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Abstract: Recurrent high-grade serous ovarian cancer (HGSC) is clinically very challenging and
prematurely shortens patients’ lives. Recurrent ovarian cancer is characterized by high tumor
heterogeneity; therefore, it is susceptible to epigenetic therapy in classic 2D tissue culture and
rodent models. Unfortunately, this success has not translated well into clinical trials. Utilizing a 3D
spheroid model over a period of weeks, we were able to compare the efficacy of classic chemotherapy
and epigenetic therapy on recurrent ovarian cancer cells. Unexpectedly, in our model, a single
dose of paclitaxel alone caused the exponential growth of recurrent high-grade serous epithelial
ovarian cancer over a period of weeks. In contrast, this effect is not only opposite under treatment
with panobinostat, but panobinostat reverses the repopulation of cancer cells following paclitaxel
treatment. In our model, we also demonstrate differences in the drug-treatment sensitivity of classic
chemotherapy and epigenetic therapy. Moreover, 3D-derived ovarian cancer cells demonstrate
induced proliferation, migration, invasion, cancer colony formation and chemoresistance properties
after just a single exposure to classic chemotherapy. To the best of our knowledge, this is the first
evidence demonstrating a critical contrast between short and prolonged post-treatment outcomes
following classic chemotherapy and epigenetic therapy in recurrent high-grade serous ovarian cancer
in 3D culture.

Keywords: high-grade serous ovarian cancer; recurrent ovarian cancer; chemoresistance; platinum resis-
tance; taxane resistance; spheroids; organoids; classic chemotherapy; epigenetic therapy; panobinostat

1. Introduction

Ovarian cancer comprises 3.4% of all female cancers worldwide, but is responsible for
4.4% of all female deaths due to cancer [1]. High-grade serous ovarian, fallopian tube, and
primary peritoneal cancer are thought to originate from similar fallopian tube precursors;
therefore, the term “HGSC” will serve to encompass all three of these tumors [2]. Currently,
50–75% of patients enter remission after primary surgery and chemotherapy for HGSC,
but unfortunately, 65% of these patients recur [3]. HGSC deaths are largely due to widely
metastatic and chemoresistant disease and, despite recent advances, nearly all patients
who recur will succumb to their disease [4].
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The first divide in the treatment of HGSC occurs in those that are cured upfront as
opposed to those that recur. The next divide in the recurrent cohort is in those that respond
to platinum agents and those that do not. Roughly 75% of patients with recurrence will
recur at over 6 months following initial chemotherapy and are deemed to be platinum-
sensitive [5]. The 10% that progress on chemotherapy are noted to be platinum-refractory,
and the 15% that progress from 0 to 6 months are platinum-resistant [5]. Platinum-resistant
and platinum-refractory tumors have the poorest prognosis, with a 10% response to single-
agent chemotherapy [6]. Additionally, it can be very difficult to adequately debulk these
patients because they often develop small micrometastases throughout the abdomen and
pelvis [7]. Progression-free survival for these patients is 3–4 months, whereas median
overall survival is 9–12 months [6]. Furthermore, as a result of repeated exposure, HGSC
patients develop not only platinum resistance, but taxane resistance as well [8]. There-
fore, we critically need to develop and utilize the most clinically relevant models which
mimic the progression of disease in patients, and define newer, more effective therapeutic
strategies that may help to save patients from recurrent HGSC.

The majority of preclinical studies in HGSC are based on a two-dimensional (2D)
in vitro cell culture model that is easily constructed and interpreted in the laboratory
setting [9,10]. Traditionally, 2D monolayer cultures are followed by animal models and
then clinical translational studies. Unfortunately, many therapeutic agents, which are highly
effective in 2D models, translate to up to a 95% failure rate in clinical trials [9,10]. One
reason for this discrepancy is that HGSC does not grow in monolayer in vivo; it grows in
3D spheroids [11]. Furthermore, cells in 2D monolayers have very different properties from
cells in 3D spheroid culture. Three-dimensional cells have different cell–cell communication
and cellular matrix components that cannot be replicated in 2D culture [12]. Furthermore,
cells in a 3D configuration secrete more growth factors than cells in monolayer [10]. In
fact, some epithelial ovarian cancer cell lines, such as Caov-3 and Ovcar-3, proliferate
more slowly and are more chemoresistant in 3D than 2D culture [10]. Furthermore, 3D
structures demonstrate tumor features that cannot be replicated in 2D, for example, hypoxic
and necrotic areas [13]. More importantly, studying HGSC 3D models is more relevant
because they better mimic chemoresistance [10]. HGSC spheroids better maintain the
tumor heterogeneity found in chemoresistant cell lines [14], whereas in vitro 2D culture
can take 3 to 18 months to develop a chemoresistant cell lines [15]. Moreover, in 3D
culture, chemoresistance develops much faster and more closely replicates the histological,
biological and molecular frameworks found in patient-derived ovarian cancer tissue [10].
These 3D spheroids have been shown to be responsible for the micrometastases that are so
difficult to eradicate in platinum-sensitive and platinum-resistant HGSC [7]. Furthermore,
chemoresistant cancer stem cells are far more abundant in 3D cultures when compared to
2D cultures [16].

Therefore, 3D culture can be a challenge, but when it is mastered, the results can be
reliably and accurately measured [17] and more closely mimic the pathophysiology found
in patients than 2D culture because 3D cultures have a similar density to natural human
tissues and also demonstrate a similar response to what is seen in solid tumors [11,18]. The
morphology and cellular matrix of 2D culture is problematic for adequately studying the
tumor microenvironment of HGSC, but so is the timing of experimentation. Chemotherapy
for HGSC is typically given in 21-day cycles, whereas 2D experimentation is performed
over a period of days. Therefore, extended kinetics are required to adequately study
this chemoresistance problem. The typical 48- or 72-h kinetic in 2D monolayers is again
convenient, but not clinically relevant [15]. The platinum and taxane chemotheraputics
given in these 21-day cycles are protein-bound and then the remainder is excreted in 24–52
h [19]. The protein-bound portion has been found to remain in the body for several days in
some studies and several months in others [15,20]. The effect of this low-level exposure on
HGSC is largely unknown.

As previously stated, recurrent disease can be prolonged with chemotherapy, but
is never curative. Epigenetic changes such as aberrant DNA methylation and histone
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acetylation are present in both intrinsic and acquired drug resistance in HGSC [21]. Specif-
ically, both the hypo- and hyper-methylation of CpG islands have been associated with
chemoresistance, cell cycle control, and apoptosis [21]. For example, when the promotors
of oncogenes BRCA1 and BRCA2 are hypermethylated, they are silenced [22]. This inacti-
vation of DNA repair fuels malignancies such as breast and ovarian cancer [23]. Similarly,
the demethylation of tumor suppressor genes such as p53, MLH1, p16 and others also
contributes to the genetic instability responsible for the development of HGSC [24]. These
epigenetic changes provide the framework for the development of cancer chemoresistance,
proliferation and metastasis [25]. Furthermore, there is evidence that epigenetic drugs,
which modify these epigenetic changes, are not only directly cytotoxic, but can make classic
chemotherapy more effective by reversing chemoresistance [26].

In our work, we explore the efficacy of classic chemotherapy and epigenetic therapies
in both platinum-sensitive and platinum-resistant recurrent human ovarian cancer cells in
a 3D culture model and compare it to the classic 2D monolayer culture. In constructing
our experiments evaluating chemoresistance and recurrent ovarian cancer, we not only
used a 3D model, but also evaluated these spheroids under different therapeutic strategies
over a longer kinetic. Instead of looking at our spheroids over 24–48 h, we evaluated
them over 7–14 days. Through investigating the prolonged post-treatment effect of our
therapeutics on cancer growth, we uncover a behavior of HGSC that may more closely
replicate the regrowth of cancer following chemotherapy in patients and is therefore
more clinically relevant. Finally, we demonstrate that the significant changes in growth,
migration and chemoresistance in 3D-derived HGSC following our prolonged kinetic with
classic chemotherapy may be reversible with epigenetic intervention.

