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he movement of preleptotene/lepto-

tene spermatocytes across the blood-
testis barrier, also known as the Sertoli
cell barrier, during stages VIII to XI of
the seminiferous epithelial cycle is one of
the most important cellular events taking
place in the mammalian testis. Without
the passage of spermatocytes, spermato-
genesis would be halted, resulting in
transient or permanent sterility. Unfor-
tunately, we have very little knowledge
on how preleptotene/leptotene spermato-
cytes cross the blood-testis barrier. While
we know cytokines, proteases and andro-
gens to mediate Sertoli cell junction
restructuring, most data continue to be
derived from experiments using Sertoli
cells cultured alone in two dimensions.
Thus, additional in vitro models which
include germ cells must come into use.
In this Commentary, we hope to shed
new light on how we may better study
spermatocyte movement across the BTB.

The mechanism behind the movement
of preleptotene/leptotene  spermatocytes
across the blood-testis barrier (BTB, also
known as the Sertoli cell barrier) during
stages VIII to XI of the seminiferous
epithelial cycle has only been partly
elucidated after nearly two decades of
continuous research. In our seminal paper
on the topic, which was published in
1997, we showed that seeding freshly
isolated germ cells onto a layer of pre-
cultured Sertoli cells triggered the pro-
duction of proteases,’ which seemed to
illustrate that contact sites need to be
primed by ‘molecular scissors’ before stable
Sertoli-germ cell junctions can be estab-
lished. These biochemical findings were
significant because they were published at
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a time when testis cell junctions were
understood to only be mere morphological
structures with little needed regulation.
Today, however, we understand cell junc-
tions in the testis to be sophisticated
and dynamic ultrastructures capable of
mediating or participating in diverse
signaling cascades that regulate many
aspects of cell function. For instance, cell
adhesion facilitated by the ectoplasmic
specialization (ES), a unique type of
adhesive junction present only in the
testis, was found to involve focal adhesion
kinase (FAK) signaling.>” These results are
unprecedented but nonetheless interest-
ing because FAK, a non-receptor protein
tyrosine kinase, was long thought to
be a major regulator of cell migration
and integrin-mediated adhesion which
together form the basis of the focal con-
tact, a type of junction that attaches
a cell to its substratum.” Thus, these
biochemical studies greatly revolutionized
the biology of cell junctions in the testis,
and they paved the way for other
important studies.

The movement of preleptotene/lepto-
tene spermatocytes across the BTB in
the mammalian testis is a critical cellular
event because barrier integrity cannot be
compromised. If it were to be compro-
mised, even transiently, spermatogenesis
would be halted and infertility would
ensue. Eloquent morphological studies
from the 1980s have shown preleptotene/
leptotene spermatocytes to cross the BTB
while enclosed within an intermediate
compartment that is sealed at north and
south poles by cell junctions.® As pre-
leptotene/leptotene  spermatocytes  transit
upwards to gain entry into the adluminal
compartment of the seminiferous epithe-
lium, two simultaneous events occur: ‘old’
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junctions present above these cells dis-
assemble, while ‘new’ junctions assemble
below these cells, revealing that an enorm-
ous amount of restructuring is taking
place at the BTB during stages VIII to
XI. Equally important are the findings
that the BTB is comprised of inter-
mingled junction types [i.e., tight junc-
tions (TJs), basal ESs, desmosomes and
gap junctions], and that this unique
organization of junctions is needed to
reinforce barrier integrity, especially dur-
ing the movement of germ cells when
‘old’ and ‘new’ junctions are not yet stable
and robust. It is also worth noting that
junction assembly and disassembly during
germ cell movement involves strict co-
ordination across the different structures.
Case in point, when one junction type was
affected by knocking down the function
of a key structural ES, desmosome or gap
junction protein, the integrity of the
Sertoli cell barrier was found to be com-
promised,”'’ suggesting that an “all-or-
none” regulatory mechanism is at the
core of BTB function. So how can one
reasonably movement
of preleptotene/leptotene spermatocytes
across the Sertoli cell barrier and acquire

investigate  the

meaningful results when this cellular event
is so complicated in vivo? We focus our
remaining discussion on addressing this
important question.

Two well-characterized in vitro models
are currently available to study junction
dynamics in the testis. The first model
involves isolating highly-pure Sertoli cells
from pre-pubertal rodent testes and cul-
turing these cells at high density on
Matrigel ™-coated substrata after which
time cells polarize and assemble functional
cell junctions that structurally and bio-
chemically mimic the BTB in vivo.® The
second model is similar to the first one
just described, except that freshly isolated
germ cells are seeded on top of the Sertoli
cell epithelium at an appropriate Sertoli:
germ cell ratio and co-cultured. From
these models, we have acquired an enorm-
ous amount of useful information relat-
ing to how these junctions are assembled
and regulated. For example, we know
that cytokines can trigger integral mem-
brane protein (e.g., occludin, N-cadherin)
internalization and/or recycling at the
Sertoli 7112

