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A B S T R A C T
Pharmacovigilance is the pharmacological science that focuses on the safe and appropriate use of drugs.Variability in

response to drug therapy in both terms of safety and efficacy is highly related to patient's personal genomics. Hence,
pharmacovigilance considers pharmacogenomics methodologies in the evaluation of medicinal products. The aim of
this work is to introduce the pharmacovigilance/ pharmacogenomics insilico pipeline (PHARMIP) that uses the drug
(or drug candidate) digital structure and the advances in bioinformatics tools and databases to figure-out the genetic
factors underlying the drug reported adverse reactions (ADRs).PHARMIP uses user-friendly freely available
bioinformatics resources to help pharmacovigilance and pharmacogenomics scientists with minimal bioinformatics
experience to retrieve helpful information for their daily basis activities. Also, PHARMIP could help the advances in
precision medicine in a drug-centric approach as it can be used to reveal genetic risk factors for certain drug ADRs.
Domperidone was used as an example to the application of PHARMIP as the pipeline was initially developed during
the insilico exploration of domperidone cardiotoxic ADRs.
Method is composed of 3 main steps:

� Preparing the drug off-label targets (OLT) list.

� Retrieving the related diseases/ adverse reactions (DA) list.

� Analysis of DA list to get answers.
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Specification Table

Subject Area: 
Pharmacology, Toxicology and Pharmaceutical Science

More specific subject area: 
In-silico pharmacology

Method name: 
Pharmacovigilance/ pharmacogenomics insilico pipeline (PHARMIP)

Name and reference of
original method:
If applicable, include full bibliographic details of the main reference(s) describing the
original method from which the new method was derived.
Resource availability: 
� Binding DB link
� CTD analyzer link
� DisGeNET link
� DrugBank link
� HGNC link
� KEGG disease mapper tool link
� OMIM link
� OpenBabel converter link
� PDB link
� PharMapper link
� Polypharmacology browser link
� Pubchem sketcher link
� PyRX download link
� SEA server link
� STRING DB link
� SwissTargtPrediction link
� UniProt retrieve ID tool link
� VigiAccess link
� ZINC database link
PHARMIP at a glance

The method is composed mainly of three pipelined steps starting with the chemical structure of the
drug or the drug candidate with the aid of free user-friendly bioinformatics tools and databases to get a
list of candidate genes and genetic variants that may underpin an adverse reaction. We developed this
method to address the recent requirements in pharmacovigilance and pharmacogenetics. To the best
of our knowledge, there is no free software or bioinformatics tool that do the same job. And, we hope
that this pipeline could be programmed into a tool in a future work. The predicted time to run the
PHARMIP pipeline is variable and mainly depends on the step of PharMapper as a rate-limiting step.
PharMapper job could range from several days to several weeks as the server runs the jobs in a queue.
Limitations of PHARMIP could include the instability of the bioinformatics databases as every update
of the database will change the results leading to some problems of research reproducibility. Also,
some docking aspects and basics could be a complex issue for the audience of this work
(pharmacovigilance and pharmacogenomics scientists). So, we tried to use the simplest free software
with the default option to avoid technical details that could be inappropriate for the bioinformatics-
naïve audience. Each tool or database included in this work has its own manual and/or FAQ to
troubleshoot the common problems. We encourage the readers to refer to these manuals in case they
faced any problems using these tools.
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Method details

Predicting the off-label drug targets

Similarity ensemble approach (SEA)
Starting with the chemical structure of the drug, the off-label targets could be predicted by the

similarity ensemble approach (SEA). This approach predicts new protein targets based on chemical
similarity between ligands [1]. Most tools that use this approach queried bydrug or candidate
structure in the Simplified Molecular-Input Line-Entry System (SMILES) format [2]. There are many
chemical databases to retrieve such information. However, for drugs the easiest way is to retrieve the
SMILES code from the drug page at the DrugBank database [3]. If the ligand is a new structure as in case
of a drug candidate or a new molecule, the SMILES code could be retrieved using molecular drawer like
Pubchem sketcher or other suitable tool that allow deriving the SMILES code from directly drawing the
chemical structure. Also, any other chemical format for the input molecule could be easily converted
to SMILES using chemical format converter like OpenBabel converter. Once the ligand SMILES is ready,
it could be used to feed several tools that use the SEA.

