
molecules

Article

Synthesis of 6-Membered-Ring Fused Thiazine-Dicarboxylates
and Thiazole-Pyrimidines via One-Pot
Three-Component Reactions

Reagan L. Mohlala 1,2, Elena Mabel Coyanis 1,*, Muhammad Q. Fish 1, Manuel A. Fernandes 2

and Moira L. Bode 2,*

����������
�������

Citation: Mohlala, R.L.; Coyanis,

E.M.; Fish, M.Q.; Fernandes, M.A.;

Bode, M.L. Synthesis of

6-Membered-Ring Fused

Thiazine-Dicarboxylates and

Thiazole-Pyrimidines via One-Pot

Three-Component Reactions.

Molecules 2021, 26, 5493. https://

doi.org/10.3390/molecules26185493

Academic Editors: Richard A. Bunce,

Philippe Belmont, Wim Dehaen and

Eugene Babaev

Received: 20 August 2021

Accepted: 3 September 2021

Published: 10 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa;
reaganm@mintek.co.za (R.L.M.); QasimF@mintek.co.za (M.Q.F.)

2 Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits,
Johannesburg 2050, South Africa; Manuel.Fernandes@wits.ac.za

* Correspondence: mabelc@mintek.co.za (E.M.C.); Moira.Bode@wits.ac.za (M.L.B.);
Tel.: +27-117094566 (E.M.C.); +27-117176744 (M.L.B.)

Abstract: A facile and efficient one-pot three-component reaction method for the synthesis of thiazine-
dicarboxylates is reported. Reaction of an isocyanide and dialkyl acetylenedicarboxylate with 2-
amino-4H-1,3-thiazin-4-one derivatives containing both an acidic proton and an internal nucleophile
gave the products in good yields of 76–85%. The reactivity of dialkyl acetylenedicarboxylates
was further tested in the synthesis of thiazole-pyrimidines where a two-component reaction of
2-aminothiazole with dialkyl acetylenedicarboxylates was successfully converted to a more effi-
cient three-component reaction of a thiourea, α-haloketone and dialkyl acetylenedicarboxylate
(DMAD/DEtAD) to give thiazole-pyrimidines in good yields of 70–91%.

Keywords: multicomponent reaction; isocyanides; dialkyl acetylenedicarboxylates; thiourea; α-
haloketone; thiazine; thiazole-pyrimidines

1. Introduction

Multicomponent reactions (MCRs) are one-pot reactions that comprise at least three
reactants [1–3]. Some of the well-known MCRs include the classic Ugi four-component
reaction [4] (U-4CR), the Passerini three-component reaction [5] (P-3CR), the Biginelli three-
component reaction [6] (B-3CR) and the Hantzsch three-component reaction [7] (H-3CR).
The history and discovery of MCRs can be traced back to Strecker’s [8] multicomponent
reaction (S-3CR), which was reported in 1850, and three decades on, the Hantzsch reaction
for preparing dihydropyridines (DHP) was reported [7]. The Biginelli 3-CR was reported
in 1891, whereas Mannich [9] reported his eponymous MCR in 1912. The first isocyanide-
based MCRs were reported in 1921 and 1959 by Passerini [5] and Ugi [10], respectively.
MCRs represent one of the most convenient synthetic approaches in chemistry, with the
main advantages being a reduction in the number of sequential reaction steps required
and often better yields [11,12]. The Passerini and Ugi reactions have gained a great deal of
attention since the early 1990s [13,14]. The versatility of these reactions relies on the dual
reactivity of the isocyanide carbon atom, leading to the formation of diverse and complex
products [15,16].

The first reaction of isocyanides 1 with electron deficient alkynes such as DMAD 2 to
give zwitterions 3 (Scheme 1) was reported by Winterfeldt and co-workers [17]. This zwitte-
rion adduct 3 can readily undergo cycloaddition reactions with various third components,
generating a range of heterocyclic scaffolds of interest [18]. Previously, our group reported
the reaction of zwitterion adduct 3 and different five-membered rings, for example, 4,
containing both an acidic proton and internal nucleophile, to give products 5 incorporating
all three reaction components (Scheme 1). Depending on the nature of the five-membered
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ring, in certain cases such as for thiol 6, we observed that there was competition between
the three-component reaction (to give 7) and the two-component reaction (to give 8). For
the latter, DMAD 2 reacts directly with the five-membered ring, as shown in Scheme 1
for 1H-1,2,4-triazole-5-thiol 6, to give methyl 7-oxo-7H-[1,2,4]triazolo[5,1-b][1,3]thiazine-5-
carboxylate 8 [19]. We found that the most successful three-component reactions involved
five-membered rings containing more acidic protons.
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Scheme 1. Our previous work showing synthesis of pyrimidine derivatives and their analogues. 

In this work, we set out to investigate alternative rings to act as the third component 
substrate in these reactions and selected the acidic six-membered ring 2-amino-4H-1,3-
thiazin-4-one derivatives 9, with predicted pKa values in the range of −1.80 to −2.21. Thia-
zines are bioactive scaffolds with a wide range of pharmacological activities, such as an-
timicrobial [20,21], anti-inflammatory [22], anticancer [23], antitubercular [24] and antivi-
ral [25] activities. Another aim of this work was the further investigation of the two-com-
ponent reactions between various five-membered rings and DMAD to prepare com-
pounds such as 8 and their analogues. Of particular interest to us were the thiazole-py-
rimidine derivatives, which display interesting biological activity. Compounds derived 
from thiazolopyrimidines are known to exhibit antioxidant and antitumor activities [26]. 
Derivatives containing a thiazole-pyrimidine moiety as part of a more complex structure 
were shown to possess activity against Mycobacterium tuberculosis [27], while thiazolopy-
rimidine containing compounds ritanserin [28] and setoperone [29] have been used in the 
study of psychiatric disorders. 

We initially investigated the direct reactivity of dialkyl acetylenedicarboxylate to-
wards 2-aminothiazoles for the preparation of thiazole-pyrimidine derivatives and sub-
sequently converted this two-component reaction into a one-pot, three-component reac-
tion of dialkyl acetylenedicarboxylate with thiourea and an α-haloketone for the for-
mation of thiazole-pyrimidines. Here we present a facile and efficient one-pot, three com-
ponent reaction method for the synthesis of novel dihydropyrimido-thiazine-6,7-dicar-
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In this work, we set out to investigate alternative rings to act as the third component
substrate in these reactions and selected the acidic six-membered ring 2-amino-4H-1,3-
thiazin-4-one derivatives 9, with predicted pKa values in the range of −1.80 to −2.21.
Thiazines are bioactive scaffolds with a wide range of pharmacological activities, such
as antimicrobial [20,21], anti-inflammatory [22], anticancer [23], antitubercular [24] and
antiviral [25] activities. Another aim of this work was the further investigation of the
two-component reactions between various five-membered rings and DMAD to prepare
compounds such as 8 and their analogues. Of particular interest to us were the thiazole-
pyrimidine derivatives, which display interesting biological activity. Compounds derived
from thiazolopyrimidines are known to exhibit antioxidant and antitumor activities [26].
Derivatives containing a thiazole-pyrimidine moiety as part of a more complex structure
were shown to possess activity against Mycobacterium tuberculosis [27], while thiazolopy-
rimidine containing compounds ritanserin [28] and setoperone [29] have been used in the
study of psychiatric disorders.

We initially investigated the direct reactivity of dialkyl acetylenedicarboxylate towards
2-aminothiazoles for the preparation of thiazole-pyrimidine derivatives and subsequently
converted this two-component reaction into a one-pot, three-component reaction of dialkyl
acetylenedicarboxylate with thiourea and an α-haloketone for the formation of thiazole-
pyrimidines. Here we present a facile and efficient one-pot, three component reaction
method for the synthesis of novel dihydropyrimido-thiazine-6,7-dicarboxylates from an
isocyanide, dialkyl acetylenedicarboxylate and 2-amino-4H-1,3-thiazin-4-one derivatives;
and the synthesis of 5H-thiazolo[3,2-a]pyrimidine-7-carboxylates from thiourea, an α-
haloketone and dialkyl acetylenedicarboxylates.

2. Results and Discussion
2.1. Synthesis of 4-Oxo-4,6-Dihydropyrimido[2,1-b][1,3]Thiazine-6,7-Dicarboxylates by
Three-Component Reaction

The six-membered rings 9a–e, which were selected for use in these three-component
reactions, are shown in Figure 1. To the best of our knowledge, none of these compounds
has previously been tested in reaction with acetylenedicarboxylates 2 and isocyanides 1. In
addition, compounds 9c and 9d have not been previously reported. The initial reaction of
2-amino-4H-1,3-thiazin-4-one 9a [30] with isocyanide 1a and acetylene dicarboxylates 2a–b
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resulted in products 10a–b (Table 1). This success encouraged us to further test the reaction
of 2-amino-6-methyl-4H-1,3-thiazin-4-one 9b [31], 2-amino-6-ethyl-4H-1,3-thiazin-4-one
9c, 2-amino-6-propyl-4H-1,3-thiazin-4-one 9d and 2-amino-6-phenyl-4H-1,3-thiazin-4-one
9e [31] with the zwitterion adduct formed by the reaction of aliphatic isocyanides 1a–c and
acetylenedicarboxylates 2a–b. Generally, the reactions were carried out by the addition of
isocyanide 1 to acetylenedicarboxylate 2 at 0 ◦C under inert conditions, as shown in Table 1,
followed by slow introduction of compound 9a–e as a solution in dry dichloromethane
to the reaction mixture at room temperature. After purification, novel products 10a–u
were obtained in good yields (Table 1). When selected reactions were tested using the
green solvents ethanol and isopropanol instead of dichloromethane, low yields of thiazine
compounds 10 were obtained. When acetone was employed as a solvent for the synthesis
of thiazine compounds 10a–u, using starting materials 9a–e, average yields were obtained.
Nonetheless, acetone can be considered as an alternative greener solvent to afford thiazine
compounds 10a–u using a three-component reaction. Compound 10o gave the highest
yield in acetone of 58%, while the lowest yield obtained was for 10g, at 41%.
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10a t-Bu CH3 H 81 (6 h)
10b t-Bu CH3 H 85 (6 h)
10c t-Bu CH3 CH3 82 (6 h)
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Based on our previous results, we believe the very good yields obtained for 10a–u were
due to the presence of an acidic proton on the 2-amino-4H-1,3-thiazin-4-one derivatives 9a–
e which enables the reaction with the zwitterion adduct to occur readily in dichloromethane.
The highest yields obtained were 85% for 10b, 10h and 10n and the lowest yield was 76%
for 10h. Based on the isolated yields it is clear that the 2-amino-4H-1,3-thiazin-4-one
derivatives 9 were completely inert towards direct reaction with either dialkyl acetylenedi-
carboxylates 2 or alkyl isocyanides 1, while they demonstrated very high reactivity towards
the zwitterion adduct. Although we have not definitively established the mechanism for
the formation of 10, a plausible mechanism for this reaction is proposed (after Esmaeili and
co-workers [32]) and shown in Scheme 2. Zwitterion adduct 3 deprotonates 9, followed
by 1,4-nucleophilic attack on the nitrilium ion A. The resulting ketenimine intermediate B
cyclizes to afford compound 10.
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2.2. Synthesis of 5H-Thiazolo[3,2-a]Pyrimidine-7-Carboxylates Using Two-Component and
Three-Component Reactions