2. Materials and Methods
2.1. Therapeutic Agents

Paclitaxel, cisplatin, panobinostat (pano) and suberoylanilide hydroxamic acid (SAHA)
were supplied in powdered form and stored at −20 ◦C (Table 1).

Table 1. Drug treatments used as well as their respective mechanisms of action and clinical relevance.

Treatment Mechanism Relevance

cisplatin classic chemotherapy; platinum alkylating agent commonly used in HGSC alone or in
combination with paclitaxel

paclitaxel classic chemotherapy; commonly used in HGSC alone or in
combination with cisplatintaxane antimicrotubule agent

panobinostat epigenetic therapy; histone deacetylase inhibitor improves efficacy of the cisplatin–paclitaxel
combination in preclinical models [27]

suberoylanilide hydroxamic
acid/vorinostat epigenetic therapy; histone deacetylase inhibitor improves efficacy of paclitaxel combination in

preclinical models [28]

Paclitaxel and SAHA were supplied from Sigma-Aldrich (St. Louis, MO, USA). Cis-
platin and panobinostat were supplied from Cayman Chemical (Ann Arbor, MI, USA).
Stock solutions of paclitaxel, panobinostat, and SAHA were prepared using 100% dimen-
thyl sulfoxide (DMSO; Sigma-Aldrich). Aliquots were stored at −20 ◦C. Cisplatin was
prepared using sterile normal saline and stored at −4 ◦C. Cisplatin solution was discarded
at 30 days. All drug concentrations were taken from published IC50 concentrations relevant
to each cell line, as demonstrated in Table 2.

2.2. Tissue Culture

Caov-3, a platinum-sensitive recurrent human ovarian cancer cell line, and Ovcar-3,
a platinum-resistant human ovarian cancer cell line, were obtained from the American
Type Culture Collection (Manassas, VA, USA). Caov-3 was grown in Dulbecco’s modi-
fied Eagle’s medium (DMEM; ThermoFisher Scientific, Waltham, MA, USA) with 10%
FoundationTM fetal bovine serum (FBS; GeminiBio, West Sacramento, CA, USA) and 2%
Gibco® antibiotic–antimycotic (ThermoFisher Scientific). Ovcar-3 was grown in RPMI
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1640 medium (ThermoFisher Scientific) with 10% FBS (GeminiBio), 2% Gibco® antibiotic–
antimycotic (ThermoFisher Scientific), and 10 µg/mL insulin (Sigma-Aldrich, St. Louis,
MO, USA). Media were changed every 2–4 days and cells were passaged when they reached
80–90% confluence. Cells at passages 3–10 were used for experiments. To allow for direct
comparison, cells grown in both 2D and 3D culture were simultaneously treated. All cells
were incubated at 37 ◦C.

Table 2. IC50 concentrations of Caov-3 and Ovcar-3.

Treatment IC50 for Caov-3 IC50 for Ovcar-3

cisplatin 7.5 µM [29] 152 µM [30]
paclitaxel 5.4 nM [29] 0.05 µM [31]

panobinostat 30 nM [32] 30 nM [32]
suberoylanilide hydroxamic

acid (SAHA)/vorinostat 44.2 µm [29] 2.1 µM [33]

2.2.1. Establishment of Concurrent 2D and 3D Tissue Culture

Caov-3 and Ovcar-3 were plated as single monolayers in triplicates in 6-well plates at
5 × 105 cells per well. The following day, the cells were exposed to cisplatin, paclitaxel,
cisplatin–paclitaxel, panobinostat, cisplatin–paclitaxel–panobinostat, SAHA and a DMSO
control. Cells were imaged with an inverted microscope (Leica Microsystems, Buffalo
Grove, IL, USA) and counted with ImageJ. Two-dimensional Caov-3 cells were counted on
day 0, day 3, day 5, day 7, day 9 and day 12. Three-dimensional Ovcar-3 cells were counted
on day 0, day 2, day 5 and day 7. Additionally, on the final day of experimentation, all
cells were trypsinized with Trypsin-EDTA 0.25% (ThermoFischer Scientific) and counted
directly with a Coulter Counter Z2 (Beckman Coulter, Brea, CA, USA).

The cells for 3D culture were cultured by the hanging-drop method [34] at a density
of 1600 cells per drop for Caov-3 and 2500 cells per drop for Ovcar-3 in the appropriate
growth media. The spheroids were then individually transferred into the wells of either
24- or 48-well bacterial plates and treated when the spheroid diameter reached 300–400
µm, which was 3–6 days following when they were initially plated in hanging drops. Indi-
vidual spheroids were treated with cisplatin, paclitaxel, cisplatin–paclitaxel, panobinostat,
cisplatin–paclitaxel–panobinostat, SAHA and a DMSO control. Three-dimensional cells
were imaged at 2.5×, 5×, 10× and 20×, depending upon their size, with an inverted
microscope (Leica Microsystems) and measured using ImageJ. Caov-3 spheroids were
imaged and measured on day 0, day 3, day 5, day 7, day 9 and day 12. Ovcar-3 spheroids
were imaged and measured on day 0, day 2, day 5 and day 7. Growth and cell count were
monitored with both 2D and 3D culture for 7 days for Ovcar-3, and up to 14 days in Caov-3.

2.2.2. Measurement of Spheroid Growth in 3D Culture

Direct geometric measurements have previously been effectively utilized to monitor
spheroid growth [17]. Thus, we directly measured our spheroids after imaging them and
followed their growth over time. ImageJ was used to measure the area of each spheroid
and the average radius was extrapolated from this measurement. The formula:

A = πr2

was used to calculate the average radius, which was then used to calculate the volume of
each individual spheroid at several time points as it progressed through the experiment.
The formula:

V = 4/3πr3

was used to calculate the volume.
The percentage growth for each spheroid was measured relative to itself on day 0

and plotted using Prism8 with GraphPad. Percentage growth was measured with the
following formula:
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Percentage Growth = (current spheroid volume − spheroid volume on day 0)/(spheroid volume on day 0) × 100

As an additional metric, the fold change for each spheroid was also utilized. This was
taken as the volume of the spheroid at a given point in time as relative to the volume of
that same spheroid on day 0. This was also plotted using Prism8 with GraphPad. Fold
changes were measured with the following formula:

Fold Change = current spheroid volume/spheroid volume on day 0.

2.3. Cellular Assays
2.3.1. Apoptosis and Necrosis

The cells were treated under 3D conditions for 3 days. They were then subsequently
treated according to the respective assay manufacturer’s instructions. The Invitrogen™
eBioscience™ Annexin V-FITC Apoptosis Detection Kit (ThermoFisher Scientific) was
used to detect apoptosis, and the Invitrogen™ eBioscience™ Propidium Iodide Staining
Solution (ThermoFisher Scientific) was used to detect necrosis. Three-dimensional cells
were imaged at 2.5×, 5×, 10× and 20×, depending upon their size, with an inverted
microscope (Leica Microsystems), utilizing both bright field and fluorescent microscopy.

2.3.2. Viability, Cell Proliferation, Migration and Invasion Assays

A 3-(4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide (MTT) cell prolifera-
tion assay kit was utilized, following the manufacturer’s recommendations (Invitrogen™
Vybrant™ MTT Cell Proliferation Assay Kit, ThermoFisher Scientific). Cellular material
from previously treated spheroids was trypsinized and plated in 2D monolayer at 2 × 104

cells/well in 6-well plates. Cells were counted prior to plating and the same number of
viable cells were placed in each well.

The next day, cells were placed in standard growth media with different drug treat-
ment conditions for 72 h. After MTT labeling, the 96-well cell plates were analyzed in the
SpectraMax M3 (Molecular Devices, Sunnyvale, CA, USA) to obtain absorbance or optical
density (OD) at 570 nm (and 540 nm for background reading). OD readings were then
calculated by subtracting the background of 540 nm and the background absorbance of
the media. These values were then compared to the control as a ratio of the cell viability
at each treatment.