Several tools use SEA to assign new targets to the query molecule based on its chemical similarity
score to other chemicals (usually referred to as Tanimoto coefficient or similarity score). Each tool
screens its target chemical repository using different SEA models to retrieve hits. Biological targets of
these hits are assigned to the query ligand depending on SEA. Targets from different tools could then
collected and filtered using suitable significant level (e.g. P-value of 0.01 or 0.05).

Some publicly available and user-friendly SEA tools are listed below:
� 
SEA server [1].

� 
SwissTargetPrediction server [4].

� 
Polypharmacology browser (PPB) [5].

One advantage of Polypharmacology browser is that it retrieves the already reported query
molecule bioactivity in ChEMBL database [6]. Then, it predicts targets based on 6 different fingerprints
and 4 combination of fingerprints. Using PPB enriches the off-label targets list with targets that have
wet-lab evidences.

Reverse pharmacophore mapping
Pharmacophore of a drug is the set of molecular features that cause it to be identified by its

biological target [7]. The normal pharmacophore mapping retrieves ligands whose pharmacophore fit
certain protein target. The reverse pharmacophore retrieves protein targets for a certain ligand. A very
famous and freely available insilico tool that uses reverse pharmacophore mapping approach is
PharMapper server [8]. PharMapper needs the query molecule in MOL2, or SDF chemical file formats.
While SDF format is available in DugBank, MOL2 could be retrieved from ZINC database [9]. There are
different options to customize the tool before job submission. Default options resemble the optimum
choice for non-specialists. The job may take one to two weeks to spit-out results according to jobs
queue length. So, the option of getting job results alert by email is worthy.

The results will retrieve 300 targets by default. These targets could be arranged using different
parameters. Z -score of the results could be used to detect which of the 300 results will be picked up to
the targets list based on the significance level of choice (e.g. for P-value of 0.01 select targets withZ-
score � 2.326, and for P-value of 0.05 select targets with Z-score �1.645) (Fig. 1).

Molecular docking
Docking is a featured insilico technique that is usually used to predict the best orientation of a

ligand when bound to the active site of a protein [10]. Pharmacophore mapping usually outperforms
docking in virtual screening to predict new ligand-target relationships [11]. However, docking
improves and evaluates predictions of pharmacophore [12] and SEA [13]. The main use of molecular
docking in this pipeline is to evaluate the affinity of the drug to the predicted targets by SEA and



Fig. 1. The user interface of PharMapper tool.
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pharmacophore mapping. One of the featured tools for molecular docking is Auto Dock Vina [14]
which can be used as a standalone program or imbedded in a platform like PyRX [15].

Docking jobs using PyRX needs the drug in the SDF format and the target protein in 3D structured
format. Normally, the 3D structure of a protein could be retrieved from the PDB database [16]. Some
targets still have no experimentally determined 3D structure in PDB database. In this case, homology
modeled 3D structure for these targets could be then obtained from SWISS-MODEL database [17].
From the Vina wizard in PyRX, the drug SDF file is added as a ligand and the protein target 3D structure
file is added as a macromolecule.

Sometimes, PyRX doesn't accept a certain 3D protein structure for docking due to some technical
errors. Each protein has different entries and identifiers in 3D protein structure databases. All these
entries could be found in the protein's Uniprot page in the cross-references and/or structure sections.

The results of this step will be the best conformation preference of the ligand into the binding site
of the target protein. AutoDock Vina normally predicts the free binding energy (also known as Gibbs
free energy or DG) in kcal/mol. For calculating the affinity of the drug to the predicted target, the
dissociation constant Kd could be calculated from the free binding energy using the python script from
[18]. In PyRX python shell, the code is run, free binding energy from docking is entered in kcal/mol, and
the Kd is calculated in moles. Binding DB [19] is a good source to compare the drug predicted affinity in
terms of Kd to the experimental affinities obtained in wet lab settings.

The end result of this pipeline step will be a list of off-label targets (OLT list) obtained by SEA,
pharmacophore mapping then validated using molecular docking. Target list identifiers may be in
different formats according to the tool used. The combined list of targets obtained from different tools
could be refined and unified by the retrieve/ID mapping tool from the UniProt database [20].
Visualization and different analyses could be done on the list using STRING database [21]. The final OLT
list will be used as an input for the next step to retrieve the related diseases/ phenotypes list.

Retrieving the diseases /ADRs (DA) list related to OLT list

Using the OLT list from the previous step, different databases could be used to retrieve diseases and
/ or ADRs linked to these targets. Online Mendelian inheritance in man (OMIM) database [22], disease-
gene network (DisGeNET) database [23], and comparative toxicogenomic database (CTD) [24] are
good examples of these databases. Also, Kyoto encyclopedia of genes and genomes (KEGG) [25] has a
disease mapper tool that could be fed by a list of gene identifiers to retrieve a list of related diseases.