We went on to investigate the direct reaction of various five-membered ring sub-
strates with electron deficient alkynes (DMAD/DEtAD). This study was started when
we noticed the presence of co-products resulting from direct reaction of DMAD with
some of the five-membered rings when we were attempting three-component reactions
including an isocyanide [19]. Crank and co-workers [33] previously reported the reaction
of 4-methylthiazol-2-amine 11 with DMAD 2 to afford Diels–Alder adduct 12, methyl
3-methyl-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate 13 and product 14, resulting
from reaction with two moles of DMAD (Scheme 3). Acheson and Wallis [34] also reported
the direct reaction of 2-aminothiazole 11 and DMAD 2 using methanol under reflux to
obtain methyl 7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate 13. Thiazolopyrimidines
can be obtained using two component reactions, under various conditions, starting from 2-
aminothiazole derivatives and Michael acceptors, such as vinyl trichloromethylketones [35],
ethyl acetoacetate [36], bis(2,4,6-trichlorophenyl) malonate [37], diethylmalonate, ethyl
cyanoacetate, cyanoacetamide, ketonitriles and DMAD [38]. Our first approach was to
react DMAD 2a and pre-prepared five-membered ring substrates 11 directly to obtain fused
5-membered ring thiazole-pyrimidines 13. However, the moderate yields achieved using
this approach led us to optimize the preparation as a one-pot, three-component reaction
from thiourea 15, α-haloketones 16 and DMAD or DEtAD. To the best of our knowledge,
this is the first report of such a one-pot preparation.
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Scheme 3. Synthesis of thiazole-pyrimidines 13.

Initially, in order to achieve thiazole-pyrimidines 13, we prepared 5-membered ring
substrates 11a–g [39–42] (Figure 2) to react with DMAD 2a. The reactions were carried out
by treating 11c and 11e–g with 2a under ethanol reflux conditions to obtain 13a–d (Method
A). Repetition of these reactions using DEtAD 2b afforded 13e–i, whilst di-tert-butyl
acetylenedicarboxylate (DTAD) 2c and substrate 11a gave rise to 13j (Table 2). Despite the
disappointing yields, the success of this reaction led us to extend it to the use of alternative
five-membered ring reactants 17 [43], 18 [44] and 5 [45], with these substrates giving rise to
compounds 19a–b, 20 and 8, respectively, in good yields.
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Table 2. Isolated yields and reaction times for preparation of 8, 13a–j, 19a–b and 20.
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Compound R1 R2 R3 Yield Time (h)

13a CH3 CH3 CH3 67 12
13b Ph-CH3 H CH3 58 6
13c Ph-F H CH3 48 6
13d Ph-Cl H CH3 50 6
13e H H CH3CH2 69 12
13f CH3 H CH3CH2 71 12
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Using Method A, low-to-average yields were obtained for most of the products 13.
The highest yield from this set of compounds was for 13g with 79% yield and 13f with
71%. However, when using substrates 11d–g with phenyl groups at R1 the yields dropped
slightly due to the weakly activating phenyl ring and the deactivating groups on the
phenyl ring (such as fluorine and chlorine) for both DMAD and DEtAD reactions. The
presence of fluorine and chlorine at the para-position of substrates 11f and 11g resulted
in a slight drop in yield for compounds 13c, 13d, 13h and 13i compared to 13b, with a
methyl substituent at the para-position. The reaction of dialkyl acetylenedicarboxylate
2c and substrate 11a gave a 70% yield of product 13j. When substrate 17 was treated
with dialkyl acetylenedicarboxylates 2a–b the reaction gave 82% and 80% yield of 19a and
19b, respectively. Substrates 5 and 18 were also treated with DEtAD 2b and gave rise to
compounds 8 and 20 in good yields of 88% and 82%, respectively. When comparing the
reactivity of the substrates it is evident that substrates 5, 17 and 18 were more reactive
towards 2a–b than 11 under these conditions, giving consistently better yields.
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The disappointing yields obtained from the direct reaction of substrates 11a–h with
dialkyl acetylenedicarboxylates 2a–b prompted us to apply a second approach via a 3-CR
to give product 13 (Method B). The reactions were carried out by initially mixing thiourea
15 with α-haloketone 16, followed by introduction of dialkyl acetylenedicarboxylate 2 in a
1:1 ratio of ethanol and THF at room temperature, after which the reactions were heated to
ethanol reflux temperature for at least 12 h. This gave rise to products 13a–d in improved
yields compared to the first approach (Table 3). The reactions were repeated using DEtAD
2b and gave rise to products 13e–i as expected. Room temperature reactions resulted in
incomplete reactions, with recovery of some of the starting materials, even after 48 h. The
three-component reaction (3-CR) was thus found to be suitable for the synthesis of products
13a–i, which were isolated in good yields of 70–91%, based on the nature of the functional
groups in the reactants 16a–e and 2a–b, as shown in Table 3. The highest yields for this set
of compounds, using DMAD 2a, was 82% for 13a. The percentage yields of compounds
13b–d were found to be slightly lower when compared to 13a. Even starting materials
substituted with fluorine or chlorine at the para-position (16c and 16d) gave very good
yields of product. Yields increased when using DEtAD 2b rather than DMAD 2a.

Table 3. Isolated yields of 13a–i from one-pot, three-component reaction.
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Compound X R1 R2 R3 Yield (%) Time (h)

13a Cl CH3 CH3 CH3 82 12
13b Br Ph-CH3 CH3 CH3 71 6
13c Cl Ph-F CH3 CH3 70 6
13d Br Ph-Cl H CH3 71 12
13e Cl H H CH3CH2 83 12
13f Cl CH3 H CH3CH2 91 12
13g Cl CH3 CH3 CH3CH2 86 12
13h Cl Ph-F H CH3CH2 86 6
13i Br Ph-Cl H CH3CH2 84 6

Scheme 4 shows the proposed mechanism for the formation of compound 13 (see
Acheson and Wallis [34]). The reaction proceeds by initial nucleophilic attack of the ring-
nitrogen of substrate 11 on the α,β-unsaturated ester of DMAD forming an intermediate
which undergoes internal cyclisation through nucleophilic attack of the side-chain nitrogen
on the ester carbonyl carbon, followed by the loss of methanol, to afford product 13.
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The structures of the synthesized compounds were confirmed by mass spectrometry,
NMR spectroscopy and FTIR spectroscopy (Supplementary Materials). Explicit confir-
mation for the structures of 13a, 13b, 13d and 8 was obtained from single-crystal X-ray
analysis (Figure 3).
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Figure 3. Single-crystal X-ray structure (ORTEP diagrams) of 8 (top left), 13a (top right), 13b
(bottom left) and 13d (bottom right). Carbon atoms are shown as gray spheres, nitrogen atoms as
blue spheres, oxygen atoms as red spheres, sulfur atoms as yellow spheres, chlorine atoms as green
spheres and hydrogen atoms as white spheres.

These compounds were prepared as part of our ongoing efforts towards identifying
novel heterocycles with biological activity [46–48]. Compounds showing cytotoxicity
values of >200 µM in MT-4 cells were evaluated for activity in an HIV assay (see Sup-
plementary Materials). Unfortunately, these compounds were not found to be active
as antiviral agents. However, due to the relatively high cytotoxicity values seen for
some of the compounds, the possibility of their application as anticancer agents is being
further investigated.

3. Materials and Methods
3.1. Chemical Synthesis
3.1.1. General Information

All commercially available reagents were supplied by Sigma Aldrich (Schnelldorf,
Germany) and used without further purification. Dry solvents were used directly from
an LC-Tech SP-1 Solvent Purification System (LC Technology Solutions Inc., Seabrook, TX,
USA) stored under argon. All solvents used for chromatographic purposes were supplied
by RadChem (Johannesburg, South Africa) and were used without further distillation.
NMR spectra were recorded at 298 K on a 400 MHz Bruker Avance Spectrometer (Bruker
BioSpin, Rheinstetten, Germany). Chemical shifts are reported in ppm and are referenced
internally to residual solvent resonances [7.26 (CDCl3) and 2.50 (DMSO-d6) for 1H NMR;
77.16 (CDCl3) 40.45 (DMSO-d6) for 13C NMR]. For mass spectrometry (LC–MS/MS), high-
resolution mass spectra were obtained. Fourier infrared spectra (FTIR) were recorded by
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using a Perkin Elmer FTIR Spectrometer Spectrum Two (Perkin Elmer, Midrand, South
Africa). All signals are reported on the wavenumber scale (v/cm−1).