For the proliferation assays, cellular material from the previously treated spheroids was
trypsinized and plated in 2D monolayer at 6000 cells/well in 96-well plates. Cells were counted
prior to plating, and the same number of viable cells were placed in each well. Cells were plated
in drug-free medium and monitored for proliferation over the course of 7 days. Metabolic
activity was obtained by MTT, a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
cell proliferation assay kit (Molecular Probes, Eugene, OR, USA).

Cells derived from pretreated spheroids were additionally subjected to invasion and
migration assays (CytoSelectTM 24-Well Cell Migration and Invasion Assay (8 µm, Colorimet-
ric Format), Cat# CBA-100C, Cell Biolabs, San Diego, CA, USA). All assays were performed
according to the manufacturer’s instructions.

2.3.3. Observation of Colony Formation Following Treatment in 3D Culture

SFU colony formation unit assays were performed by adding 5690 cells from the
trypsinized pre-treated spheroids to 100 mm plates (100 cells/mm2) and incubating for
14 days in the cell-appropriate media. Again, the same number of live cells was utilized
per plate. At the end of 14 days, the media were removed, and the plates were washed
with PBS. A 0.5% Crystal Violet staining solution (Sigma-Aldrich), which turns the cellular
nuclei a deep purple color, was utilized to visualize the cancer colonies. The plates were
incubated in 0.5% of Crystal Violet solution and subsequently washed 3 times in PBS prior
to imaging. The cell colonies were imaged (by Apple iPhone 8, Cupertino, CA, USA). All
pictures were taken 12 cm from the plates.
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2.3.4. Chemoresistance

Additional pre-treated spheroid-derived cells were plated in 96-well plates at 30,000 cells
per well and retreated with classic chemotherapy (paclitaxel, cisplatin or cisplatin–paclitaxel)
for evidence of chemoresistance over the course of 5 days. The same number of live cells was
plated per well. Metabolic activity was obtained by MTT at the conclusion of 5 days.

2.4. Statistical Analysis

All experiments were repeated two to eight times. The number (n) of repeated
experiments is listed in the figure legends (n = 3, n = 4, n = 5). Statistical analyses of
viability were performed with unpaired t-tests. Statistical analyses of 2D cell counts
as well as optical density differences in cellular proliferation, migration, invasion, and
chemoresistance assays were completed with one-way analysis of variance (ANOVA)
testing and post hoc testing (Tukey). ANOVA was utilized to analyze the differences
in the percentage growth of 3D Caov-3 spheroids. Due to the distribution of the data, a
Mann–Whitney U test was deemed more appropriate for the 3D Ovcar-3 spheroids. p < 0.05
was used for statistical significance. Data analysis was performed using SPSS Statistics
software version 22 (IBM, Armonk, NY, USA).

3. Results
3.1. Spheroid Formation and Experimental Design

Three-dimensional culture is more clinically relevant than two-dimensional culture;
therefore, an extended kinetic is more relevant than the typical shorter 24–72 h in which
cells are monitored. Classic chemotherapy, cisplatin, paclitaxel, and cisplatin–paclitaxel are
typically administered to patients every 3 weeks. It follows then that laboratory models
should monitor these cells for longer periods of time. These classic chemotherapies were
verified in 2D, animal models, and clinical trials; therefore, we wanted to compare the
clinically relevant treatment in our 3D system. Additionally, we wanted to evaluate the
efficacy of epigenetic therapy on ovarian cancer. Thus, we compare the classic approach to
therapy with epigenetic therapy in a 3D model with an extended kinetic.

We began by developing our tissue culture technique. We were able to make ovarian
cancer spheroids that mimic those seen in patients using both the platinum-sensitive Caov-
3 cell line and the platinum-resistant Ovcar-3 cell line, as described in the “Materials and
Methods.” As evidenced in Figure 1a, Caov-3 in 3D culture forms uniform spheres that
retain their shape over time. As seen in Figure 1b, Ovcar-3 in 3D culture forms an irregular
structure with varying cell morphology that branches and clusters.
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Figure 1. Representative images of 3D spheroid formation in ovarian cancer cell lines. Spheroids
were grown until a diameter of ~400 µm. These images represent spheroids on day 0 prior to
treatment with chemotherapy or epigenetic drugs. Scale bar is 100 µm. (a) Caov-3 spheroid; (b)
Ovcar-3 spheroid.
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As noted in day 0 in Figure 2, when the spheroids reached approximately 400 µm
in diameter, both epigenetic and chemotherapeutic drugs were administered. Classic
chemotherapeutic treatments included cisplatin, paclitaxel and cisplatin–paclitaxel (cis–tax).
Epigenetic treatments included panobinostat and suberoylanilide hydroxamic acid (SAHA).
Combination treatments included cisplatin–paclitaxel–panobinostat (cis–tax–pano) and
cisplatin–paclitaxel–SAHA (cis–tax–SAHA). Spheroid growth was then followed for an
extended kinetic, because this is more clinically relevant than shorter time periods that are
traditionally observed. When the control spheroid for each experiment stopped growing,
the experiment was concluded, which was on day 12 for Caov-3 and day 7 for Ovcar-3.
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Figure 2. Experimental design. Following spheroid formation, epigenetic therapy or chemotherapy were administered
in growth media. Measurements of spheroid growth were taken at specified time. Subsequently, 3D-derived cells from
spheroids were evaluated for proliferation, invasion, migration, chemoresistance and colony formation.

Several direct and indirect measurements were taken of our spheroids (radius, di-
ameter, area and volume). In order to measure the change in our spheroids over time,
percentage growth and fold changes were calculated in relation to each individual spheroid
on day 0. Spheroid growth was measured as a function of volume. For each volume, the
change in growth was noted for each spheroid relative to itself on day 0. The change in the
growth of these spheroids was then monitored over a period of 2–14 days. To adequately
compare 2D to 3D culture, this same timeline was applied to our 2D culture as well. At the
conclusion of phase 1 of our process, spheroids were then trypsinized and spheroid-derived
cells were tested for changes in different physiological parameters: cell growth, potency
for migration, invasion, sensitivity to a second round of chemotherapy and cancer colony
formation (CFU) (Figure 2).

3.2. In Caov-3 Cells, Paclitaxel Alone Does Not Suppress 3D Ovarian Cancer Growth in an
Extended Kinetic Assay, Whereas Epigenetic Therapy Causes Spheroid Shrinkage

As visualized in Figure 3, epigenetic therapy induces spheroid shrinkage, whereas
paclitaxel induces exponential growth in an extended kinetic. The effect of panobinostat
alone on Caov-3 spheroids over an extended kinetic (12 days) is best visualized directly by
phase contrast microscopy. Figure 3 shows that in this platinum-sensitive ovarian cancer
cell line, when compared to the control, epigenetic therapy with panobinostat leads to both
spheroid shrinkage and controls lateral spread of the tumor better than cisplatin. Panobi-
nostat treatment had sustained cytotoxicity and shrinkage on Caov-3 spheroid growth in a
short time kinetic as well as in an extended time kinetic. As compared to Caov-3 control
spheroids, which grew 100-fold (10,000% growth), surprisingly, a single administration
of panobinostat spheroids shrunk by 2-fold (up to −50% growth) (p < 0.0001) over the
course of 12 days (Figure 3, microscopic images, and Figure 6, graphic representation).
The trend in spheroid shrinkage and inhibition of spheroid expansion is visible across



Biomolecules 2021, 11, 1711 8 of 24

both experiments. The spheroids from cisplatin–paclitaxel (which is commonly utilized
in clinical practice), dispersed many single live cells and small spheroids from the central
spheroid (see Figure 3). This effect is not seen with other chemotherapy or epigenetic
treatments. A similar trend was seen with the platinum-resistant Ovcar-3 spheroids. The
schematic for this experiment can be found in Appendix A, Figure A1.
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Figure 3. Direct visualization of 3D growth of Caov-3 cells under various treatments over time. In 3D culture, panobinostat
is the only agent that causes Caov-3 spheroid shrinkage and decreases tumor spread. In contrast, in an extended kinetic,
spheroids exposed to paclitaxel show extensive growth. Spheroids exposed to cisplatin and cisplatin–paclitaxel grew at
a rate similar to the control. As seen in Appendix A, a similar trend was found with our Ovcar-3 spheroids. Scale bar
is 500 µm (n = 3).