The first overview of the OLT list could be done by the enrichment analysis. CTD offers the option of
disease enrichment analysis which could be done to figure out the types of diseases or side effects that
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could result from the drug or candidate use. A certain disease is considered statistically enriched if the
proportion of its related genes to the full enquiry gene list is larger than the proportion of all its related
genes to the whole genome [26]. This type of analysis could be done on the level of biochemical
pathways and / or gene ontology functional terms. This is very helpful in foreseeing the complete
predicted picture of the query drug and its biological effects on several levels.

DisGeNET has the option of retrieving associations at the genetic variant level. Normally, DisGeNET
retrieves results at gene level ranked by gene-disease association (GDA) score, and at genetic variant
level ranked by variant-disease association (VDA) score. Retrieving genetic variants linked to certain
drug-disease association could resemble a draft for drug's pharmacogenetics variants network that
could be used in several ways. For example, detecting biomarkers related to a certain ADR, genetic
guided patient recruiting in drug clinical trials, and drug genetic labelling experiments.

The results of this step will be a list of diseases and ADRs (DA list) related to the OLT list (Fig. 2).

Analysis of DA list to get answers

DA list from the previous step could be analyzed in several ways according to the question to be
answered. Normally, these results could be used either to predict or to explain the genetics
underpinning for a certain side effect of the enquired drug.

In Pharmacovigilance, healthcare providing entities usually report ADRs noticed during using a
certain drug. These individual case safety reports (ICSRs) are usually saved in specialized databases to
be analyzed. One of the featured ICSRs databases is the world health organization (WHO) database
VigiBase [27] which is freely accessed through the VigiAccess portal. Analyses of pharmacovigilance
data include signal detection and different risk management activities. Recently. European medicines
agency (EMA) released a guideline on the use of pharmacogenomics methodologies in the
pharmacovigilance regular activities. The guideline describes 3 types of genomic biomarkers (BM)
that influence drug safety and efficacy. Namely, they are pharmacokinetic (PK) BM, pharmacodynamic
(PD) BM, and BM associated with drug-induced toxicity risk [28]. PHARMIP uses the power of insilico
tools and bioinformatics databases to figure out the different genomics BM underlying drug safety and
efficacy issues.

In pharmacogenomics, regular activities include discovery, evaluation, and implementation of
genetic BM influencing drug response. These data are saved in specialized databases that provide
information about gene-drug associations (e.g. PharmGKB [29]). PHARMIP could be used to assist
pharmacogenomics daily activities via detection of candidate genes and variants that influence certain
drug response.
Fig. 2. The user interface of DisGeNet database.
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In precision medicine, pharmacogenomics is used as a tool for genetic guided therapy
personalization. PHARMIP, via its role in pharmacogenomics, could help advances in precision
medicine from a drug-centric point of view. Construction of drug-centered gene network could reveal
insights about the precise use of this drug with different patients' genetic profiles.

The following are two examples of using PHARMIP to detect the underpinning genetics of some
reported domperidone cardiotoxic ADRs and ranitidine related thrombocytopenia.

Example 1: domperidone related cardiotoxic effects

Domperidone (DrugBank accession no. DB01184) is a specific dopaminergic blocker approved for
treatment of several gastrointestinal disorders like nausea, vomiting and emesis. It's used to treat
gastroparesis by its D2 selective antagonism that causes increase in GIT peristalsis. It's also used as a
galactagogue by increasing prolactin secretion as a part of its anti-dopaminergic effect [30,31]. It is
also used to relieve the gastrointestinal symptoms of Parkinson's disease and in some cases as an
unintended antipsychotic drug [32,33].

Although being successfully used for about 40 years as a prokinetic drug in different
gastrointestinal motility disorders, domperidone was repeatedly reported to have cardiotoxic effects.
Leelakanok et al. [34] reported a study results that domperidone increases the risk of cardiac
arrhythmia and sudden cardiac death by 70 %. Similar results were also reported by Johannes et al. [35]
and van Noord et al. [36]. This cardiac toxicity is mainly thought to be resulting from the drug effect on
cardiac QT interval which can increase the risk of Torsades de Pointes [37]. Also, domperidone
dependent ventricular arrhythmias were reported. It is thought to be an effect of blockade of hERG
voltage-gated potassium channels [38,39].