cell barrier, providing an

efficient mechanism of junction disassem-
bly and reassembly during germ cell move-
ment. Unfortunately, there are several
drawbacks associated with the use of these
two in vitro models. First, Sertoli cells are
cultured in two-dimensions on MatrigelTM-
coated substrata, but we know cell biology
itself in three-dimensions.
This is critical because germ cells depend
on Sertoli cells and on their immediate

to manifest

surroundings to function properly. Second,
while Sertoli cells are known to establish
a functional T] permeability barrier when
cultured on MatrigelTM—coated bicameral
units, this barrier is not very tight, sug-
gesting that it may not accurately reflect
the biology of the BTB in vivo. Thus,
additional research is needed to identify
the missing factor(s). Finally, Sertoli-germ
cell co-cultures do not support germ cell
migration in vitro. These findings, when
taken collectively, suggest that a new
generation of experimental models is
needed that more closely relate in vitro
findings with in vivo events taking place
in* the seminiferous epithelium of the
mammalian testis.

Three dimensional (3D) cell culture
platforms are valuable tools for biologists
because they better mimic physiological
Here,
embedded within a scaffold consisting of
either a protein- [e.g., extracellular matrix
(ECM), collagen, chondroitine sulfate] or
a polymer- (e.g., polyethylene glycol, poly-
D-lysine) based material and cultured. For
example, epithelial cells that are encap-
sulated within a protein scaffold that sits

conditions. cells or tissues are

on top of a nylon mesh of large pore size
(i.e., 10 or 20 pum) can grow in-between
pores and achieve a 3D conformation.
Our own unpublished studies showed
Sertoli cells (isolated from testes of 20 d
old rats) to fill up pores when they were
cultured for extended periods of time
on top of a thin layer of Matrigel™
within a transwell system. In another
study, Legendre et al., also used a transwell
system to recapitulate the architecture of
the seminiferous epithelium in vivo when
peritubular myoid cells were cultured on
the underside of the insert, and a mixture
of Sertoli and germ cells was embedded
within the ECM and co-cultured inside of
the insert."”’ Interestingly, Sertoli cells agg-
regated to form a TJ-bearing tubular-like
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structure (somewhat similar to a semini-
ferous tubule) with germ cells concentrat-
ing at the center of the structure, and
these observations are in agreement with a
report published by Gassei et al.'* Inter-
actions between Sertoli and peritubular
myoid cells are known to be essential for
spermatogenesis,''® and the incorpora-
tion of myoid cells into 2D or 3D cell
culture platforms is likely to strengthen
our understanding of Sertoli-germ cell
interactions. For example, peritubular
myoid cells have been reported to be
targets of androgen action, and the effects
of androgens on Sertoli and germ cell
function are mediated partly by myoid
cells.'”"? Peritubular myoid cells in rodent
testes are also known to contribute to BTB
function.?®*' Moreover, Sertoli cell func-
tion is known to be regulated by compo-
nents of the ECM, which is deposited
by both Sertoli and peritubular myoid
cells.”*** It is also worth noting that myoid
cells produce peritubular factor that
modulates Sertoli cell function (PModS),
which is known to affect the secretion of
transferrin, inhibin and androgen-binding
26 Being  that
peritubular myoid cells regulate many
different aspects of Sertoli cell function
throughout spermatogenesis, they are also
likely to play an important role in germ
cell migration.

Perhaps 3D experiments should be
expanded by using Sertoli cells isolated

protein by Sertoli cells.

from adult testes because inherent mecha-
nisms that support germ cell movement
would already be in place. Furthermore,
these cells are also known to be extensively
contaminated by germ cells upon isola-
tion, which in this case may be to the
investigator’s advantage, and it would be
interesting to see if germ cells sandwich in
between Sertoli cells during aggregation/
tubule assembly since this would more
accurately reflect the organization of the
seminiferous epithelium in the testis.
While this model would not be ideal to
study de novo junction assembly (nor
would it be useful for recording trans-
epithelial electrical resistance [TER] mea-
surements) being that adult Sertoli cells
are contaminated with germ cells, it may
provide new insight on the mechanism
behind the disassembly of Sertoli-germ cell
junctions. Three dimensional scaffolds are
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also known to support germ cell differ-
entiation in the presence of Sertoli cells
and gonadotropins.”” Furthermore, others
have used sophisticated bioreactors to
culture cells in 3D.%*** In one particular
system, a slowly-rotating vessel is filled
with culture medium within which ECM-
coated porous beads are suspended. After
cells attach to ECM-coated beads and
achieve a 3D conformation, they can be
easily removed and transferred into multi-
well plates or dishes for continued experi-
mentation. In the context of the testis,
isolating staged seminiferous tubules and
culturing them within Matrigel ™ may
provide new insights on the movement
of preleptotene/leptotene  spermatocytes
across the Sertoli cell barrier. For instance,
unique signaling pathways may be trig-
gered in seminiferous tubules cultured
under 3D conditions as opposed to those
cultured under 2D conditions so that the
former model should be investigated in
future studies. Another approach may
involve isolating Sertoli, germ and peri-
tubular myoid- cells and then incubating
these cells on a rotator or rocking platform
to allow reaggregation. However, it is not
known if this in vitro system can recreate
in vivo cell-cell interactions.