To confirm these observations, viability assays were performed on Caov-3 spheroids
following treatment. As seen in Figure 4a, optical density, measured as OD − BG (at 570
nm), was utilized for the MTT assay. Optical density for the control cells was measured
at 5253. Cells exposed to panobinostat were less viable than the control at an optical
density of 158.2 (p = 0.009). However, the optical density for cells exposed to the commonly
utilized clinical treatment cisplatin–paclitaxel was 385.9, which is statistically less viable
than the control (p = 0.01), but still more viable than panobinostat (p = 0.001). When classic
chemotherapy was utilized with single agents, the optical density was measured at 2679 for
paclitaxel, which was not statistically significant when compared to the control (p = 0.066),
and 2360 for cisplatin, which was statistically less significant than the control (p = 0.03).
Taken together, in these assays, the treatment with panobinostat was found to be more than
2 times as cytotoxic as cisplatin–paclitaxel (p = 0.001) and 10 times more cytotoxic than
either agent alone (cisplatin p = 0.003, paclitaxel p = 0.04).
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cytotoxic than all the other treatments (p < 0.001) (n = 2). 
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day 0 (the start of treatment), on day 3, the platinum-sensitive Caov-3 spheroids demon-
strated 293% growth (threefold) when untreated (control; Figure 6), and 427% growth 
(fourfold) with paclitaxel alone (p < 0.0001). In comparison, spheroids exposed to cisplatin 
grew 80% (0.8-fold) (p < 0.0001) and 130% (1.3-fold) with cis–tax (p < 0.0001) when com-
pared to the control. In contrast, on day 3, spheroids exposed to panobinostat grew only 
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the combination of cis–tax–pano (p < 0.0001) when compared to the control. 

Figure 4. Viability assay of Caov-3 spheroids on day 3 following treatment. (a) In this MTT assay measuring the mito-
chondrial activity of the cells, optical density was used to represent the viability of the cells. Viability assays confirmed
that panobinostat is more cytotoxic when compared to the control (p = 0.009) than either of the single agents, cisplatin (p
= 0.03) or paclitaxel (p = 0.06). Although the classic combination of cisplatin–paclitaxel was effective in this assay when
compared with the control (p = 0.01), the epigenetic therapy with panobinostat was twice as cytotoxic when compared
directly to cisplatin–paclitaxel (p = 0.001) and over ten times as toxic as single-agent chemotherapy (cisplatin p = 0.003,
paclitaxel p = 0.04) (n = 2) (b) Direct cell counts were utilized to confirm MTT findings. Paclitaxel was no more cytotoxic
than the control (p = 0.278). All other treatments demonstrated cytotoxicity (p < 0.0001); furthermore, panobinostat was
significantly more cytotoxic than all the other treatments (p < 0.001) (n = 2).

Direct cell counts were used to confirm these findings, as seen in Figure 4b. When
cell counts were measured, the control was not significantly different from cells exposed
to panobinostat (p = 0.278). Cell counts for all other treatments, cisplatin, paclitaxel,
cisplatin-paclitaxel and panobinostat were significantly lower than the control (p < 0.0001).
Additionally, cell counts for panobinostat were significantly less than those cells exposed
to cisplatin and paclitaxel as single agents, as well as cells exposed to the combination of
cisplatin–paclitaxel (p < 0.0001).

Similarly, apoptosis, necrosis and viability assays further demonstrate the superiority
of panobinostat. As seen in Figure 5, panobinostat affects not only spheroid shrinkage
and dispersion, but also necrosis (red fluorescence) and apoptosis (green fluorescence). In
Figure 5, the control spheroid, as seen on day 7, demonstrates minimal necrosis, but no
apoptosis. The spheroid exposed to paclitaxel displays a similar level of necrosis as the
control, but slightly more apoptosis. The cisplatin spheroids display still more apoptosis
and necrosis, whereas the spheroid exposed to cisplatin–paclitaxel demonstrates a greater
level of apoptosis than necrosis. Very few cells were visible on day 7 when spheroids were
exposed to panobinostat; however, those present demonstrated a high level of staining for
both apoptosis and necrosis.
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counted for, spheroids still grew 800% (80-fold) on day 12 (p < 0.0001) (Figure 6). This 
result was surprising, because patients who are platinum-sensitive (which is represented 
by the cell line Caov-3) are usually treated with a platinum agent when they recur. In 
contrast, cells exposed to panobinostat not only prevented spheroid growth, but shrank 
by 6% (p < 0.0001), and those exposed to cis–tax–pano shrank by 42% (p < 0.0001). 

Figure 5. Visual display of apoptosis and necrosis of Caov-3 spheroids on day 7. Caov-3 spheroids were treated and
imaged on day 7 with green annexin V staining (apoptosis) and red propidium iodide (PI) staining (necrosis), as well as
under bright field microscopy (BF). Under control conditions, after 7 days, the spheroids showed little necrosis and no
apoptosis. Spheroids exposed to single-agent chemotherapy (cisplatin alone, paclitaxel alone) demonstrated the same low
level of apoptosis and necrosis as the control. Those spheroids exposed to cisplatin–paclitaxel demonstrated the brightest
apoptosis staining and little necrosis staining. Spheroids treated with panobinostat had little cellular material left due to the
cytotoxicity of the drug; however, what is present demonstrates high levels of apoptosis and necrosis. Scale bar is 100 µm
(n = 2).

Throughout Phase 1 of our experiment (Figure 2), the radius, diameter, area and
volume of each individual spheroid was measured relative to itself. As such, differences in
percentage growth from day zero confirm the observations that taxol-based therapy induces
exponential 3D ovarian cancer growth, whereas epigenetic therapy results in sustained
cytotoxicity. As seen in Figures 6 and 7, we then evaluated how the single agents, cisplatin
and paclitaxel, compared directly to single-agent epigenetic therapies and combinations
of classic chemotherapy with epigenetic therapy relative to the control. Unexpectedly,
ovarian cancer spheroids treated with paclitaxel alone exhibited exponential 3D growth
that was similar to the growth observed in the control. Relative to their size on day 0
(the start of treatment), on day 3, the platinum-sensitive Caov-3 spheroids demonstrated
293% growth (threefold) when untreated (control; Figure 6), and 427% growth (fourfold)
with paclitaxel alone (p < 0.0001). In comparison, spheroids exposed to cisplatin grew
80% (0.8-fold) (p < 0.0001) and 130% (1.3-fold) with cis–tax (p < 0.0001) when compared to
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the control. In contrast, on day 3, spheroids exposed to panobinostat grew only by 30%
(0.3-fold) for panobinostat alone (p < 0.0001), and had shrunk by 30% (0.3-fold) for the
combination of cis–tax–pano (p < 0.0001) when compared to the control.
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Figure 6. Graphic representation of the 3D growth of platinum-sensitive spheroids over time. (a) Spheroids exposed
to paclitaxel on day 3 exceeded that of the control: Caov-3 spheroids demonstrated 293% growth (3-fold) under control
conditions and 427% growth (4-fold) with paclitaxel alone (p < 0.0001). However, the control spheroids grow to 10,000%
(100-fold) their original size on day 12, whereas spheroids exposed to paclitaxel grow to 427% (4-fold) their original size.
Spheroids exposed to cisplatin alone grow about 200% (2-fold) their original size. (b) The standard treatment, cis-tax, is
more effective than paclitaxel alone, but still not as effective as the epigenetic therapy panobinostat, and especially in
combination with standard chemotherapy. More effective than chemotherapy, the epigenetic therapy panobinostat not only
curbed growth, but affected spheroid shrinkage, by 6% (p < 0.0001) for panobinostat alone and 42% (p < 0.0001) for the
combination of cis–tax–pano (p < 0.0001) (n = 3).