Domperidone VigiAccess page contains 9201 ICSRs in 27 categories (on 21st January 2019). Among
these ICSRs, 584 reports are for cardiac disorders in 50 subcategories. Some of these cardiac disorders
are heavily reported (e.g. palpitation has 171 ICSRs) and others are seldomly reported (e.g. atrial flutter
has only 1 ICSR).

Cardiotoxic ADRs that will be investigated by PHARMIP in this example are:
� 
Arrhythmias (88 ICSRs in VigiBase)

� 
Cardiac arrest (48 ICSRs in VigiBase)

� 
Torsades de Pointes (32 ICSRs in VigiBase)

� 
Long QT syndrome (5 ICSRs in VigiBase)

Predicting the off-label drug targets (OLT list)

SEA
Domperidone SMILES code (ClC1=CC2=C(C = C1)N(C1CCN(CCCN3C(=O)NC4=CC = CC = C34)CC1)C

(=O)N2) was retrieved from its DrugBank page then fed to SEA tools. Different targets were predicted
using this approach. All targets are presented in human genome ontology gene nomenclature
committee (HGNC) symbols [40].
� 
SEA server searches hits in the largest chemical dataset (ZINC15) and retrieved 87 targets with
significant P-values. Some of these targets were non-human. After removing redundancy and non-
human targets, 51 targets remained:

(ACLY,ADRA1A,ADRA1B,ADRA1D, ADRA2A, ADRA2B, ADRA2C, AKT1, AKT2, AKT3, CACNA1G, CALCRL,
CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, CTSS, CYP2D6, DRD2, DRD3, DRD4, GLRA1, GRIN1, GRIN2B,
HRH1, HTR1A, HTR2A, HTR2B, HTR2C, HTR3A, HTR7, KCNH2, MCHR1, NPY1R, OPRD1, OPRK1, OPRL1,
OPRM1, PLD1, PLD2, RAMP1, SCARB1, SIGMAR1, SLC22A2,SLC47A1, SLC6A2, SLC6A4, TACR2, TNKS, USP1)
� 
SwissTargetPrediction tool predicted several adrenergic receptors subtypes (A1A, A1B, A1D, A2A,
A2B, A2C) as domperidone targets. The results also retrieved domperidone on-label targets
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dopamine receptors (D2, D3, D4) as possible targets which increases reliability of these results.
Fifteen targets all with high probability scores are predicted by this tool:

(ADRA2A, DRD2, ADRA2B, ADRA2C, DRD4, SLC6A2, ADRA1D, HTR2A, HTR2C, SLC6A4, ADRA1A,
HRH1, ADRA1B, OPRM1, DRD3)
� 
Polypharmacology browser was fed by the SMILES code and the number of targets option was set to
its maximum value of 50 targets. The job retrieved 43 targets domperidone already has wet lab
determined affinities as curated by ChEMBL. Five targets were filtered as they are cell-lines and
organisms. One hit of the results has 2 targets HTR3A_HTR3B.The final wet lab list contained
39 targets:

(ADRA1A, ADRA1B, ADRA1D, ADRA2A, ADRA2B, ADRA2C, ALOX15B, AOX1, ATXN2, CYP2D6, DRD1,
DRD2, DRD3, EHMT2, GMNN, HIF1A, HRH1, HTR2A, HTR2B, HTR2C, HTR3A, HTR3B, HTR4, IMPA1,
KCNH2, LMNA, NFKB1, OPRK1, OPRM1, PFK, RGS4, SLC22A2, SLC47A1, SLC6A2, SLC6A4, SLCO1B1,
SLCO1B3, TXNRD1, USP2).

The insilico predicted targets were 37. Some of them contain more than one target subtype. After
filtering targets with significance level (P-value �0.05) by any fingerprint, the shortlist contained
21 targets:

(ADORA1, ADORA2A, ADORA2B, ADORA3, CHRM1, CHRM2, CHRM3, CHRM4, CHRM5, CYP2C9,
DRD4, DRD5, HDAC4, HDAC6, HTR1A, HTR7, PIN1, PLD1, PLD2, PTGS1, PTGS2).

Pharmacophore mapping

Domperidone SDF file was fed to the PharMapper server. The job id was (180,718,102,736) and
retrieved 232 targets. Targets were sorted by Z-scores and filtered according to significance level of P-
value <0.05 (Z-score cutoff �1.64). Seventeen targets were selected:

(ABL1, ADH5, AURKA, BACE1, CDK2, CSNK1G2, CTSK, CTSS, EGFR, F2, FNTA, LCK, MAPK14, NOS3,
PARP1, PDPK1, REN).