3.1.2. General Synthesis of 4-Oxo-4,6-Dihydropyrimido[2,1-b][1,3]Thiazine-6,7-Dicarboxylate
Derivatives (10a–u)

In a round-bottomed flask equipped with a magnetic stirrer, isocyanide derivative
(1a–c) in dry CH2Cl2 (2.5 mL) was slowly added to DMAD (2a) or DEtAD (2b) in dry CH2
Cl2 (5 mL) at 0 ◦C, under inert argon, and the solution was allowed to stir for 0.5 h. Then
2-amino-4H-1,3-thiazin-4-one derivatives 9a–e in dry CH2Cl2 (2.5 mL) were slowly added
to the solution and stirred at room temperature under argon for 6–24 h. The solvent was
removed under vacuum, and the residue was purified by silica gel column chromatography,
using hexane-ethyl acetate as eluent to afford the products.

Dimethyl 8-(tert-butylamino)-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicarboxylate
(10a); 2-amino-4H-1,3-thiazin-4-one (9a) (0.25 g, 1.95 mmol), tert-butyl isocyanide (1a)
(0.16 g, 1.95 mmol) and dimethyl acetylenedicarboxylate (2a) (0.28 g, 1.95 mmol). Physical
characteristics: yellow solid; Yield: 0.55 g, 81%; Mp: 145–147 ◦C, Rf: 0.5, hexane/ethyl
acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.73 (1H, br s, NH), 7.36 (1H, d, J = 10.8 Hz,
Ar-CH), 6.51 (1H, d, J = 10.4 Hz, Ar-CH), 6.35 (1H, s, CH), 3.75 (3H, s, OCH3), 3.71 (3H,
s, OCH3), 1.42 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 170.9 (C=O), 168.4 (C=O),
160.7 (C=O), 157.5 (C-10), 154.9 (C-8), 136.8 (C-3), 118.2 (Ar-CH), 72.3 (C-7), 52.9 (C-6),
52.7 (OCH3), 51.1 (OCH3), 50.8(C(CH3)3), 30.9 (C(CH3)3); FTIR νmax/cm−1: 2982, 2913,
1728, 1690, 1648, 1600, 1533, 1472, 1431; HRMS (ESI–TOF) m/z: [M + H]+ calculated for
C15H20N3O5S+ 354.1118 found 354.1113.

Diethyl 8-(tert-butylamino)-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicarboxylate
(10b); 2-amino-4H-1,3-thiazin-4-one (9a) (0.25 g, 1.95 mmol), tert-butyl isocyanide (1a)
(0.16 g, 1.95 mmol) and diethyl acetylenedicarboxylate (2b) (0.33 g, 1.95 mmol). Physical
characteristics: yellow solid; Yield: 0.63 g, 85%; Mp: 143–145 ◦C, Rf: 0.6, hexane/ethyl
acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.75 (1H, br s, NH), 7.34 (1H, d, J = 10.8 Hz,
Ar-CH), 6.51 (1H, d, J = 10.4 Hz, Ar-CH), 6.34 (1H, s, CH), 4.31–4.11 (4H, m, 2 × CH2),
1.43 (9H, s, C(CH3)3), 1.33 (3H, t, J = 7.2 Hz, CH3), 1.26 (3H, t, J = 7.2 Hz, CH3); 13C NMR
(101 MHz, CDCl3) δ 170.6 (C=O), 168.1 (C=O), 160.8 (C=O), 157.3 (C-10), 154.8 (C-8), 136.7
(C-3), 118.2 (Ar-CH), 72.5 (C-7), 61.9 (O-CH2), 59.3 (O-CH2), 52.6 (C-6),) 51.3(C(CH3)3,
30.9 (C(CH3)3, 14.9(CH3), 14.2 (CH3); FTIR νmax/cm−1: 3067, 2983, 2864, 1728, 1690, 1647,
1599, 1534, 1431; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C17H24N3O5S+ 382.1431
found 382.1439.

Dimethyl 8-(tert-butylamino)-2-methyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-
dicarboxylate (10c); 2-amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g, 1.76 mmol), tert-
butyl isocyanide (1a) (0.15 g, 1.76 mmol) and dimethyl acetylenedicarboxylate (2a) (0.25 g,
1.76 mmol). Physical characteristics: yellow solid; Yield: 0.53 g, 82%; Mp: 149–151 ◦C, Rf:
0.5, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.63 (1H, br s, NH),
6.24 and 6.23 (2H, 2 × s, Ar-CH and H-6), 3.66 (3H, s, O-CH3), 3.61 (3H, s, O-CH3), 2.17
(Ar-CH3), 1.33 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.5 (C=O),
161.2 (C=O), 157.8 (C-10), 155.3 (C-8), 149.7 (C-2), 116.1 (C-3), 72.1 (C-7), 52.9 (C-6), 52.6
(OCH3), 51.0 (OCH3), 50.8 (C(CH3)3), 30.8 (C(CH3)3) 22.1 (Ar-CH3); FTIR νmax/cm−1: 2992,
2963, 2902, 1734, 1648, 1682, 1653, 1602, 1525; HRMS (ESI–TOF) m/z: [M + H]+ calculated
for C16H22N3O5S+ 368.1275 found 368.1279.

Diethyl 8-(tert-butylamino)-2-methyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicar
boxylate (10d); 2-amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g, 1.76 mmol), tert-butyl iso-
cyanide (1a) (0.15 g, 1.76 mmol) and diethyl acetylenedicarboxylate (2b) (0.30 g, 1.76 mmol).
Physical characteristics: yellow solid; Yield: 0.57 g, 83%; Mp: 135–137 ◦C, Rf: 0.6, hex-
ane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.72 (1H, br s, NH), 6.28 (2H, 2
× s, Ar-CH and H-6), 4.27–4.06 (4H, m, 2 × CH2), 2.22 (3H, Ar-CH3), 1.39 (9H, s, C(CH3)3),
1.29 (3H, t, J = 7.2 Hz, CH3), 1.22 (3H, t, J = 7.2 Hz, CH3); 13C NMR (101 MHz, CDCl3) δ
170.7 (C=O), 168.2 (C=O), 161.4 (C=O), 157.7 (C-10), 155.2 (C-8), 149.7 (C-2), 116.1 (C-3),
72.4 (C-7), 61.8 (O-CH2), 59.2 (O-CH2), 52.6 (C-6), 51.3 (N-C(CH3)3), 30.9 (C(CH3)3, 22.1



Molecules 2021, 26, 5493 10 of 19

(Ar-CH3), 14.9 (CH3), 14.2 (CH3); FTIR νmax/cm−1: 3285, 2975, 2890, 1735, 1690, 1643,
1600, 1535, 14377; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C18H26N3O5S+ 396.1588
found 396.1597.

Dimethyl 2-methyl-4-oxo-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido [2,1-
b][1,3]thiazine-6,7-dicarboxylate (10e); 2-Amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g,
1.76 mmol), 1,1,3,3-tetramethylbutyl isocyanide (1b) (0.25 g, 1.76 mmol) and dimethyl
acetylenedicarboxylate (2a) (0.25 g, 1.76 mmol). Physical characteristics: yellow solid; Yield:
0.56 g, 76%; Mp: 114–116 ◦C, Rf: 0.6, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz,
CDCl3) δ 8.74 (1H, br s, NH), 6.34 and 6.33 (2H, 2 × s, Ar-CH and H-6), 3.76 (3H, s, OCH3),
3.69 (3H, s, OCH3), 2.27 (3H, Ar-CH3), 1.83 (CH2), 1.48 and 1.46 (6H, 2 × s, 2CH3), 0.97
(9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.5 (C=O), 161.3 (C=O),
157.6 (C-10), 155.4 (C-8), 149.8, (C-2), 116.1 (C-3), 72.0 (C-7), 56.2 (C(CH3)3), 53.3 (CH2), 52.9
(C-6), 51.1 (OCH3), 50.8 (OCH3), 31.7 (C(CH2)2), 31.8 (C(CH3)3), 31.6 (CH3), 31.5 (CH3),
22.1 (Ar-CH3); FTIR νmax/cm−1: 3285, 2951, 2899, 1739, 1687, 1649, 1599, 1535, 1442; HRMS
(ESI–TOF) m/z: [M + H]+ calculated for C20H30N3O5S+ 424.1901 found 424.1906.

Diethyl 2-methyl-4-oxo-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido[2,1-b][1,3]
thiazine-6,7-dicarboxylate (10f); 2-amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g, 1.76 mmol),
1,1,3,3-tetramethylbutyl isocyanide (1b) (0.25 g, 1.76 mmol) and dimethyl acetylenedicar-
boxylate (2a) (0.25 g, 1.76 mmol). Physical characteristics: yellow solid; Yield: 0.61 g, 77%;
Mp: 112–114 ◦C, Rf: 0.7, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ
8.73 (1H, br s, NH), 6.29 (2H, 2 × s, Ar-CH, H-6), 4.26–4.01 (4H, m, 2 × CH2O) 2.23 (3H,
s, Ar-CH3), 1.80 (2H, q, J = 14.4 Hz, CH2), 1.44 and 1.42 (6H, 2 × s, 2 × CH3), 1.31 (3H, t,
J = 6.8 Hz, CH3), 1.21 (3H, t, J = 7.2 Hz, CH3), 0.94 (9H, s, C(CH3)3); 13C NMR (101 MHz,
CDCl3) δ 170.7 (C=O), 168.2 (C=O), 161.4 (C=O), 157.4 (C-10), 155.3 (C-8), 149.6 (C-2), 116.1
(C-3), 72.3 (C-7), 61.8 (O-CH2), 59.1 (O-CH2), 56.2 (C-(CH3)3), 53.1 (CH2), 51.3 (C-6), 31.6
(C-(CH3)3), 22.1 (Ar-CH3), 14.9 (CH3CH2), 14.2 (CH3CH2); FTIR νmax/cm−1: 3285, 2975,
2890, 1735, 1690, 1643, 1600, 1535, 1477; HRMS (ESI–TOF) m/z: [M + H]+ calculated for
C22H34N3O5S+ 452.2214 found 452.2223.