By day 12, paclitaxel Caov-3 spheroids grew by 7500% (75-fold), whereas control
spheroids treated with DMSO had expanded by 10,000% (109-fold) (p < 0.0001). Spheroids
treated with cisplatin alone expanded to 192% (twofold) (p < 0.0001). Moreover, spheroids
treated with combined chemotherapy, cisplatin and paclitaxel, demonstrated shrinkage of
the central spheroid’s size, but when lateral spread and single cell seeding was accounted
for, spheroids still grew 800% (80-fold) on day 12 (p < 0.0001) (Figure 6). This result was
surprising, because patients who are platinum-sensitive (which is represented by the cell
line Caov-3) are usually treated with a platinum agent when they recur. In contrast, cells
exposed to panobinostat not only prevented spheroid growth, but shrank by 6% (p < 0.0001),
and those exposed to cis–tax–pano shrank by 42% (p < 0.0001).
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paclitaxel, with epigenetic therapy being most effective. 
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panobinostat or SAHA. For example, spheroids exposed to cis–tax–pano grew only 9.5% 
(p = 0.01) and those exposed to cis–tax–SAHA grew only 15% (p = 0.05), whereas cisplatin 
grew 17% (p = 0.016) and cis–tax grew 32% (p = 0.05). Platinum-resistant Ovcar-3 spheroids 
grew beyond the level of the control (96% growth) with the treatments: paclitaxel (117%, 
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Figure 7. Percentage growth of cisplatin-resistant Ovcar-3 spheroids at selected timepoints under various treatments. (a)
Control spheroids grow to 1994% their original size, whereas those exposed to paclitaxel and SAHA grow to 706% and 620%
of their original size (p = 0.01) However, other treatments are far more effective. No treatments affect spheroid shrinkage. (b)
Spheroids exposed to panobinostat grew to 162% of their original size (p = 0.01), whereas, those exposed to the combination
of cisplatin–paclitaxel-panobinostat grew to 19% of their original size (p = 0.01) and those exposed to the combination of
cisplatin–paclitaxel-SAHA grew to 48% of their original size (p = 0.029). Spheroids exposed to cisplatin grew to 60% of their
original size (p = 0.016). The spheroids exposed to the combination of cis–tax grew to 76% their original size (p = 0.29) (n = 4).

3.3. In Ovcar-3 Cells, the Combination of Classic Chemotherapy with Epigenetic Therapy Is Most
Effective

In contrast to platinum-sensitive patients, platinum-resistant patients are not retreated
with a platinum agent. In fact, these patients are very difficult to successfully treat with
any currently available treatment. Not surprisingly, no therapies resulted in spheroid
shrinkage of our platinum-resistant Ovcar-3 spheroids. As seen in Figure 7, all therapies
had a partial effect in halting spheroid growth with the combination of cisplatin–paclitaxel,
with epigenetic therapy being most effective.

Relative to the control, on day 2, Ovcar-3 spheroids responded the best to the com-
binations of the classic chemotherapy cisplatin–paclitaxel with the epigenetic therapies
panobinostat or SAHA. For example, spheroids exposed to cis–tax–pano grew only 9.5%
(p = 0.01) and those exposed to cis–tax–SAHA grew only 15% (p = 0.05), whereas cisplatin
grew 17% (p = 0.016) and cis–tax grew 32% (p = 0.05). Platinum-resistant Ovcar-3 spheroids
grew beyond the level of the control (96% growth) with the treatments: paclitaxel (117%,
p = 0.352), and panobinostat (146%, p = 0.171), but these values were not statistically signifi-
cant. On day 2, SAHA alone had induced growth beyond the level of the control (250%
growth, p = 0.010).

By day 7, however, the control had grown to 1994% of its original size, whereas SAHA
had only grown to 620% of its original size (p = 0.01). Epigenetic therapies in combination
with classic chemotherapy were the most cytotoxic over time, as Ovcar-3 spheroids exposed
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to cis–tax–pano exhibited 19% growth (p = 0.01) and cis–tax–SAHA exhibited 48% growth
(p = 0.029). Spheroids exposed to paclitaxel demonstrated 706% growth (p = 0.01), whereas
spheroids exposed to panobinostat demonstrated 162% growth (p = 0.01) and those exposed
to cisplatin alone demonstrated 60% growth (p = 0.016). Ovcar-3 spheroids exposed to
cisplatin–paclitaxel demonstrated 76% growth when compared to their original size, but
this was not statistically significant (p = 0.29).

3.4. Cells Observed over an Extended Kinetic in 2D Culture Demonstrate the Same Trends Seen in
3D Culture, However, the Effect Is More Pronounced in 3D as Compared to 2D

Initially, and surprisingly, 3D Caov-3 and Ovcar-3 cells experience exponential growth
within 48–72 h of paclitaxel administration as single agents, and this is sustained throughout
the course of the experiment (Figures 6 and 7). In stage 1 of our experiment (Figure 2),
a simultaneous 2D procedure was undertaken to directly compare the results of our study
in 2D and 3D. For the 2D portion of our experiment we imaged and directly counted cells
throughout the 12-day experiment for Caov-3 and 7-day experiment for Ovcar-3. Paclitaxel
follows this same trend at the conclusion of our 2D experiment as in our 3D experiment,
but the result is not as dramatic. As seen in Figure 6, In 3D on day 12, Caov-3 spheroids
grew 103-fold in the presence of paclitaxel, whereas the control grew 109-fold (p = 0.4). In
comparison, as seen in Figure 8a, in 2D monolayer on day 12, Caov-3 grew 2-fold in the
presence of paclitaxel, whereas the control grew 1.69-fold (p = 0.375).
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ancy between what is observed in 2D cultures and the chemoresistance that is seen clini-
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with Paclitaxel; However, There Is a Decreased Proliferative Ability Noted following 
Treatment with Epigenetic Therapy 

After cell growth was monitored over a prolonged kinetic in both 2D and 3D models, 
we then sought to evaluate the metastatic potential of our 3D cells. This was performed 
with MTT assays (measured with optical density and calculated as OD-BG at 570 nm) as 
well as colony formation. As evidenced in Figure 9, Caov-3 cells that were initially treated 
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Figure 8. Growth of recurrent HGSC in 2D over a prolonged kinetic. (a) Following treatment with classic chemotherapy
(cisplatin, paclitaxel, cis–tax), Caov-3 cells rebounded within 12 days and regrew to the level of the control. In contrast,
sustained cytotoxicity was noted with epigenetic therapy (panobinostat, cis–tax–SAHA and SAHA), where cell counts were
diminished by 74–80% (p < 0.001). (b) Ovcar-3 cells recovered over the course of 7 days in response to paclitaxel; however,
other treatments diminished cell counts by one-third to one-half (p < 0.001) (n = 3).

Caov-3 cells in 2D grow to about the level of the control with classic chemotherapy.
In response to cisplatin alone and cis–tax, cells grow 1-fold at the conclusion of 12 days,
while the control grows 1.69-fold (p = 0.05, p = 1.0) (Figure 8a). This, again, is a contrast
to Caov-3 cells in 3D which grew 109-fold under control conditions, 95-fold in response
to cis–tax and 2-fold in response to cisplatin alone, (p < 0.0001) (Figure 6). Ovarian cancer
cells continue to grow over an extended kinetic with classic chemotherapy, but epigenetic
therapy retains cytotoxicity over time as compared to the control.

In response to the epigenetic therapies, Caov-3 cell counts on day 12 in 2d were
diminished by 74% with SAHA (p < 0.001), 76% with panobinostat alone (p < 0.001) and
83% in response to cis–tax–pano (p < 0.001) (Figure 8a). By comparison, Caov-3 spheroids
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shrunk by 35% (p < 0.0001) and those exposed to cis–tax–pano shrunk by 29% (p < 0.0001)
as compared to the control (Figure 6).