To keep this example brief, molecular docking was done only on the targets filtered by the next
step. The final OLT list contained 96 genes that will be used to retrieve the DA list. Visualization of this
list by STRING database is available through the link https://version-11-0.string-db.org/cgi/network.
pl?networkId=icgrvT0WSen6.

Retrieving related diseases and ADRs (DA list)

Disease enrichment
The OLT list was used in the CTD enrichment analysis tool. The highest enriched disease categories

were roughly nervous, cardiovascular and mental disorders.

Genes and variants disease associations
The OLT list was fed to DisGeNET as a multiple gene list to retrieve domperidone DA list. A total of

13,493 gene-disease associations and 4,600 variant-disease associations were retrieved. The highest
GDA score was 1 for LMNA gene associations to progeria and cardiomyopathy. The highest VDA score
was 0.83 for the association of gene KCNH2 reference SNP (rs199472936) to Long Qt Syndrome 2.

Filtering DA list to get answers

Filtering DA gene list by the ADR name retrieved the list of candidate genes that are related to this
ADR. Tables 1–4 show the results of filtration by the ADRs names (arrhythmia, arrest, Torsades de
Pointes, and long QT).

It's obvious that KCNH2 is strongly related to all cardiac side effects that are previously reported as
side effects of domperidone. This result harmonizes with the previous works of [38,39]. As these
cardiovascular disorders are polygenic [41] and may be a result of multiple genes, all associated gene

https://version-11-0.string-db.org/cgi/network.pl?networkId=icgrvT0WSen6
https://version-11-0.string-db.org/cgi/network.pl?networkId=icgrvT0WSen6


Table 1
Predicted genes for arrhythmias caused by domperidone.

Gene Disease GDA score

1 KCNH2 Cardiac Arrhythmia 0.4
2 HTR4 Cardiac Arrhythmia 0.3
3 OPRK1 Cardiac Arrhythmia 0.3
4 OPRL1 Cardiac Arrhythmia 0.3
5 PTGS2 Cardiac Arrhythmia 0.3
6 DRD2 Tachyarrhythmia 0.3
7 HTR4 Tachyarrhythmia 0.3
8 LMNA Ventricular arrhythmia 0.17
9 LMNA Atrial arrhythmia 0.1
10 LMNA Cardiac Arrhythmia 0.1
11 GRIN2B Hypsarrhythmia 0.1
12 LMNA Primary atrial arrhythmia 0.1
13 LMNA Supraventricular arrhythmia 0.1
14 KCNH2 Ventricular arrhythmia 0.04
15 CHRM3 Ventricular arrhythmia 0.01
16 CYP2D6 Ventricular arrhythmia 0.01

Table 2
Predicted genes for cardiac arrest and death caused by domperidone.

Gene Disease GDA score

1 LMNA Sudden Cardiac Death 0.4
2 LMNA Sudden Cardiac Arrest 0.3
3 LMNA Sudden Cardiac Arrest 0.3
4 KCNH2 Sudden Cardiac Death 0.13
5 KCNH2 Cardiac Arrest 0.12
6 ATXN2 Cardiac Arrest 0.1
7 NFKB1 Cardiac Arrest 0.02
8 EGFR Cardiac Arrest 0.01
9 LMNA Cardiac Arrest 0.01
10 PTGS2 Cardiac Arrest 0.01
11 CACNA1G Cardiac Arrest 0.01
12 HDAC4 Cardiac Arrest 0.01
13 GMNN Cardiac Arrest 0.01
14 ADRA2B Sudden Cardiac Death 0.01

Table 3
Predicted genes for Torsades de Pointes caused by domperidone.

Gene Disease GDA score

1 KCNH2 Torsades de Pointes 0.5
2 ADRA2C Torsades de Pointes 0.01
3 CYP2D6 Torsades de Pointes 0.01
4 SLCO1B1 Torsades de Pointes 0.01
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were kept even those with small GDA scores. Deeper analysis may reveal better results to avoid
redundancy and disease name differences between different databases.

Filtering at the genetic variants level

Answers on the variant level could also be retrieved from the DA list. Table 5 shows 27 genetic
variants retrieved from domperidone DA list and related to arrhythmias and Torsades de Pointes.