Dimethyl 8-(cyclohexylamino)-2-methyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-
dicarboxylate (10g); 2-amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g, 1.76 mmol), cyclo-
hexyl isocyanide (1c) (0.19 g, 1.76 mmol) and dimethyl acetylenedicarboxylate (2a) (0.25 g,
1.76 mmol). Physical characteristics: yellow solid; Yield: 0.69 g, 84%; Mp: 148–150 ◦C, Rf:
0.42, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.52 (1H, br s, NH),
6.29 (2H, 2 × s, Ar-CH, H-6), 3.90 (1H, s N-CH), 3.72 (3H, s, OCH3), 3.67 (3H, s, OCH3), 2.23
(CH3, s, Ar-CH3), 1.93–1.70 (5H, m, cyclohexyl) 1.67–1.32 (5H, m, cyclohexyl); 13C NMR
(101 MHz, CDCl3) δ 171.1 (C=O), 168.3 (C=O), 161.2 (C=O), 159.1 (C-10), 154.2 (C-8), 149.6
(C-2), 116.0 (C-3), 71.5 (C-7), 52.9 (O-CH3), 51.2 (C-6), 50.7 (O-CH3), 49.6 (CH-NH), 34.3
(CH2, cyclohexyl), 33.7 (CH2, cyclohexyl), 25.7 (CH2, cyclohexyl), 24.8 (CH2, cyclohexyl),
24.7 (CH2, cyclohexyl), 22.1 (Ar-CH3). FTIR νmax/cm−1: 3285, 2946, 2858, 1762, 1730, 1692,
1653, 1618, 1590, 1525, 1445; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C18H24N3O5S+

394.1431 found 394.1433.
Diethyl 8-(cyclohexylamino)-2-methyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dica

rboxylate (10h); 2-amino-6-methyl-4H-1,3-thiazin-4-one (9b) (0.25 g, 1.76 mmol), cyclo-
hexyl isocyanide (1c) (0.19 g, 1.76 mmol) and diethyl acetylenedicarboxylate (2b) (0.30 g,
1.76 mmol). Physical characteristics: yellow solid; Yield: 0.63 g, 85%; Mp: 170–172 ◦C,
Rf: 0.50, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.55 (1H, br s,
NH), 6.28 (2H, 2 × s, Ar-CH, H-6), 4.27–4.09 (4H, m, 2 × CH2), 3.92 (1H, s, CH), 2.23
(3H, s, Ar-CH3), 1.93–1.69 (4H, m, cyclohexyl), 1.66–1.55 (4H, m, cyclohexyl), 1.41–1.33
(2H, m, cyclohexyl) 1.34 (3H, s, J = 7.2 Hz, CH3), 1.28 (3H, s, J = 6.8 Hz, CH3); 13C NMR
(101 MHz, CDCl3) δ 170.7 (C=O), 168.2 (C=O), 161.3 (C=O), 158.9 (C-10), 154.1 (C-8), 149.6
(C-2), 115.9 (C-3), 71.8 (C-7), 61.7 (O-CH2), 59.1 (O-CH2), 51.4 (C-6), 49.6 (CH), 34.3(CH2,
cyclohexyl), 33.7 (CH2, cyclohexyl), 25.7 (CH2, cyclohexyl), 24.8 (CH2, cyclohexyl), 24.7
(CH2, cyclohexyl), 22.1 (Ar-CH3), 14.9 (CH2CH3), 14.1 (CH2CH3); FTIR νmax/cm−1: 2992,
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2945, 2867, 1735, 1689, 1648, 1588, 1540, 1440; HRMS (ESI–TOF) m/z: [M + H]+ calculated
for C20H28N3O5S+ 422.1744 found 422.1712.

Dimethyl 8-(tert-butylamino)-2-ethyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicar
boxylate (10i); 2-amino-6-ethyl-4H-1,3-thiazin-4-one (9c) (0.25 g, 1.60 mmol), tert-butyl
isocyanide (1a) (0.13 g, 1.60 mmol) and dimethyl acetylenedicarboxylate (2a) (0.22 g,
1.60 mmol). Physical characteristics: yellow solid; Yield: 0.51 g, 84%; Mp: 135–137 ◦C, Rf:
0.48, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.70 (1H, br s, NH),
6.31 (2H, 2 × s, Ar-CH, H-6), 3.73 (3H, s, OCH3), 3.68 (3H, s, OCH3), 2.50 (2H, q, J = 7.2 Hz,
Ar-CH2), 1.40 (9H, s, C(CH3)3), 1.28 (3H, t, J = 7.6 Hz, CH3); 13C NMR (101 MHz, CDCl3) δ
171.2 (C=O), 168.5 (C=O), 161.5 (C=O), 157.9 (C-10), 155.8 (C-8), 155.3 (C-2), 114.4 (C-3), 72.1
(C-7), 52.9 (OCH3), 52.6 (C-(CH3)3), 51.2 (C-6), 50.8 (OCH3), 30.8 (C(CH3)3), 29.4 (CH2CH3),
12.5 (CH2CH3); FTIR νmax/cm−1: 3273, 2967, 2876, 1739, 1674, 1644, 1616, 1591, 1531, 1438;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C17H24N3O5S+ 382.1430 found 382.1427.

Diethyl 8-(tert-butylamino)-2-ethyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicarbo
xylate (10j); 2-amino-6-ethyl-4H-1,3-thiazin-4-one (9c) (0.25 g, 1.60 mmol), tert-butyl iso-
cyanide (1a) (0.13 g, 1.60 mmol) and diethyl acetylenedicarboxylate (2b) (0.27 g, 1.60 mmol).
Physical characteristics: yellow solid; Yield: 0.52 g, 79%; Mp: 94–96 ◦C, Rf: 0.6, hex-
ane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.72 (1H, br s, NH), 6.30 and
6.28 (2H, 2 × s, Ar-CH, H-6), 4.27–4.09 (4H, m, 2 × CH2), 2.50 (2H, q, J = 7.6 Hz, Ar-CH2),
1.40 (9H, s, C(CH3)3), 1.29–1.26 (6H, m, 2 × CH3); 13C NMR (101 MHz, CDCl3) δ 170.7
(C=O), 168.2 (C=O), 161.6 (C=O), 157.8 (C-10), 155.7 (C-8), 155.2 (C-2), 114.4 (C-3), 72.31
(C-7), 61.8 (O-CH2), 59.2 (O-CH2), 52.5 (C(CH3)3), 51.4 (C-6), 30.9 (C(CH3)3, 29.3 (Ar-CH2),
14.9 (CH3), 14.2 (CH3), 12.5 (CH3); FTIR νmax/cm−1: 3285, 2975, 2890, 1735, 1690, 1643,
1600, 1535, 14377; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C19H28N3O5S+ 410.1744
found 410.1749.

Dimethyl 8-((2,4-dimethylpentan-2-yl)amino)-2-ethyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]
thiazine-6,7-dicarboxylate (10k); 2-amino-6-ethyl-4H-1,3-thiazin-4-one (9c) (0.25 g, 1.60 mmol),
1,1,3,3-tetramethylbutyl isocyanide (1b) (0.22 g, 1.76 mmol) and dimethyl acetylenedicar-
boxylate (2a) (0.23 g, 1.60 mmol). Physical characteristics: yellow paste; Yield: 0.57 g, 81%,
Rf: 0.5, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.64 (1H, br s, NH),
6.25 and 6.24 (2H, 2 × s, Ar-CH, H-6), 3.66 (3H, s, OCH3), 3.59 (3H, s, OCH3), 2.44 (2H, q,
J = 7.6 Hz, Ar-CH2), 1.73 (CH2), 1.38 and 1.36 (6H, 2 × s, 2 × CH3), 1.21 (3H, t, J = 7.2 Hz,
CH3CH2), 0.87 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.4 (C=O),
161.4 (C=O), 157.7 (C-10), 155.8 (C-8), 155.4 (C-2), 114.3 (C-3), 71.9 (C-7), 56.2 (C(CH3)3),
53.3 (CH2), 52.8 (OCH3), 51.1 (C-6), 50.7 (OCH3), 31.8 (C(CH3)3), 31.7, 31.6 (2 × CH3) 29.3
(Ar-CH2), 12.4 (CH3); FTIR νmax/cm−1: 3285, 2950, 2902, 1780, 1738, 1687, 1649, 1598, 1532;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C21H32N3O5S+ 438.2057 found 438.2021.

Diethyl 8-((2,4-dimethylpentan-2-yl)amino)-2-ethyl-4-oxo-4,6-dihydropyrimido[2,1-b][1,3]thi
azine-6,7-dicarboxylate (10l); 2-amino-6-ethyl-4H-1,3-thiazin-4-one (9c) (0.25 g, 1.60 mmol),
1,1,3,3-tetramethylbutyl isocyanide (1b) (0.22 g, 1.60 mmol) and diethyl acetylenedicarboxy-
late (2b) (0.27 g, 1.60 mmol). Physical characteristics: yellow solid; Yield: 0.61 g, 81%; Mp:
98–100 ◦C, Rf: 0.6, hexane-ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.73 (1H,
br s, NH), 6.30 and 6.29 (2H, 2 × s, Ar-CH, H-6), 4.26–4.08 (4H, m, 2 × CH2O), 2.50 (2H,
q, J = 7.2 Hz, Ar-CH2), 1.80 (2H, q, J = 14.8 Hz, CH2), 1.45 and 1.42 (6H, 2 × s, (CH3)2-C),
1.31–1.25 (6H, m, 2 × OCH2CH3), 1.21 (3H, s, J = 7.2 Hz, ArCH2CH3), 0.94 (9H, s, C(CH3)3);
13C NMR (101 MHz, CDCl3) δ 170.7 (C=O), 168.2 (C=O), 161.6 (C=O), 157.6 (C-10), 155.7
(C-8), 155.3 (C-2), 114.4 (C-3), 72.2 (C-7), 61.8 (O-CH2), 59.1 (O-CH2), 56.1 (C(CH3)3), 53.3
(Ar-CH2), 51.4 (C-6), 31.7 (C(CH3)2), 29.3 (C-(CH3)3), 29.3 (CH2), 14.9 (CH3), 14.2 (CH3),
12.5 (CH3); FTIR νmax/cm−1: 3270, 2973, 2913, 1737, 1688, 1646, 1600, 1535, 1432; HRMS
(ESI–TOF) m/z: [M + H]+ Calculated for C23H36N3O5S+ 466.2370 found 466.2333.

