCP and Bayesian Based VICCP

In order to further improve matching performance of vector matching method, a priori knowledge
is required as a support. An improved algorithm based on the Bayesian statistical analysis can be
derived with matching error expressed as:

Ej “
N
ř

i“1
dj pXi ´ Xi´1, Hi ´ Hi´1q

`TA
3
ř

k“1

N
ř

i“1
pkdj

`

Xi, Ω
`

Ci,k
˘˘

{
N
ř

i“1
pk

(19)

where pk is prior matching probability of each single element, which can obtain through experiment,
and then Ej in Equation (7) can be replaced with Equation (19). The Simulation result in Figure 7 and
Table 5 show that the Bayesian-based algorithm will further improve the positioning accuracy and
matching probability.
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Figure 7. Evaluation the performance of Bayesian-based algorithm.

Table 5. Evaluation of the performance of the Bayesian based algorithm with 100 times Monte
Carlo simulation.

Matching Method Mean (m) Var (m) Matching Probability
(percentage)

ICCP
X 235.37 240.28 88%
Y 531.31 662.51 64%
Z 185.42 201.27 92%

VICCP 124.72 51.05 97%

Bayesian-based VICCP 88.36 34.96 99%

5. Conclusions

This paper proposed a geomagnetic matching method that makes full use of the geomagnetic
vector information to improve accuracy and robustness. The achievable accuracy limits for the
traditional matching algorithm were discussed, the affine transformation was adopted to ICCP for the
first time to increase adaptability with positioning error characteristics of INS, and the best achievable
positioning accuracy for geomagnetic matching error was less than 200 m in case of existing scale
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error in the indication trace. For better results, it is necessary to use prior knowledge such as matching
probability of each single geomagnetic element, and achieves positioning error less than 100 m.
In future work, we plan to extend this work to multi matching regions during a complete long range
trajectory, a specific INS error model will be introduced rather than using a rough indication trace
error model, and we will try to achieve 3D geomagnetic matching without altimeter aiding.
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Appendix A

Assume the gyro sensed angular rate and accelerometer sensed specific force are
ωb

ib “ r ωb
ibx ωb

iby ωb
ibz s and f b

s f “ r f b
s f x f b

s f y f b
s f z s, then the components in Equation (5) are

given as below:
Maa “ p´ωn

inˆq (A1)

Mav “

»

—

–

0 ´1{RMh 0
1{RNh 0 0

tanL{RNh 0 0

fi

ffi

fl

(A2)

Map “

»

—

–

0 0 vn
N{R

2
Mh

´ωiesinL 0 ´vn
E{R

2
Nh

vn
Esec2L{RNh `ωiecosL 0 ´vn

EtanL{R2
Nh

fi

ffi

fl

(A3)

Mag “ ´
”

ωb
ibxCn

b ωb
ibyCn

b ωb
ibzCn

b

ı

(A4)

Mva “ p f n
s fˆq (A5)

Mvv “ pvnˆqMav ´ pp2ωn
ie `ωn

enqˆq (A6)

Mvp “ pvnˆq

»

—

–

0 0 vn
N{R

2
Mh

´2ωiesinL 0 ´vn
E{R

2
Nh

vn
Esec2L{RNh ` 2ωiecosL 0 ´vn

EtanL{R2
Nh

fi

ffi

fl

`

»

—

–

0 0 0
0 0 0

´g0β1sinLcosL 0 β3

fi

ffi

fl

(A7)

Mv f “
”

f b
s f xCn

b f b
s f yCn

b p:, 2q f b
s f yCn

b p:, 3q f b
s f zCn

b p:, 3q
ı

, Cn
b p:, iq “ ith column of Cn

b (A8)

Mpv “

»

—

–

0 1{RMh 0
secL{RNh 0 0

0 0 1

fi

ffi

fl

(A9)

Mpp “

»

—

–

0 0 ´vn
N{R

2
Mh

vn
EsecLtanL{RNh 0 ´vn

EsecL{R2
Nh

0 0 0

fi

ffi

fl

(A10)
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The “ˆ” in ωn
inˆ, fn

s fˆ, vnˆ, etc. is the skew-symmetric operator of the vector, and where

f n
s f “ Cn

b f b
s f , ωb

nb “ ωb
ib ´ pC

n
b q

Tωn
in, and ωn

in “ ωn
ie `ωn

en, with

$

’

&

’

%

ωn
ie “

”

0 ωiecosL ωiesinL
ıT

ωn
en “

”

´
vn

N
RMh

vn
E

RNh

vn
E

RNh
tanL

ıT (A11)

$

’

’

&

’

’

%

RMh “ RM ` h, RNh “ RN ` h

RM “
RNp1´e2q

p1´e2sin2Lq
, RN “

Re

p1´e2sin2Lq1{2

e “
a

2 f ´ f 2

(A12)

$

&

%

gn “
”

0 0 ´g
ıT

g “ g0p1` β1sin2L` β2sin4Lq ´ β3h,
with

$

’

&

’

%

β1 “ 5.27094ˆ 10´3

β2 “ 2.32718ˆ 10´5

β3 “ 2g0{Re “ 3.086ˆ 10´6p1{s2q

(A13)

Cn
b is transformation direct cosine matrix from body frame to navigation frame;

vn “
”

vn
E vn

N vn
U

ıT
is velocity along east, north and up-vertical direction; p “

”

L λ h
ıT

,
where L, λ, h is latitude, longitude and altitude; Re “ 6371.2 km is the Earth’s semi-major axis;
f “ 1{298.257 is the Earth’s flattening; ωie “ 7.2921151467ˆ 105 rad/s is the Earth’s angular rate;
g0 “ 9.7803267714 m{s2 is gravity magnitude at the equatorial sea-surface.
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