These variants could be used in designing clinical trails that explore domperidone cardiotoxic
effects or other similar drug-centered precision medicine research activities.



Table 4
Predicted genes for long QT interval caused by domperidone.

Gene Disease GDA score

1 KCNH2 Acquired long QT syndrome 0.7
2 KCNH2 Congenital long QT syndrome 0.7
3 KCNH2 Long QT Syndrome 0.4
4 KCNH2 LONG QT SYNDROME 1/2, DIGENIC (disorder) 0.3
5 KCNH2 Long Qt Syndrome 2 0.3
6 ADRA1A Long Qt Syndrome 2 0.3
7 KCNH2 LONG QT SYNDROME 2, ACQUIRED, SUSCEPTIBILITY TO 0.3
8 KCNH2 LONG QT SYNDROME 2/3, DIGENIC 0.2
9 KCNH2 LONG QT SYNDROME 2/5, DIGENIC (disorder) 0.1
10 KCNH2 LONG QT SYNDROME 2/9, DIGENIC 0.1
11 KCNH2 LONG QT SYNDROME 3 0.09
12 KCNH2 Long QT syndrome type 3 0.04
13 KCNH2 LONG QT SYNDROME, BRADYCARDIA-INDUCED 0.01
14 KCNH2 Prolonged QT interval 0.01
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Docking

Twenty genes from Tables 1–4 are shortlisted as candidates for domperidone related ADRs
(arrhythmias, cardiac arrest, long QT interval, and Torsades de Pointes). Seven targets of these twenty
are insilico predicted and the remaining 13 are reported in ChEMBL. Docking jobs of domperidone to
these 7 targets (CACNA1G, CHRM3, GRIN2B, HDAC4, OPRL1, PTGS2, EGFR) were done using PyRX
(version 0.8). Affinities in Kcal/mol were fed to the Kd calculator to estimate Kds. Resulting affinities
were compared to domperidone / DRD3 affinity that was retrieved from Binding DB as calculated by
Freedman et al. [42]. The results are represented in Table 6.

Docking results could be used for further filtering of the previous results to select targets that are
more likely involved in certain ADRs. For example, Table 6 results could suggest the selection of
CHRM3 and PTGS2 for more wet lab analysis to explore their relation to the previously mentioned
domperidone cardiotoxic ADRs.

Example 2: ranitidine related thrombocytopenia

Ranitidine is a well-known H2 receptor antagonist drug that is commonly used for treatment of
gastric acid related diseases. Ranitidine is listed under drug bank accession No. (DB00863). One of the
most reported ranitidine ADRs in VigiAccess is thrombocytopenia. Feeding PHARMIP with ranitidine
SDF file and SMILES code from the DrugBank in exploration of this ADR underpinning genetics
retrieved the following results:

Predicting the off-label drug targets (OLT list)

SEA server
� 
ACHE, BCHE, HRH2, QPCTL, QPCT, SLC47A1

SwissTargetPrediction
� 
BCHE, ACHE, HRH2, CHRM2, CHRM4, CHRM1

Poly-pharmacology
� 
Wet (PMP22, ACHE, LMNA, BLM, NFKB1, HIF1A, SLC47A1, ATP4B, ATP4A, ATP12A, TSHR, HRH2,
HSD17B10)
� 
Dry (GMNN, POLI, CHRM1, BCHE, CHRM2, CHRM2, SLC22A1, TYMP, ITGA2B, ITGB3)



Table 5
Predicted genetic variants for arrhythmias and Torsades de Pointes caused by domperidone.