Dimethyl 8-(tert-butylamino)-4-oxo-2-propyl-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-
dicarboxylate (10m); 2-amino-6-propyl-4H-1,3-thiazin-4-one (9d) (0.25 g, 1.47 mmol), tert-
butyl isocyanide (1a) (0.12 g, 1.47 mmol) and dimethyl acetylenedicarboxylate (2a) (0.21 g,
1.47 mmol). Physical characteristics: yellow paste; Yield: 0.48 g, 84%, Rf: 0.5, hexane/ethyl
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acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.72 (1H, br s, NH), 6.32 (2H, s, Ar-CH,
H-6), 3.74 (3H, s, OCH3), 3.69 (3H, s, OCH3), 2.46 (2H, t, J = 7.6 Hz, Ar-CH2), 1.71 (2H,
sextet, J = 7.6 Hz, CH2), 1.42 (9H, s, C(CH3)3), 1.03 (3H, t, J = 7.2 Hz, CH3CH2); 13C NMR
(101 MHz, CDCl3) δ 171.1 (C=O), 168.4 (C=O), 161.3 (C=O), 157.9 (C-10), 155.3 (C-8), 154.4
(C-2), 115.1 (C-3), 72.0 (C-7), 52.9 (OCH3), 52.6 (C(CH3)3), 51.1 (C-6), 50.8 (OCH3), 37.9
(C(CH3)3), 30.8 (Ar-CH2), 21.6 (CH3CH2) 13.4 (CH3); FTIR νmax/cm−1: 3282, 2960, 2916,
1739, 1685, 1647, 1597, 1567, 1531, 1441; HRMS (ESI–TOF) m/z: [M + H]+ calculated for
C18H26N3O5S+ 396.1588 found 396.1545.

Diethyl 8-(tert-butylamino)-4-oxo-2-propyl-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicar
boxylate (10n); 2-amino-6-propyl-4H-1,3-thiazin-4-one (9d) (0.25 g, 1.47 mmol), tert-butyl iso-
cyanide (1a) (0.12 g, 1.47 mmol) and diethyl acetylenedicarboxylate (2b) (0.25 g, 1.60 mmol).
Physical characteristics: yellow paste; Yield: 0.53 g, 85%, Rf: 0.56, hexane/ethyl acetate
(90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.74 (1H, br s, NH), 6.30 (2H, s, Ar-CH, H-6),
4.29–4.13 (4H, m, 2 × CH2), 2.46 (2H, t, J = 7.6 Hz, Ar-CH2), 1.71 (2H, sextet, J = 7.2 Hz,
CH2), 1.42 (9H, s, C(CH3)3), 1.34–1.32 (6H, m, 2 × CH3), 1.32 (3H, t, J = 7.2 Hz, CH3);
13C NMR (101 MHz, CDCl3) δ 170.7 (C=O), 168.2 (C=O), 161.5 (C=O), 157.8 (C-10), 155.2
(C-8), 154.3 (C-2), 115.2 (C-3), 72.3 (C-7), 61.7 (O-CH2), 59.1 (O-CH2), 52.5 (C(CH3)3), 51.3
(C-6), 38.0 (Ar-CH2), 30.8 (C(CH3)3, 21.6 (CH3CH2), 14.9, 14.1 and 13.4 (3 × CH3); FTIR
νmax/cm−1: 3285, 2975, 2910, 2870, 1737, 1687, 1646, 1600, 1535, 1432; HRMS (ESI–TOF)
m/z: [M+H]+ calculated for C20H30N3O5S+ 424.1901 found 424.1873.

Dimethyl 4-oxo-2-propyl-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido [2,1-
b][1,3]thiazine-6,7-dicarboxylate (10o); 2-amino-6-propyl-4H-1,3-thiazin-4-one (9d) (0.25 g,
1.47 mmol), 1,1,3,3-tetramethylbutyl isocyanide (1b) (0.21 g, 1.47 mmol) and dimethyl
acetylenedicarboxylate (2a) (0.21 g, 1.47 mmol). Physical characteristics: yellow paste;
Yield: 0.52 g, 79%, Rf: 0.5, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ
8.64 (1H, br s, NH), 6.24 (2H, 2 × s, Ar-CH, H-6), 3.65 (3H, s, OCH3), 3.59 (3H, s, OCH3),
2.38 (2H, t, J = 7.6 Hz, Ar-CH2), 1.73 (2H, s, C-CH2), 1.64 (2H, sextet, J = 7.2 Hz, CH3CH2),
1.38 and 1.36 (6H, 2 × s, 2 × CH3), 0.94 (3H, J = 7.2 Hz, CH3), 0.87 (9H, s, C(CH3)3);
13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.4 (C=O), 161.3 (C=O), 157.8 (C-10), 155.4
(C-8), 154.4 (C-2), 115.1 (C-3), 71.9 (C-7), 56.2 (C(CH3)3), 53.3 (Ar-CH2), 52.8 (OCH3), 51.1
(C-6), 50.7 (OCH3), 37.9 (C-CH2), 31.8 (C(CH3)3), 31.7, 31.6 (2 × CH3) 21.6 (CH3CH2), 13.4
(CH2CH3); FTIR νmax/cm−1: 3279, 2951, 2873, 1739, 1686, 1648, 1598, 1598, 1532, 1442;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C22H34N3O5S+ 452.2214 found 452.2190.

Diethyl 4-oxo-2-propyl-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido[2,1-b][1,3]
thiazine-6,7-dicarboxylate (10p); 2-amino-6-propyl-4H-1,3-thiazin-4-one (9d) (0.25 g, 1.47 mmol),
1,1,3,3-tetramethylbutyl isocyanide (1b) (0.21 g, 1.47 mmol) and diethyl acetylenedicar-
boxylate (2b) (0.25 g, 1.60 mmol). Physical characteristics: yellow paste; Yield: 0.55 g,
79%, Rf: 0.6, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.75 (1H, br s,
NH), 6.30 (2H,2 × s, Ar-CH, H-6), 4.29–4.09 (4H, m, 2 × CH2CH3), 2.46 (2H, t, J = 7.2 Hz,
Ar-CH2), 1.85–1.69 (2 × 2H, m, 2 x CH2), 1.46 and 1.44 (6H, 2 × s, (CH3)2-C), 1.33 and
1.21 (6H, 2 × s, 2 × CH3), 1.31 (3H, t, J = 6.8 Hz, CH3), 1.22 (3H, t, J = 7.2 Hz, CH3),
1.03 (3H, t, J = 7.2 Hz, CH3), 0.96 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 170.7
(C=O), 168.1(C=O), 161.5 (C=O), 157.6 (C-10), 155.3 (C-8), 154.3 (C-2), 115.1 (C-3), 72.1 (C-7),
61.7 (O-CH2), 59.1 (O-CH2), 56.1 (C(CH3)3), 53.2 (O-CH2), 51.3 (C-6), 37.9 (Ar-CH2), 31.6
(C(CH3)3), 21.6 (CH3CH2), 14.9 (CH3), 14.1 (CH3), 13.4 (CH3); FTIR νmax/cm−1: 3285, 2957,
2910, 2870, 1737, 1687, 1646, 1600, 1535, 1432; HRMS (ESI–TOF) m/z: [M + H]+ calculated
for C24H38N3O5S+ 480.2527 found 480.2526.

Dimethyl 8-(tert-butylamino)-4-oxo-2-phenyl-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-
dicarboxylate (10q); 2-amino-6-phenyl-4H-1,3-thiazin-4-one (9e) (0.25 g, 1.22 mmol), tert-
butyl isocyanide (1a) (0.10 g, 1.22 mmol) and dimethyl acetylenedicarboxylate (2a) (0.17 g,
1.22 mmol). Physical characteristics: yellow solid; Yield: 0.40 g, 77%; Mp: 99–101 ◦C, Rf:
0.58, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.74 (1H, br s, NH),
7.59–7.48 (5H, m, Ar-H) 6.69 (1H, s, Ar-CH), 6.36 (1H, s, H-6), 3.75 (3H, s, OCH3), 3.71 (3H,
s, OCH3), 1.43 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.5 (C=O),
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161.8 (C=O), 157.7 (C-10), 155.1 (C-8), 150.9 (C-2), 133.9 (Ar-C), 132.0 (Ar-C), 129.6 (Ar-CH),
126.6 (Ar-CH), 126.5 (Ar-CH), 113.9 (C-3), 72.1 (C-7), 53.0 (C-6), 52.7 (OCH3), 51.3 (OCH3),
50.9 (C(CH3)3), 30.9 (C(CH3)3); FTIR νmax/cm−1: 2977, 2841, 1735, 1683, 1582, 1448, 1370;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C21H24N3O5S+ 430.1431 found 430.1445.