As seen in Figure 8b, Ovcar-3 cells in 2D monolayer on day 7 demonstrated twofold
growth in response to both paclitaxel and the control (p = 0.989). Cisplatin diminished
cell counts by 37% (p < 0.001) and cis–tax diminished cell counts by 45% (p < 0.001) in
our Ovcar-3 2D model. Panobinostat and cis–tax–pano cut cell counts by 38% and 39%,
respectively (p < 0.001), whereas SAHA diminished cell counts by half as compared to the
control (p = 0.014) (Figure 8b).

3.5. Physiologic Changes in Ovarian Cancer Cells Following Chemotherapy or Epigenetic
Treatments in 3D Culture

We then sought to analyze different properties of our 3D-cultured cells. Cells in 3D
culture are organized differently from those in 2D culture [16]. As such, 3D spheroids
have different cell–cell contacts and extracellular matrices [16]. These bundles of cells can
differentiate, secreting different growth factors and generating their own secretome [16].
Thus, we designed the following experiments to evaluate differences in our spheroid-
derived cells, not only as a result of their different treatments and prolonged kinetic, but
also because of the different structures in which they were treated. In this stage, we
also analyzed for physiologic changes in these cells. Ovarian cancer cells in patients can
develop chemoresistance after one or two cycles; therefore, we hypothesized that ovarian
cancer cells in 3D culture might change their potency for proliferation, invasion, migration
and colony formation following treatment. In this way, 3D culture might address the
discrepancy between what is observed in 2D cultures and the chemoresistance that is seen
clinically in patients.

3.5.1. Spheroid-Derived Cells Exhibit No Change in Proliferation Following Treatment
with Paclitaxel; However, There Is a Decreased Proliferative Ability Noted following
Treatment with Epigenetic Therapy

After cell growth was monitored over a prolonged kinetic in both 2D and 3D models,
we then sought to evaluate the metastatic potential of our 3D cells. This was performed
with MTT assays (measured with optical density and calculated as OD-BG at 570 nm) as
well as colony formation. As evidenced in Figure 9, Caov-3 cells that were initially treated
with classic chemotherapy in spheroid form had greater proliferative potential following
exposure to paclitaxel than any other treatment (p < 0.001). However, the cells derived
from Caov-3 spheroids initially treated with the epigenetic therapies panobinostat and
SAHA exhibited markedly diminished proliferative potential (p < 0.001). Cells treated with
cisplatin alone and cisplatin–paclitaxel also exhibited diminished proliferation (p < 0.001).
Additionally, we observed a trend where panobinostat and SAHA were more effective in
reducing proliferation than cisplatin and cisplatin–paclitaxel; however, this did not reach
statistical significance (p = 0.204 to p = 0.659).

3.5.2. Cells Treated with Paclitaxel Demonstrate Increased Migration Capability, Whereas
Those Treated with Epigenetic Therapy Demonstrate Decreased Invasion Capability

Recurrent HGSC notoriously migrates and invades both locally and distally within
patients; therefore, we next tested changes in the ability of our cells to migrate and invade.
As shown in Figure 10, spheroid-derived ovarian cancer cells had differing invasion
and migration abilities based on their initial treatment in our 3D environment. Again,
spheroid-derived cells initially treated with the classic chemotherapy and paclitaxel alone
demonstrated increased migration in Caov-3 and invasion in Ovcar-3. Interestingly, this
capability was significantly higher than that of the control (p < 0.001) and persisted across
both our platinum-sensitive and platinum-resistant cell lines.
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Figure 9. Changes in the proliferation of 3D-derived cells following various treatments. Cells derived from Caov-3 spheroids
pretreated with a DMSO control, paclitaxel, cisplatin, cisplatin–paclitaxel and panobinostat were allowed to regrow for
7 days. Optical density (OD) was measured at 570 nm minus the background (BG). (a) Cells treated with paclitaxel
demonstrated regrowth almost to the level of the control (p < 0.001). (b) Cells pretreated with panobinostat and SAHA
demonstrated the sustained inhibition of proliferation of Caov-3 spheroid-derived cells as compared to the control (p <
0.001) (n = 8).

Caov-3 spheroid-derived cells previously exposed to the epigenetic therapies of
panobinostat and SAHA both displayed a decreased propensity for migration when com-
pared to the control; however, only the treatment of SAHA reached statistical significance
(p = 0.005). Ovcar-3 cells previously treated in spheroid form with paclitaxel and cisplatin–
paclitaxel displayed an increased propensity for invasion over the control (p > 0.001 and
p = 0.015, respectively). There was a trend toward decreased invasion with the epigenetic
therapies panobinostat and SAHA; however, these optical densities did not reach statis-
tical significance (p = 0.879 and p = 0.086). Interestingly, in our Ovcar-3 invasion assays,
SAHA outperformed all three classic chemotherapeutic regimens, paclitaxel, cisplatin
and cisplatin–paclitaxel (p < 0.001, p = 0.014, and p = 0.001, respectively). The results
from our Caov-3 invasion assay were not significant (data not shown), highlighting the
fact that different cell lines within ovarian cancer harness their metastatic potential with
differing mechanisms.

3.5.3. Epigenetic Therapy Reduces the Ability for Ovarian Cancer Cells to Form Colonies,
Whereas Classic Chemotherapy Does Not Have This Effect

A known characteristic of HGSC is its ability to seed the peritoneal cavity causing
micrometastases. Therefore, we analyzed the ability or inability of 3D derived ovarian
cancer cells to reform colonies following treatment with either classic chemotherapy or
epigenetic therapy. As evidenced in Figure 11, spheroid-derived cells previously treated
with paclitaxel form colonies that are a similar density to those of the control. There
are sequentially fewer colonies formed from cells derived from spheroids previously
treated with cisplatin–paclitaxel and cisplatin. No visible colonies were seen in spheroids
previously treated with panobinostat.
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Figure 10. Changes in migration and invasion capacity in spheroid-derived cells following their initial treatment in a 3D
system. Surprisingly, cells from both lines exposed to paclitaxel demonstrated a greater ability to migrate and invade than
the control. Optical density was measured at 570 nm minus the background. (a) Pretreated Caov-3 cells from spheroids were
replated over migration assays. Cells treated with epigenetic therapy had diminished propensity for migration, although
these did not reach statistical significance. (b) Pretreated Ovcar-3 cells from spheroids were replated over invasion assays.
Again, epigenetic therapy appeared to thwart the invasion capability of these cells, although they did not reach statistical
significance (n = 2).
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Figure 11. Cancer colony formation of Caov-3 cells derived from spheroids following initial treatment in a 3D environment.
One hallmark of aggressive recurrent cancer is the potential formation of cancer cell colonies, because these cells have the
unique ability to seed and colonize a new environment. Therefore, we replated Caov-3 spheroid-derived cells previously
treated with a DMSO control, paclitaxel, cisplatin, cis–tax and panobinostat. Cells previously exposed to paclitaxel formed
colonies with a density similar to the control. Cells exposed to cisplatin and cis–tax grew substantially fewer colonies,
whereas no colonies are visible with cells treated with panobinostat (n = 3).

3.6. Chemoresistance Observed in 3D Ovarian Cancer Cells Is Reversible with Epigenetic Therapy

Moving forward, we analyzed the selectivity of ovarian cancer to a second round
of chemotherapy after the first round of treatments was given in the 3D model. For this
purpose, we derived the ovarian cancer cells from the spheroids after they had been
allowed to grow in treated and untreated (DMSO control) media for 14 days (Caov-3) or
7 days (Ovcar-3). Subsequently, the derived cells were treated again with a DMSO control
or classic chemotherapy (paclitaxel, cisplatin or cisplatin–paclitaxel). The survival ability
of the cells was quantified by MTT viability assay, which was measured in optical density.
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Caov-3 cells are known to be cisplatin-sensitive. As seen in Figure 12a, cells derived
from Caov-3 spheroids subsequently treated with cisplatin were reduced by 50% when they
were previously exposed to cisplatin (p < 0.001), and by 80% when they were previously
exposed to cis–tax (p < 0.001). Interestingly, cells previously treated with paclitaxel and
subsequently treated with cisplatin became platinum-resistant, because they had a similar
density to the control (p = 0.159). The epigenetic therapies panobinostat and SAHA when
used prior to cisplatin most significantly sensitized cells to platinum, because only 9%
remained following these treatments (<0.001).