Disease Variant ID consequence alleles variant
class

Score
VDA

1. Arrhythmogenic Right Ventricular
Dysplasia, Familial, 9

rs1114167345 missense
variant

A/G SNP 0.7

2. Arrhythmogenic Right Ventricular
Dysplasia, Familial, 9

rs727505038 missense
variant

G/C SNP 0.7

3. Cardiac Arrhythmia rs794728425 frameshift
variant

C/
CGGGGCGATGGGAGCTGGCCG

in-del 0.7

4. Cardiac Arrhythmia rs794728426 frameshift
variant

GCGCG/GGCTTTT in-del 0.7

5. Cardiac Arrhythmia rs794728428 frameshift
variant

TCGTCGGC/T in-del 0.7

6. Cardiac Arrhythmia rs794728434 frameshift
variant

T/TGCAG in-del 0.7

7. Cardiac Arrhythmia rs794728456 frameshift
variant

CG/C in-del 0.7

8. Cardiac Arrhythmia rs794728457 frameshift
variant

GCTCTCCC/G in-del 0.7

9. Cardiac Arrhythmia rs794728463 frameshift
variant

A/AGG in-del 0.7

10. Cardiac Arrhythmia rs794728464 frameshift
variant

C/CGCCT in-del 0.7

11. Cardiac Arrhythmia rs794728465 frameshift
variant

A/AG in-del 0.7

12. Cardiac Arrhythmia rs794728467 frameshift
variant

G/GCCGCC,GCCGC in-del 0.7

13. Cardiac Arrhythmia rs794728469 frameshift
variant

G/GCCCC,GCCC,GCC,GC in-del 0.7

14. Cardiac Arrhythmia rs794728470 frameshift
variant

A/ACGTCGCCC,ACGTCGC in-del 0.7

15. Cardiac Arrhythmia rs794728472 frameshift
variant

TG/T in-del 0.7

16. Cardiac Arrhythmia rs794728476 inframe
insertion

C/CCTGCGCGAT in-del 0.7

17. Cardiac Arrhythmia rs794728489 frameshift
variant

A/ACCAC in-del 0.7

18. Cardiac Arrhythmia rs794728497 frameshift
variant

GC/G in-del 0.7

19. Cardiac Arrhythmia rs794728499 frameshift
variant

AG/A in-del 0.7

20. Cardiac Arrhythmia rs794728500 frameshift
variant

CG/C in-del 0.7

21. Cardiac Arrhythmia rs794728506 frameshift
variant

GC/G in-del 0.7

22. Cardiac Arrhythmia rs794728507 frameshift
variant

AC/A in-del 0.7

23. Cardiac Arrhythmia rs794728508 frameshift
variant

CA/C in-del 0.7

24. Torsades de Pointes rs1805123 missense
variant

T/A,C,G SNP 0.01

25. Torsades de Pointes rs189014161 stop gained G/A,C,T SNP 0.01
26. Torsades de Pointes rs201268831 stop gained C/A,T SNP 0.01
27. Ventricular arrhythmia rs56984562 missense

variant
C/A,G,T SNP 0.01
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PharMapper (Job ID: 191,116,114,142)
� 
(HRAS, TGM3, PTPN1, RAF1, RAC1, MAPK10, BHMT, PMS2, RAN, AMPM2, RORA, AK1, GSTA1, CDK2,
ARHGAP1, ANG, CA2, AKR1B1, OAT, LCK, NNT, SRC, GSTP1, HSP90AA1, PIM1, C8G, SHMT1, GLO1,
DTYMK, F2, ADH5, UCK2, SDS, MMP3, DDX39B, GPI, ITPKA, NME2, SSE1, GCK, HSPA1B, PTK2, RAB5A)



Table 6
Predicted affinity in nM for selected domperidone predicted targets.

Symbol PDB/ SWISS-MODEL ID Affinity Kcal/mol Kd nM Domperidone /
DRD3 affinity nM

1. CACNA1G O43497 (SM) �5.7 64072 0.58
2. CHRM3 4DAJ (PDB) �9.7 73.11
3. GRIN2B 4PE5 (PDB) �5.7 64072
4. HDAC4 4CBY (PDB) �8.6 471.22
5. OPRL1 5DHG (PDB) �8.5 558.2
6. PTGS2 5F1A (PDB) �10.1 37.13
7. EGFR 3BEL (PDB) �7.7 2164.34

Table 7
Predicted genes for thrombocytopenia caused by ranitidine.