Diethyl 8-(tert-butylamino)-4-oxo-2-phenyl-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-dicar
boxylate (10r); 2-amino-6-phenyl-4H-1,3-thiazin-4-one (9e) (0.25 g, 1.22 mmol), tert-butyl
isocyanide (1a) (0.10 g, 1.22 mmol) diethyl acetylenedicarboxylate (2b) (0.21 g, 1.22 mmol).
Physical characteristics: yellow solid; Yield: 0.45 g, 80%; Mp: 145–147 ◦C, Rf: 0.5, hex-
ane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.76 (1H, br s, NH), 7.59-7.47
(5H, m, Ar-H), 6.68 (1H, s, Ar-CH), 6.34 (1H, s, H-6), 4.29–4.10 (4H, m, 2 × CH2), 1.43 (9H,
s, C(CH3)3), 1.33–1.22 (6H, m, 2 × CH3); 13C NMR (101 MHz, CDCl3) δ 170.7 (C=O), 168.2
(C=O), 161.8 (C=O), 157.5 (C-10), 155.2 (C-8), 150.9 (C-2), 133.9 (Ar-C), 131.9 (Ar-C), 129.6
(Ar-C), 126.4 (ArCH), 113.9 (C-3), 72.4 (C-7), 61.9 (O-CH2), 59.2 (O-CH2), 52.6 (C-6),) 51.5
(C(CH3)3), 30.9 (C(CH3)3), 14.9 (CH3), 14.2 (CH3); FTIR νmax/cm−1: 3279, 2976, 2873, 1734,
1676, 1645, 1606, 1535, 1462; HRMS (ESI–TOF) m/z: [M+H]+ calculated for C23H28N3O5S+

458.1744 found 458.1744.
Dimethyl 4-oxo-2-phenyl-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido[2,1-

b][1,3]thiazine-6,7-dicarboxylate (10s); 2-amino-6-phenyl-4H-1,3-thiazin-4-one (9e) (0.25 g,
1.22 mmol), 1,1,3,3-tetramethylbutyl isocyanide (1b) (0.17 g, 1.22 mmol) and dimethyl
acetylenedicarboxylate (2b) (3.(0.17 g, 1.22 mmol). Physical characteristics: yellow solid;
Yield: 0.45 g, 76%; Mp: 162–164 ◦C, Rf: 0.4, hexane/ethyl acetate (90%:10%); 1H NMR
(400 MHz, CDCl3) δ 8.77 (1H, br s, NH), 7.62–7.49 (5H, m, Ar-H), 6.71 (1H, s, Ar-CH), 6.39
(1H, s, H-6), 3.77 (3H, s, OCH3), 3.71 (3H, s, OCH3) 1.85 (CH2), 1.50 and 1.48 (6H, 2 × s, 2 ×
CH3), 0.98 (9H, s, C(CH3)3); 13C NMR (101 MHz, CDCl3) δ 171.0 (C=O), 168.4 (C=O), 161.6
(C=O), 157.4 (C-10), 155.4 (C-8), 150.9 (C-2), 133.8(Ar-C), 131.9 (Ar-CH), 129.5 (Ar-CH),
126.4 (Ar-CH), 113.9 (C-3), 71.2 (C-7), 56.2 (C(CH3)3), 53.3 (CH2), 52.9 (C-6), 51.3 and 50.7
(2 × OCH3), 31.8 (C(CH3)2), 31.7 (C(CH3)3), 31.6 (CH3O), 31.5 (CH3O); FTIR νmax/cm−1:
2953, 2878, 1732, 1681, 1651, 1613, 1542, 1450;–HRMS (ESI–TOF) m/z: [M + H]+ calculated
for C25H32N3O5S+ 486.2057 found 486.2044.

Diethyl 4-oxo-2-phenyl-8-((2,4,4-trimethylpentan-2-yl)amino)-4,6-dihydropyrimido[2,1-b][1,3]
thiazine-6,7-dicarboxylate (10t); 2-amino-6-phenyl-4H-1,3-thiazin-4-one (9e) (0.25 g, 1.22 mmol),
1,1,3,3-tetramethylbutyl isocyanide (1b) (0.17 g, 1.22 mmol) and dimethyl acetylenedicar-
boxylate (2b) (0.21 g, 1.22 mmol). Physical characteristics: yellow solid; Yield: 0.52 g, 83%;
Mp: 88–90 ◦C, Rf: 0.5, hexane-ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.00
(1H, br s, NH), 7.63–7.50 (5H, m, Ar-H), 6.72 (1H, s, Ar-CH), 6.37 (1H, s, H-6), 4.34–4.11 (4H,
m, 2 × O-CH2), 1.87 (2H, q, J = 14.8 Hz, CH2), 1.50 and 1.48 (6H, 2 × s, 2 × CH3), 1.34 (3H,
t, J = 7.2 Hz, CH2CH3), 1.26 (3H, t, J = 6.8 Hz, CH2CH3), 0.98 (9H, s, C(CH3)3); 13C NMR
(101 MHz, CDCl3) δ 170.7 (C=O), 168.2 (C=O), 161.8 (C=O), 157.31 (C-10), 155.3 (C-8), 150.9
(C-2), 133.9 (Ar-C), 131.9 (Ar-CH), 129.6 (Ar-CH), 126.4 (Ar-CH), 113.9 (C-3), 72.2 (C-7), 61.8
(O-CH2), 59.2 (O-CH2), 56.2 (C(CH3)3), 53.3 (O-CH2), 51.5 (C-6), 31.8 (C(CH3)3), 31.8 (CH3),
31.7 (CH3), 14.9 (CH3), 14.2 (CH3); FTIR νmax/cm−1: 2963, 2925, 2864, 1735, 1671, 1641,
1611, 1535, 1441; HRMS (ESI–TOF) m/z: [M + H]+ Calculated for C27H36N3O5S+ 514.2370
found 514.2350.

Dimethyl 8-(cyclohexylamino)-4-oxo-2-phenyl-4,6-dihydropyrimido[2,1-b][1,3]thiazine-6,7-
dicarboxylate (10u); 2-amino-6-phenyl-4H-1,3-thiazin-4-one (9e) (0.25 g, 1.22 mmol), cyclo-
hexyl isocyanide (1c) (0.13 g, 1.22 mmol) and dimethyl acetylenedicarboxylate (2a) (0.17 g,
1.22 mmol). Physical characteristics: yellow solid; Yield: 0.44 g, 79%; Mp: 168–170 ◦C, Rf:
0.4, hexane/ethyl acetate (90%:10%); 1H NMR (400 MHz, CDCl3) δ 8.59 (1H, br s, NH),
7.63–7.51 (5H, m, Ar-H), 6.71 (1H, s, Ar-CH), 6.39 (1H, s, CH-6), 3.99 (1H, s, N-CH), 3.78 (3H,
s, OCH3), 3.73 (3H, s, OCH3), 1.99–1.59 (6H, m, cyclohexyl), 1.45–1.24 (4H, m, cyclohexyl);
13C NMR (101 MHz, CDCl3) δ 171.1 (C=O), 168.4 (C=O), 161.7 (C=O), 159.0 (C-10), 154.2
(C-8), 150.9 (C-2), 133.9 (Ar-C), 132.0 (Ar-CH), 129.6 (Ar-CH), 126.4 (Ar-CH), 113.8 (C-3),
71.4 (C-7), 52.9 (O-CH3), 51.5 (C-6), 50.8 (O-CH3), 49.7 (CHNH), 34.3 (CH2, cyclohexyl), 33.7
(CH2, cyclohexyl), 25.7 (CH2, cyclohexyl), 24.8 (CH2, cyclohexyl), 24.7 (CH2, cyclohexyl);
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FTIR νmax/cm−1: 3282, 2918, 2846, 1740, 1677, 1651, 1604, 1533, 1444; HRMS (ESI–TOF)
m/z: [M + H]+ calculated for C23H26N3O5S+ 456.1588 found 456.1592.

3.1.3. Synthesis of Methyl 7-Oxo-7H-Thiazolo[3,2-a]Pyrimidine-5-Carboxylate Derivatives
(13a–j). Method B (3-CR)

In a round-bottomed flask equipped with a magnetic stirrer bar, thiourea (15) was
added to a solution of α-haloketone (16) in absolute ethanol (15 mL) and tetrahydrofuran
(THF) (15 mL), and the reaction mixture was allowed to stir at room temperature for
at least 15 min. After this time, dimethyl acetylenedicarboxylate (DMAD) or diethyl
acetylenedicarboxylate (DEtAD) (2) was slowly added over at least 10 min, and the reaction
mixture was heated at 80 ◦C for 6–12 h while being monitored by TLC. After completion,
the reaction was cooled, and the solvents were removed under reduced pressure to obtain
a residue which was washed with cold ethanol and filtered to give a solid product.

Methyl 2,3-dimethyl-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13a). Thiourea (15)
(0.36 g, 4.6 mmol), 3-chloro-2-butanone (16c) (0.50 g, 4.6 mmol) and DMAD (2a) (0.65 g,
4.6 mmol). Physical properties brown solid; Yield: 0.89 g, 82%; Mp: 165–167 ◦C; Rf 0.5,
hexane/ethyl acetate (40%:60 %); 1H NMR (400 MHz, DMSO-d6), 6.50 (1H, s, H-6), 3.95
(3H, s, O-CH3), 2.28 (3H, s, CH3), 2.10 (3H, s, CH3); 13C NMR (101 MHz, DMSO-d6) δ
164.9 (C=O), 164.7 (C=O), 161.5 (C-9), 138.9 (C-5), 127.9 (C-2), 116.7 (C-3), 112.1 (C-6), 54.0
(O-CH3), 12.6 (CH3), 11.8 (CH3); FTIR νmax/cm−1: 2993, 1734, 1638, 1608, 1491, 1413;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C10H11N2O3S+ 239.0485, found 239.0486.

Methyl 7-oxo-3-(p-tolyl)-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13b). Thiourea (15)
(0.19 g, 2.4 mmol), 2-bromo-4-methylacetophenone (16d) (0.52 g, 2.4 mmol) and DMAD (2a)
(0.34 g, 2.4 mmol). Physical properties: orange solid; Yield: 0.51 g, 71%; Mp: 176–178 ◦C;
Rf 0.4, hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.35–7.33 (2H, m,
ArH), 7.30–7.27 (3H, m, ArH), 6.47 (1H, s, H-6), 3.15 (3H, s, O-CH3), 2.35 (3H, s, CH3);
13C NMR (101 MHz, DMSO-d6) δ 166.8 (C=O), 165.3 (C=O), 160.6 (C-9), 139.4 (C-5), 138.9
(Ar-C), 136.6 (Ar-C), 129.4 (Ar-CH), 127.5 (Ar-C), 127.2 (ArCH), 113.01 (C-6), 108.14 (C-2),
52.8 (O-CH3); FTIR νmax/cm−1: 3041, 1742, 1639, 1587, 1509, 1485, 1416; HRMS (ESI–TOF)
m/z: [M + H]+ calculated for C15H13N2O3S+ 301.0641, found 301.0648.