Similar trends were seen in the Caov-3 line with another regiment commonly uti-
lized in clinical practice, cisplatin–paclitaxel (Figure 12a). Caov-3 cells previously treated
as spheroids with paclitaxel retained 70% of their cellular material when subsequently
exposed to cis–tax (p = 0.013), and those previously treated with cisplatin retained 37%
of their material (p < 0.001). However, those previously treated with cis–tax kept 25% of
their original cellular material when retreated with cis–tax (p < 0.001). Cells previously
retreated with the epigenetic therapies panobinostat and SAHA diminished growth in
cells subsequently treated with cis–tax by 17% and 16%, respectively (p < 0.001), indicating
reduced chemoresistance and increased chemosensitivity with epigenetic therapies.

Cells derived from Caov-3 cells previously treated with paclitaxel were resistant to
paclitaxel after only one round of chemotherapy because they also grew to the level of
the control (p = 1.0) (Figure 12a). Cells previously treated with cisplatin and subsequently
treated with paclitaxel grew to 48% of the control, although this was not statistically
significant (p = 0.064). Cells previously treated with cis–tax and subsequently treated
with paclitaxel retained 25% of their cellular material (p = 0.019). Cells previously treated
with panobinostat and SAHA were most effective at maintaining chemosensitivity when
retreated with paclitaxel, because those cells grew to 10% of the control (p = 0.008 and
p = 0.009, respectively).

Furthermore, Caov-3 cells first treated with panobinostat and SAHA demonstrated
sustained cytotoxicity, because they failed to regrow even under control conditions. As
evidenced in Figure 12a, regardless of the retreatment, spheroids first treated with panobi-
nostat and SAHA developed no chemoresistant properties, and were more susceptible to
classic chemotherapy, paclitaxel, cisplatin and cisplatin–paclitaxel. In contrast, ovarian
cancer cells that had been exposed to classic chemotherapeutic agents first demonstrated
more chemoresistance in the second cycle of chemotherapy.

As seen in Figure 12b, the epigenetic drugs panobinostat and SAHA were also effective
in reducing chemosensitivity in the Ovcar-3 cell line; however, this effect was not as
pronounced as in the Caov-3 cell line. This line is platinum-resistant; therefore, cells
previously exposed to cisplatin grew to the level of the control when exposed to all other
chemotherapies in the second round: cisplatin, cis–tax and paclitaxel (p = 0.392). However,
cells previously exposed to panobinostat and SAHA grew to densities that were 58% and
53% of the control, respectively (p = 0.005 and p = 0.003). Thus, epigenetic therapy has the
ability to reverse platinum resistance in this known platinum-resistant cell line.

Interestingly, as with the Caov-3 cell line, Ovcar-3 cells previously treated with pacli-
taxel retained nearly all of their cellular material when re-exposed to paclitaxel, indicating
not only platinum resistance, but taxane resistance as well (Figure 12b). All other pre-
treatments, cisplatin, cis–tax, panobinostat and SAHA, retained 20–30% of their cellular
material when given paclitaxel in a second round of chemotherapy (p < 0.001).

As seen in Figure 12b, Ovcar-3 cells previously treated with paclitaxel, cisplatin and
cis–tax retained all of their cellular material when retreated with cis–tax, again indicating
both platinum and taxane resistance.
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however, panobinostat and SAHA were the most effective in reversing chemoresistance (p < 0.001) 
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Figure 12. Optical density of ovarian cancer cells following a second round of classic chemotherapy.
Spheroids were pretreated with a DMSO control, paclitaxel, cisplatin, cisplatin–paclitaxel, panobinos-
tat and SAHA. They were then collected following primary treatment (denoted with the superscript
“1”) and retreated with a subsequent treatment (denoted with the superscript “2”). Optical density
was measured at 570 nm minus the background. (a) Caov-3 cells pretreated with panobinostat
and SAHA demonstrated sustained chemosensitivity when retreated with classic chemotherapy
(p < 0.001). (b) All Ovcar-3 cells were somewhat resensitized to chemotherapy after one treatment;
however, panobinostat and SAHA were the most effective in reversing chemoresistance (p < 0.001)
(n = 2).

4. Discussion

Current ovarian cancer treatments fail in platinum-sensitive and platinum-resistant
patients due to rapidly developing chemoresistance. The lethality of ovarian cancer lies not
in its initial diagnosis, but in its recurrence, where treatment is rarely curative. Chemore-
sistant clones, which are often present in the initial tumor, grow selectively under the
pressure of chemotherapy [35,36]. Furthermore, there is evidence that patients with tumors
with high clonal expansion of these stem cells have shorter disease-free intervals and
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shorter survival [35]. Mutational profiling of recurrent disease has identified extensive
intertumoral heterogeneity and genomic instability, which allows for the formation of these
chemoresistant clones [25,37,38].

The cell lines Caov-3 and Ovcar-3 have traditionally been used to study platinum-
sensitive and platinum-resistant ovarian cancer, respectively. However, it must be noted
that these terms are in reference to how patients respond to platinum-based chemotherapy,
and not necessarily how cells respond to these treatments in vitro. Ovarian cancer patients
that recur over 6 months following the completion of chemotherapy are platinum-sensitive,
whereas ovarian cancer patients that recur within 6 months of completion of chemotherapy
are platinum-resistant [5]. Although our Ovcar-3 cells did respond to cisplatin in our 7-day
experiments (Figure 7), this did reflect what is typically seen in platinum-resistant patients.
Women with platinum-resistant ovarian cancer do enter remission following treatment
with cisplatin, but then they recur within 6 months of treatment.

Traditional 2D cell culture is unable to adequately study the chemoresistant clones
associated with both platinum-sensitive and platinum-resistant disease because these
chemoresistant cells do not proliferate in 2D; they instead grow in 3D spheroids in pa-
tients [39]. Although the trend in classic chemotherapy outcomes is similar between 2D
and 3D systems over a short period of time, overall, drug sensitivity and final treatment
outcomes over a prolonged time period can be very different. This may directly explain the
difference that we observe in disease progression in patients versus traditional 2D culture
models and point to the superiority of a 3D model in studying ovarian cancer in vitro.

Two-dimensional systems are certainly advantageous because they are timely and
efficient, but the results can be misleading [14]. The disadvantage of 3D systems is that the
process is slow due to the high level of difficulty in 3D culture setup, maintenance and
the interpretation of results. Despite these disadvantages, we think that the adoption of
3D systems is critical for the development of novel, effective cancer treatments. Cell–cell
interactions, the extracellular matrix, the tumor microenvironment, growth factor secretion,
and cancer stem cells are all different in 3D as opposed to 2D culture [40,41]. There is evi-
dence that HGSC can transition from an epithelial to a mesenchymal subtype and that this
subtype leads to platinum resistance [42]. Ovarian cancer cells undergoing this transition
loosen their cell–cell contacts, acquiring stem cell characteristics and advanced metastatic
potential [43]. These cell–cell interactions are likely better captured in 3D. Ovarian cancer
cells that are cultured in 3D often express different adherens junction proteins and are
often more chemoresistant than the same cells that are cultured in 2D monolayers [10].
Furthermore, the prominent mechanism of HGSC is the direct metastasis of 3D spheroids
throughout the abdominal cavity via ascites [11]. These spheroids often contain cancer
stem cells, which are also known as chemoresistant clones [38,43]. Hence, it appears that
3D models are likely the most clinically relevant way of studying chemoresistant ovarian
cancer cell lines [14].