Gene Disease GDA score

1. SRC THROMBOCYTOPENIA 6 0.7
2. ITGB3 Neonatal Alloimmune Thrombocytopenia 0.56
3. ITGB3 Thrombocytopenia 0.37
4. ITGA2B Thrombocytopenia 0.34
5. ITGA2B Neonatal Alloimmune Thrombocytopenia 0.31
6. ITGB3 Autosomal dominant macrothrombocytopenia 0.31
7. ITGA2B Autosomal dominant macrothrombocytopenia 0.3
8. ITGA2B Other primary thrombocytopenia 0.2
9. ITGB3 Other primary thrombocytopenia 0.2
10. ITGB3 Macrothrombocytopenia 0.14
11. ITGA2B Macrothrombocytopenia 0.11
12. SRC Thrombocytopenia 0.11
13. CA2 Thrombocytopenia 0.1
14. NFKB1 Autoimmune thrombocytopenia 0.1
15. NFKB1 Idiopathic thrombocytopenia 0.1
16. ACHE Thrombocytopenia 0.02
17. BCHE Thrombocytopenia 0.02
18. ITGA2B Neonatal thrombocytopenia (disorder) 0.01
19. ITGA2B Congenital amegakaryocytic thrombocytopenia 0.01
20. ITGB3 Autoimmune thrombocytopenia 0.01
21. ITGB3 THROMBOCYTOPENIA 2 (disorder) 0.01
22. SLC22A1 Thrombocytopenia 0.01
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Final OLT list
� 
(ACHE, ADH5, AK1, AKR1B1, AMPM2, ANG, ARHGAP1, ATP12A, ATP4A, ATP4B, BCHE, BHMT, BLM,
C8G, CA2, CDK2, CHRM1, CHRM2, CHRM4, DDX39B, DTYMK, F2, GCK, GLO1, GMNN, GPI, GSTA1,
GSTP1, HIF1A, HRAS, HRH2, HSD17B10, HSP90AA1, HSPA1B, ITGA2B, ITGB3, ITPKA, LCK, LMNA,
MAPK10, MMP3, NFKB1, NME2, NNT, OAT, PIM1, PMP22, PMS2, POLI, PTK2, PTPN1, QPCT, QPCTL,
RAB5A, RAC1, RAF1, RAN, RORA, SDS, SHMT1, SLC22A1, SLC47A1, SRC, SSE1, TGM3, TSHR, TYMP,
UCK2)

The OLT list could be visualized using the link https://version-11-0.string-db.org/cgi/network.pl?
networkId=CsijWpejaTh1.

Retrieving related diseases and ADRs (DA list)

The enrichment analysis using OLT gene list retrieved number of related diseases like cancer,
digestive system diseases, and cardiovascular diseases. The related diseases list retrieved by DisGeNet
contained 8959 entry and 3423 entry for the variant's diseases list.

https://version-11-0.string-db.org/cgi/network.pl?networkId=CsijWpejaTh1
https://version-11-0.string-db.org/cgi/network.pl?networkId=CsijWpejaTh1


Table 8
Predicted variants for ranitidine related thrombocytopenia.

Disease Variant ID Gene Consequence Alleles Score VDA

1. THROMBOCYTOPENIA 6 rs879255268 SRC missense variant G/A 0.8
2. Neonatal Alloimmune Thrombocytopenia rs547581737 ITGA2B missense variant G/A 0.01
3. Neonatal thrombocytopenia (disorder) rs547581737 ITGA2B missense variant G/A 0.01
4. Macrothrombocytopenia rs761164933 ITGA2B missense variant G/A 0.01

Table 9
Predicted affinities in nM for selected ranitidine predicted targets.

Symbol PDB/ SWISS-MODEL ID Affinity Kcal/mol Kd nM Ranitidine/ H2
affinity nM

1. BCHE 1EHO (PDB) �10.9 9.58 64.4
2. CA2 2QP6 (PDB) �9.2 170.54
3. ITGA2B 5THP (PDB) �8.8 335.8
4. ITGB3 1JV2 (PDB) �7.7 2164.34
5. SLC22A1 O15245 (SM) �7.9 1542.38
6. SRC 1A09 (PDB) �9.2 170.54
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Filtering DA list to get answers

Filtering the genes and variants lists that are related to ranitidine OLT list and thrombocytopenia
retrieved the following tables (7,8 and 9):

On the genetic variant level, the next table contains the variants of interest that can be used in drug-
centered precision medicine research activities:

Docking

A list of 8 genes (ACHE, BCHE, CA2, ITGA2B, ITGB3, NFKB1, SLC22A1, SRC) was predicted to underpin
the ranitidine related thrombocytopenia. Two of them (ACHE, NFKB1) were already reported in
ChEMBL as ranitidine targets through wet lab experiments. The results of ranitidine docking to the
other 6 targets is summarized in the following table: based on this rough estimation, (BCHE, CA2, SRC)
could be suitable candidates for further ranitidine related thrombocytopenia wet lab invistigations.

Supplementary material and/or Additional information

The following supplementary materials are attached to the paper:
� 
Two Excel workbooks that contain all the results retrieved by the insilico tools and dependent
analysis results.
� 
Two Word documents contain the refined gene lists retrieved by the insilico tools and formatted as
inputs for DisGeNET and CTD analyzer.
� 
Two Zip folders contain the files used for docking and the python script to calculate Kds.
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