Methyl 3-(4-fluorophenyl)-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13c). Thiourea
(15) (0.19 g, 2.3 mmol), 2-bromo-4-fluoroacetophenone (16e) (0.51 g, 2.3 mmol) and DMAD
(2a) (0.33 g, 2.3 mmol). Physical properties: yellow solid; Yield: 0.49 g, 70%; Mp: 220–222 ◦C;
Rf 0.5, hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.56–7.53 (2H, m,
ArH), 7.37–7.34 (3H, m, ArH), 6.49 (1H, s, H-6), 3.23 (3H, s, O-CH3); 13C NMR (101 MHz,
DMSO-d6) δ 166.7 (C=O), 165.3 (C=O), 162.6 (d, JCF = 246 Hz, Ar-C), 161.3 (ArC), 160.6
(ArC), 138.7 (Ar-C),135.4 (ArC), 129.9 (d, JCF = 8.1 Hz, Ar-CH), 126.9 (d, JCF = 3.0 Hz, Ar-C),
115.9 (d, JCF = 22.1 Hz, Ar-CH), 113.1 (C-6), 109.0 (C-2), 52.9 (O-CH3); FTIR νmax/cm−1:
3058, 1742, 1640, 1581, 1489; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C14H10FN2O3S+

305.0391, found 305.0391.
Methyl 3-(4-chlorophenyl)-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13d). Thiourea

(15) (0.16 g, 2.1 mmol), 2-bromo-4-chloroacetophenone (16f) (0.50 g, 2.1 mmol) and DMAD
(2a) (0.30 g, 2.1 mmol). Physical properties: yellow solid; Yield: 0.48 g, 71%; Mp: 200–202 ◦C;
Rf 0.8, hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.58 (2H, d,
J = 8.4 Hz, ArH), 7.50 (2H, d, J = 8.4 Hz, ArH), 7.39 (1H, s, H-2), 6.50 (1H, s, H-6), 3.23 (3H,
s, O-CH3); 13C NMR (101 MHz, DMSO-d6) δ 166.8 (C=O), 165.3 (C=O), 160.6 (C-9), 138.6
(Ar-C), 135.2 (Ar-C), 134.3 (Ar-C), 129.3 (Ar-C), 129.1 (Ar-CH), 129.0 (Ar-CH), 128.7 (Ar-CH),
127.4 (Ar-CH), 113.2 (C-6), 109.5 (C-2), 52.90 (O-CH3); FTIR νmax/cm−1: 3049, 1734, 1633,
1583, 1494, 1481; HRMS (ESI–TOF) m/z: [M+H]+ calculated for C14H10ClN2O3S+ 321.0095,
found 321.0087.

Ethyl 7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13e). Thiourea (15) (0.31 g, 4.1 mmol),
chloroacetaldehyde (16a) (0.50 g, 4.1 mmol) and DEtAD (2b) (0.69 g, 4.1 mmol); Physi-
cal properties: yellow solid; Yield: 0.84 g, 91%; Mp: 180–182 ◦C; Rf 0.4, hexane/ethyl
acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 8.30 (1H, d, J = 4.8 Hz, H-2), 7.36 (1H, d,
J = 4.8 Hz, H-3), 6.76 (1H, s, H-6), 4.38 (2H, q, J = 6.8 Hz, O-CH2), 1.34 (3H, t, J = 7.2 Hz,
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CH3); 13C NMR (101 MHz, DMSO-d6) δ 166.8 (C=O), 166.0 (C=O), 160.3 (C-9), 136.6 (C-5),
124.6 (C-2), 114.3 (C-6), 110.0 (C-3), 62.9 (O-CH2), 13.7 (CH3); FTIR νmax/cm−1: 3176, 3077,
2978, 1720, 1621, 1557, 1471; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C9H9N2O3S+

225.0328, found 225.0339.
Ethyl 3-methyl-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13f). Thiourea (15) (0.41 g,

5.4 mmol), chloroacetone (16b) (0.5 g, 5.4 mmol) and DEtAD (2b) (0.92 g, 5.4 mmol); Physi-
cal properties: brown solid; Yield: 1.1 g, 86%; Mp: 150–152 ◦C; Rf 0.5, hexane/ethyl acetate
(40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.10 (1H, s, H-2), 6.53 (1H, s, H-6), 4.38 (2H,
q, J = 6.8 Hz, O-CH2), 2.23 (3H, s, CH3) 1.34 (3H, t, J = 6.8 Hz, CH3); 13C NMR (101 MHz,
DMSO-d6) δ 166.8 (C=O), 165.0 (C=O), 160.9 (C-9), 139.2 (Ar-C), 132.9 (Ar-C), 111.9 (C-6),
107.1 (C-2), 63.5 (CH2), 15.3 (CH3) 13.6 (CH3); FTIR νmax/cm−1: 2973, 1731, 1634, 1493;
HRMS (ESI–TOF) m/z: [M + H]+ calculated for C10H11N2O3S+ 239.0485, found 239.0497.

Ethyl 2,3-dimethyl-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13g). Thiourea (15)
(0.36 g, 4.6 mmol), 3-chloro-2-butanone (16c) (0.50 g, 4.6 mmol) and DEtAD (2b) (0.78 g,
4.6 mmol). Physical properties: brown solid; Yield: 0.94 g, 81%; Mp: 153–155 ◦C; Rf 0.5,
hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6), 6.5 (1H, s, H-6), 4.40 (2H,
q, J = 5.2 Hz, CH2), 2.28 (3H, s, CH3), 2.12 (3H, s, CH3), 1.33 (3H, t, J = 7.6 Hz, CH2CH3);
13C NMR (101 MHz, DMSO-d6) δ 165.0 (C=O), 164.7 (C=O), 161.0 (C-9), 139.2 (Ar-C), 127.9
(Ar-C), 116.7 (Ar-C), 112.1 (C-6), 63.5 (O-CH2), 13.6, 12.7, (2 × CH3), 11.8 (CH2CH3); FTIR
νmax/cm−1: 2988, 1732, 1641, 1489, 1452; HRMS (ESI–TOF) m/z: [M + H]+ calculated for
C11H13N2O3S+ 253.0641, found 253.0652.

Ethyl 3-(4-fluorophenyl)-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13h). Thiourea
(15) (0.19 g, 2.3 mmol), 2-bromo-4-fluoroacetophenone (16e) (0.51 g, 2.3 mmol) and DEtAD
(2b) (0.39 g, 2.3 mmol). Physical properties: yellow solid, Yield 0.63 g, 86%; Mp: 180–182 ◦C;
Rf 0.5, hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.58–7.52 (2H, m,
ArH), 7.37–7.27 (3H, m, ArH), 6.49 (1H, s, H-6), 3.61 (2H, q, J = 7.2 Hz, O-CH2) 1.04 (3H,
t, J = 7.2 Hz, CH3); 13C NMR (101 MHz, DMSO-d6) δ 166.8 (C=O), 165.4 (C=O), 162.6
(d, JCF = 246 Hz, Ar-C), 161.4 (Ar-C), 160.2 (Ar-C), 138.9 (Ar-C), 135.4 (Ar-C), 129.9 (d,
JCF = 9.1 Hz, Ar-CH), 128.0 (d, JCF = 8.1 Hz, Ar-CH), 126.9 (d, JCF = 4.0 Hz, Ar-CH), 115.9 (d,
JCF = 22.2 Hz, Ar-CH) 113.1 (C-6), 109.1 C-2), 62.7 (CH2-O), 13.3 (O-CH3); FTIR νmax/cm−1:
3061, 1733, 1639, 1489; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C15H12FN2O3S+

319.0547, found 319.0565.
Ethyl 3-(4-chlorophenyl)-7-oxo-7H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13i). Thiourea

(15) (0.16 g, 2.1 mmol), 2-bromo-4-chloroacetophenone (16f) (0.50 g, 2.1 mmol) and DE-
tAD (2b) (0.36 g, 2.1 mmol). Physical properties: yellow solid, Yield: 0.59 g, 84%; Mp:
198–200 ◦C; Rf 0.9, hexane/ethyl acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 7.58
(2H, d, J = 8.4 Hz, Ar-H), 7.51 (2H, d, J = 8.4 Hz, Ar-H), 7.39 (1H, s, H-2), 6.51 (1H, s, H-6),
3.63 (2H, q, J = 7.2 Hz, O-CH2), 1.03 (3H, t, J = 6.8, Hz, CH3); 13C NMR (101 MHz, DMSO-d6)
δ 166.8 (C=O), 165.3 (C=O), 160.1 (C-9), 138.7 (Ar-C), 135.3 (Ar-CH), 134.3 (Ar-C), 129.4
(Ar-C), 129.1 (Ar-CH), 128.9 (Ar-CH), 113.2 (C-6), 109.38 (C-2), 62.7 (CH2-O), 13.2 (CH3);
FTIR νmax/cm−1: 3057, 2986, 1733, 1640, 1580, 1501, 1482; HRMS (ESI–TOF) m/z: [M +
H]+ calculated for C15H12ClN2O3S+ 335.0252, found 335.0267.

3.1.4. Synthesis of Methyl 7-Oxo-7H-Thiazolo[3,2-a]Pyrimidine-5-Carboxylate Derivatives
(13j, 19a–b, 20 and 5) Method A (2-CR)

In a round-bottomed flask equipped with a magnetic stirrer bar, DMAD/DEtAD (2)
was added to the mixture of 2-aminothiazole derivative (11a–h) or 2-imino-1,3-oxazolidine
(17) or 1H-1,2,4-triazol-5-amine (18) or 1H-1,2,4-triazole-5-thiol (5) in ethanol. The reaction
mixture was allowed to reflux for 12–15 h while being monitored by TLC. After completion,
the reaction was cooled and the solvent was removed under reduced pressure to obtain a
residue which was washed with cold ethanol and filtered to give solid product.

N-(tert-butyl)-7-oxo-5H-thiazolo[3,2-a]pyrimidine-5-carboxylate (13j). Thiazol-2-amine
(11a) (0.20 g, 1.99 mmol), di-tert-butyl acetylenedicarboxylate (DTAD) (2c) (0.45 g, 1.99 mmol);
Physical properties: yellow solid; Yield: 0.36 g, 72%; Mp:246–248 ◦C; Rf 0.5, hexane/ethyl
acetate (40%:60%); 1H NMR (400 MHz, DMSO-d6) 8.29 (1H, d, J = 4.4 Hz, H-2), 7.34 (1H, d,
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J = 5.2 Hz, H-3), 6.73 (1H, s, H-6), 1.57 (9H, s, ((CH3)3); 13C NMR (101 MHz, DMSO-d6) δ
166.8 (C=O), 166.2 (C=O), 159.3 (C-9), 137.4 (C-5), 124.5 (C-2), 114.2 (C-6), 109.9 (C-3), 85.0
(C(CH3)3), 27.4 ((CH3)3); FTIR νmax/cm−1: 2923, 1729, 1639; HRMS (ESI–TOF) m/z: [M +
H]+ calculated for C11H13N2O3S+ 253.0641, found 253.0642.