When Sertoli cells are cultured at high
density on a Matrigel™-coated transwell
system, a functional TJ] permeability
barrier is known to be formed by day 3
in vitro when its assembly is monitored
by TER readings.”® Morphological studies
by electron microscopy confirmed these
findings and showed extensive junctions
between Sertoli cells,'***** which closely
resembled those found at the BTB in
vivo.”?%42 However, there is at least one
major difference between in vitro and in
vivo systems currently being used to study
BTB dynamics: the Sertoli cell permeabi-
lity barrier in vitro is categorized as being
leaky, but the BTB is one of the tightest
blood-tissue barriers in the mammalian
body,* illustrating that a critical factor(s)
is missing from Sertoli cell cultures. While
previous studies have shown follicle stimu-
lating hormone (FSH) and testosterone
to tighten the Sertoli cell T] permeabi-
lity barrier even further,>* TER readings
were still far below those reported for other
epithelia. Germ cells, as well as peritubular
myoid cells, may constitute the missing
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factor because they are known to contri-
bute to BTB function directly or indir-
ectly, as well as to engage actively in
crosstalk with Sertoli cells.**** At this
point, it would be interesting to see if
germ cells at different stages of develop-
ment can regulate barrier function posi-
tively, negatively or not at all. For instance,
germ cells lying closer to the BTB may
play a greater role in barrier restructuring,
whereas those residing farther away may
play a lesser, or possibly a different, role.
Thus, 2D and 3D co-cultures of Sertoli
cells and preleptotene/leptotene spermato-
cytes are likely to yield intriguing observa-
tions, and both models should be used to
acquire as much information as possible
on the role of germ cells in BTB dynamics.
On a final note, it is possible that Sertoli
cells are not extensively polarized in vitro,
which is likely to contribute to a leaky
permeability barrier. Adding germ cells
on top of the Sertoli cell epithelium may
enhance cell polarity, upregulate critical
junction proteins and strengthen the Sertoli
cell permeability barrier. -~ Alternatively,
Sertoli cells can be briefly cultured at high
density on Matrigel"™-coated dishes to
trigger the columnar phenotype, after which
time cells can be coated with another
(thicker?) layer of Matrigel™ which may
help Sertoli cells to polarize more extensively
without forming aggregates or tubules.
Presently, there is no in vitro model of
germ cell movement. Although we have
been unsuccessful in establishing an in
vitro system that would recapitulate at
least some of the events of germ cell
movement, this model is still achievable
in our opinion. In one of our experiments,
Sertoli cells were cultured at high density
inside of Matrigel"™-coated  transwell
systems and allowed to form an epithe-
lium. Thereafter, total germ cells were
cultured on the underside of transwell
systems and co-cultures were maintained
for extended periods of time to see if germ
cells would migrate upwards. In another
experiment, germ cells were seeded on a
thick layer of Matrigel™ within a trans-
well system, followed shortly by the plat-
ing of Sertoli cells on top of germ cells.
However, in both cases just described, no
disassembly of the Sertoli cell barrier and
no movement of germ cells were observed
when transwell systems were processed for
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electron microscopy. Instead, Sertoli cell
cytoplasmic processes moved downwards
and filled up membrane pores in the
former experiment, possibly in an attempt
to engulf and/or establish junctions with
germ cells that were cultured on the
underside of culture inserts (unpublished
observations). While germ cell migration
was not observed, these models may pro-
vide unique opportunities to study the
events leading up to germ cell movement.
For example, this model can be used to
study the formation of filopodia or lamelli-
podia, actin-rich protrusions where actin
polymerization, nucleation, elongation
and bundling occur.®® In this context, it
is worth noting that spermatogonial
stem cells, when transplanted into germ
cell-depleted testes via the efferent duct,
can colonize the niche, communicate
with Sertoli cells, proliferate/differentiate,
migrate past the BTB and restore sper-
matogenesis.”* As such, this in vivo
system has the potential to significantly
improve our understanding of germ- cell
movement during spermatogenesis. At
this point, it is also hoped that studies
from other scientific fields such as cancer
biology provide new insights on how these
experiments can be expanded in future.
The success of these in vitro models will
almost certainly depend on the inclusion
of hormones, androgens and other factors
that are critical for spermatogenesis.
Herein, we have discussed Sertoli and
Sertoli-germ cell in vitro models that have
been, and continue to be, used to study
important cellular events as they relate to
spermatogenesis. While these two systems
are far from ideal, they have provided a
wealth of useful information. For example,
we understand the role of proteases and
protease inhibitors in junction assembly
and disassembly better today than we did
in the 1990s, thanks to technological
advancements in the field. Still, it is
important that new in vitro models are
introduced in the future as these will be
invaluable in our understanding of
spermatogenesis in the mammalian testis.
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