Methyl 5-oxo-3,5-dihydro-2H-oxazolo[3,2-a]pyrimidine-7-carboxylate (19a); 2-imino-1,3-
oxazolidine (0.51 g, 5.8 mmol) and DMAD (2a) (0.83 g, 5.8 mmol); Physical properties:
White solid; Yield: 0.95 g, 82%; Mp: 251–253 ◦C; Rf 0.5, ethyl acetate (100 %); 1H NMR (400
MHz, DMSO-d6) 6.37 (1H, s, H-6) 4.67 (2H, t, J = 8.4 Hz, CH2), 4.49 (2H, t, J = 8.4 Hz, CH2),
3.87 (3H, s, O-CH3); 13C NMR (101 MHz, DMSO-d6) δ 170.9, (C=O) 162.1 (C=O), 160.8 (C-9),
138.1 (C-7), 110.9 (C-6), 66.6 (CH2), 53.5 (O-CH3), 47.03 (CH2); FTIR νmax/cm−1: 2965,
1732, 1624, 1535, 1476, 1421; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C8H9N2O4

+

197.0557, found 197.0549.
Ethyl 5-oxo-3,5-dihydro-2H-oxazolo[3,2-a]pyrimidine-7-carboxylate (19b); 2-imino-1,3-oxaz

olidine (0.51 g, 5.8 mmol) and DEtAD (2b) (0.98 g, 5.8 mmol). Physical properties: White
solid: Yield 0.98 g, 80%; Mp: 297–299 ◦C; Rf 0.5, ethyl acetate (100%); 1H NMR (400 MHz,
DMSO-d6) 5.64 (1H, s, H-6), 4.27 (2H, q, J = 7.2 Hz, O-CH2), 4.04 (2H, t, J = 6.0 Hz, CH2),
3.62 (2H, t, J = 5.6 Hz, CH2), 1.27 (3H, t, J = 7.2 Hz, CH3); 13C NMR (101 MHz, DMSO-d6) δ
170.4 (C=O) 163.2 (C=O), 161.6 (C-9), 155.7 (C-7), 89.5 (C-6), 61.1 (CH2), 58.5 (CH2), 48.1
(CH2), 13.8 (CH3); FTIR νmax/cm−1: 3125, 2958, 1700, 1698, 1662, 1642, 1637, 1381; HRMS
(ESI–TOF) m/z: [M + H]+ calculated for C9H11N2O4

+ 211.0713, found 211.0708.
Ethyl 5-oxo-5,8-dihydro-[1,2,4]triazolo[4,3-a]pyrimidine-7-carboxylate (20); 1H-1,2,4-triazol-

5-amine (0.50 g, 6.0 mmol) and DEtAD (2b) (1.02 g, 6.0 mmol). Physical properties: Brown
solid: Yield: 1.1 g, 88%; Mp: 185–187 ◦C; Rf 0.5, ethyl acetate (100 %); 1H NMR (400 MHz,
DMSO-d6) 8.91 (1H, s, H-5), 6.66 (1H, s, H-7), 4.50 (2H, q, J = 6.8 Hz, O-CH2), 1.40 (3H, t,
J = 7.2 Hz, CH3); 13C NMR (101 MHz, DMSO-d6) δ 160.5 (C=O), 158.9 (C=O), 151.9 (C-5),
134.1 (Ar-C), 132.9 (Ar-C) 112.9 (C-7), 62.5 (CH2), 12.9 (CH3); FTIR νmax/cm−1: 3150,
3068, 2909, 2731, 1722, 1680, 1610, 1579; HRMS (ESI–TOF) m/z: [M + H]+ calculated for
C8H9N4O3

+ 209.0669, found 209.0677.
7-Oxo-7H-[1,2,4]triazolo[5,1-b][1,3]thiazine-5-carboxylate (5); 1H-1,2,4-Triazole-5-thiol

(0.50 g, 5.0 mmol) and DEtAD (2b) (0.85 g, 5.0 mmol). Physical properties: White solid;
Yield: 0.92 g, 82%; Mp: 110–112 ◦C; Rf 0.9 hexane/ethyl acetate (20%:80%); 1H NMR (400
MHz, DMSO-d6) 8.68 (1H, s, H-4), 7.54 (1H, s, H-6), 4.48 (2H, q, J = 7.2 Hz, O-CH2), 1.38
(3H, t, J = 6.8 Hz, CH3); 13C NMR (101 MHz, DMSO-d6) δ 160.9 (C=O), 155.3 (C=O), 153.7
(C-4), 151.56 (C-2), 139.6 (C-7) 122.2 (C-6), 64.1 (CH2), 13.8 (CH3); FTIR νmax/cm−1: 3123,
3053, 2987, 1698, 1582, 1491; HRMS (ESI–TOF) m/z: [M + H]+ calculated for C8H8N3O3S+

226.0281, found 226.0288.

3.2. X-ray Crystallography

Intensity data for 8, 13a, 13b and 13d were collected on a Bruker Apex-II CCD area
detector (Bruker AXS, Karlsruhe, Germany) diffractometer with graphite monochromated
Mo Kα radiation (50 kV, 30 mA). The collection method involved ω- and ϕ-scans of width
0.5◦ and 1024 × 1024 bit data frames. Using Olex2 [49], the crystal structures were solved
by with the ShelXT [50] structure solution program, using Intrinsic Phasing, and refined
with the ShelXL [51] refinement package, using least-squares minimization. Non-hydrogen
atoms were first refined isotropically, followed by anisotropic refinement by full matrix
least-squares calculations based on F2.

Crystal Data for 8: C8H7N3O3S (M =225.23 g/mol): triclinic, space group P-1 (no. 2),
a = 8.6289(5) Å, b = 9.9003(6) Å, c = 11.9343(7) Å, α = 76.618(2)◦, β = 72.127(2)◦, γ = 89.767(2)◦,
V = 941.51(10) Å3, Z = 4, T = 173.15 K, µ(MoKα) = 0.333 mm−1, Dcalc = 1.589 g/cm3, 16,340
reflections measured (3.696◦ ≤ 2Θ ≤ 56.728◦), 4715 unique (Rint = 0.0461, Rsigma = 0.0464)
which were used in all calculations. The final R1 was 0.0333 (I > 2σ(I)) and wR2 was 0.0771
(all data). CCDC 2103713.

Crystal Data for 13a: C10H12N2O4S (M =256.28 g/mol): monoclinic, space group
P21/c (no. 14), a = 7.4587(3) Å, b = 20.1251(9) Å, c = 8.0128(3) Å, β = 108.8923(15)◦,
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V = 1137.98(8) Å3, Z = 4, T = 173.15 K, µ(MoKα) = 0.290 mm−1, Dcalc = 1.496 g/cm3, 11779
reflections measured (4.048◦ ≤ 2Θ ≤ 56.708◦), 2839 unique (Rint = 0.0356, Rsigma = 0.0325)
which were used in all calculations. The final R1 was 0.0359 (I > 2σ(I)) and wR2 was 0.0973
(all data). CCDC 2103714.

Crystal Data for 13b: C15H12N2O3S (M =300.33 g/mol): monoclinic, space group C2/c
(no. 15), a = 21.5767(7) Å, b = 8.7603(3) Å, c = 14.6735(5) Å, β = 93.5869(11)◦, V = 2768.13(16)
Å3, Z = 8, T = 173.15 K, µ(MoKα) = 0.245 mm−1, Dcalc = 1.441 g/cm3, 15439 reflections
measured (3.782◦ ≤ 2Θ ≤ 56.796◦), 3474 unique (Rint = 0.0236, Rsigma = 0.0204) which were
used in all calculations. The final R1 was 0.0345 (I > 2σ(I)) and wR2 was 0.0887 (all data).
CCDC 2103715.

Crystal Data for 13d: C14H9ClN2O3S (M =320.74 g/mol): orthorhombic, space group
Pbca (no. 61), a = 15.167(2) Å, b = 8.9457(14) Å, c = 19.944(3) Å, V = 2706.0(7) Å3, Z = 8,
T = 173.15 K, µ(MoKα) = 0.447 mm−1, Dcalc = 1.575 g/cm3, 16592 reflections measured
(4.084◦ ≤ 2Θ ≤ 50◦), 2381 unique (Rint = 0.1235, Rsigma = 0.1070) which were used in all cal-
culations. The final R1 was 0.0362 (I > 2σ(I)) and wR2 was 0.0696 (all data). CCDC 2103716.

CCDC 2103713-2103716 contains the supplementary crystallographic data for this
paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/
retrieving.html (accessed 20 August 2021) (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

4. Conclusions

The synthesis of novel thiazine derivatives was accomplished by using a one-pot,
three-component reaction. The facile and convenient reaction of isocyanides and DMAD
or DEtAD under inert conditions at 0 ◦C formed a zwitterion intermediate that further
reacted with compounds 9a–e. On the other hand, the synthesis of 5H-thiazolo [3,2-
a]pyrimidine-7-carboxylates was successfully accomplished by using two methods, either
by two-component or three-component reaction. The one-pot, three-component reaction
using thiourea, α-haloketone and dialkyl acetylenedicarboxylate was found to be more
effective, achieving improved yields. The 2-aminothiazole derivatives were found to
be less reactive towards DMAD and DEtAD as compared to 2-imino-1,3-oxazolidine
(17), 1H-1,2,4-triazol-5-amine (18) or 1H-1,2,4-triazole-5-thiol (5) when using the two-
component approach.

Supplementary Materials: The supplementary materials including NMR and IR spectra for the
reported compounds are available online.
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