One unique property of our 3D spheroid system is our ability to directly compare
the growth of 3D spheroids between different treatments for prolonged periods of time
(Figure 3). This may be critically important because more complete upfront eradication
may confer a survival benefit. The longer cancer cells are exposed to chemotherapy,
the more chemoresistance is acquired. Moreover, we followed the outcomes of classic
chemotherapy and epigenetic drug therapies in two weeks, instead of few days. When
classic chemotherapy is utilized to treat HGSC, it is most commonly performed in 21-day
cycles. Thus, we believe that preclinical studies should also be conducted over longer
periods of time. The long-term kinetic of our experiment is designed to monitor the long-
term efficacy of classic chemotherapy and epigenetic therapy regarding recurrent disease.

Our data show significant differences from classic ovarian cancer treatments; therefore,
we believe that a 3D tissue culture system is absolutely necessary in developing novel cancer
treatments because our results show that the same set of drugs used in 2D versus 3D tissue
culture may lead to different and sometimes completely unexpected long-term outcomes
(Figures 3 and 8). The most surprising result of our study was that one administration
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of a single paclitaxel agent could cause the exponential growth of Caov-3 and Ovcar-3
cells over an extended kinetic in a 3D model. Even in the presence of known platinum
sensitivity, classic single-agent chemotherapy did not appear to confer a benefit (Figures 6
and 7). Furthermore, our model demonstrates that classic chemotherapy induces cell death
mostly by apoptosis in our spheroid model, whereas epigenetic therapy induces cell death
by both apoptosis and necrosis (Figure 5). These findings of cytotoxicity were confirmed
with our viability assay (Figure 4). Additionally, epigenetic therapy was twice as effective
against Caov-3 as the classically used cisplatin–paclitaxel (Figure 4).

A single administration of the epigenetic drug panobinostat was directly cytotoxic
over 1–2 weeks across both cell lines and in both 2D and 3D tissue culture models (Figure
9). SAHA was highly effective in 2D, but had mixed results in 3D (Figures 6–8). SAHA
and panobinostat both work as histone deacetylase (HDAC) inhibitors, preventing the
unwinding of DNA and subsequent DNA expression. Due to the high level of tumor
heterogeneity found in HGSC, different epigenetic therapies can have different effects
on tumor proliferation. We believe that intertumoral heterogeneity is responsible for our
unexpected results, namely, the exponential growth of our cell lines in the presence of classic
chemotherapy and the inconsistent results we encountered with SAHA. As others have
identified, the efficacy of epigenetic therapy and its synergism with classic chemotherapy is
dependent upon the cell line and tumor-specific characteristics, which again are attributed
to the wide tumor heterogeneity encountered in HGSC [44].

The classic model of experimentation starting with 2D in vitro studies, then animal
in vivo projects, and finally to clinical trials has not been as effective in predicting how
HGSC will respond to epigenetic therapy. For example, SAHA was found to induce tumor
suppressor genes, apoptosis and cell cycle arrest in ovarian cancer cell lines and xenografts
with nude mice [45]; however, a phase II study of the drug vorinostat demonstrated mini-
mal activity in recurrent platinum refractory HGSC patients [46]. Furthermore, we believe
that our 3D model and extended kinetic more closely mimic the behavior of these spheroids
in vivo; thus, we experienced similar results to the phase II study demonstrating the limited
efficacy of vorinostat in vivo [46]. Other trials with SAHA, such as the one performed by
Matulonis et al., demonstrated that when used in direct combination with carboplatin and
gemcitabine, vorinostat was effective in 16 patients, but too toxic to tolerate [47].

Epigenetic therapy, however, still holds great promise [24,48]. A pan-HDAC inhibitor
similar to SAHA, panobinostat, has demonstrated efficacy in both in vivo and in vitro mod-
els; however, has caused dose-limiting grade 4 myelosuppression in clinical trials [26,49].
Although panobinostat has demonstrated itself too toxic to be effectively administered in
phase I trials, it is yet to be explored as a chemosensitizer or as intraperitoneal therapy at the
time of cytoreductive surgery. Both of these applications would allow for the use of a very
potent HDAC inhibitor at lower, and presumably less toxic, dosages [50]. Wilson et al. have
demonstrated panobinostat to be a sensitizer of homologous recombination-proficient ovarian
cancer to olaparib, a PARP inhibitor and newer treatment for HGSC [50]. As evidenced in
our work, panobinostat increases the efficacy of classic chemotherapy as well. In causing
spheroid shrinkage, panobinostat may decrease the size of chemoresistant clones circulating
in ascites, and not only limit the spread of metastatic disease, but also make that disease
more susceptible to classic chemotherapy. Even in the most persistent recurrent cell line,
which demonstrates both platinum and taxane resistance, panobinostat augmented classic
chemotherapy in our 3D spheroid model (Figure 12). Furthermore, if it reduces the amount of
cisplatin–paclitaxel required, panobinostat can also decrease toxicity to classic chemotherapy
when used sequentially.

As Modesitt et al. have suggested, the timing of epigenetic therapy with chemotherapy
may be critical [44]. Sequential use of conventional chemotherapy and epigenetic drugs has
been shown to decrease toxicity to normal cells while maintaining cytotoxicity in ovarian
cancer cells in vitro [29]. This method has not been utilized in clinical trials involving
epigenetic therapy. Other modalities, such as intraperitoneal therapy, may present an op-
portunity to maximize the effectiveness of epigenetic therapy while minimizing its toxicity.
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As Tanenbaum et al. have demonstrated in a spheroid model, intraperitoneal doses of
chemotherapy may be more effective at shrinking spheroids intra-abdominally [17]. Indeed,
panobinostat may be more effective upfront, as intraperitoneal therapy prior to initiating
classic chemotherapy. This is the premise behind the OVATION 2 trial which is currently
recruiting patients (NCT033938840). In this trial, Il-12 is being given intraperitoneally prior
to neoadjuvant chemotherapy in order to increase sensitivity and act synergistically with
classic chemotherapy.

Our study does have some limitations. We were quantifying growing bodies of cells
over time; therefore, we could not directly use the same unit (for example, cell counts) in
all of our observations. Thus, we relied on several different methods to both measure and
observe the trends in our results. We directly observed the spheroids with our apoptosis–
necrosis assay, again, because we were observing spheroid growth over time. However,
spheroid slices, if technically feasible, would be a better way of quantifying the data.
Additionally, we utilized an MTT assay to observe chemoresistance patterns in our cells.
This could have been better quantified with growth curves and/or colony assays.

Future studies should expand on the spheroid model and expand the timelines in
which ovarian cancer cells are exposed to treatment. In extending the kinetic of tumor
testing, exploring panobinostat as an option for recurrent and persistent disease, and
alternating epigenetic therapy with classic chemotherapy, our work offers new strategies
for studying this deadly disease.

5. Conclusions

There is a crucial need to develop a 3D tissue culture system in which we have the
ability to test novel therapeutic strategies in ovarian cancer treatments that may overcome
this chemoresistance problem and save ovarian cancer patients. In this study, we offer
a spheroid-based reliable 3D culture model that allows the side-by-side comparison of
efficient and novel cancer treatments over a prolonged period of time. We anticipate that
this 3D system will more closely mimic the development of cancer propagation in patients
and also allow us to follow treatment outcomes for a longer time period as compared to
traditional tissue culture models.

In summary, the use of paclitaxel as a single agent caused the exponential growth
of recurrent ovarian cancer cell lines in our 3D culture over an extended kinetic. These
changes were consistently reversible with the epigenetic therapy panobinostat. Cells treated
with panobinostat become more sensitive to classic chemotherapy. Therefore, we believe
that panobinostat should be explored as a chemosensitizer in advanced ovarian cancer.
It was found to be too toxic when administered simultaneously with classic chemotherapy;
therefore, panobinostat should be investigated as sequentially administered with classic
chemotherapy both to limit the dose but also to use the drug as a chemosensitizer. Fur-
thermore, because it does appear to affect spheroid shrinkage, panobinostat may also have
utility as an upfront intraperitoneal therapy to sterilize the abdomen of miliary disease.
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Figure A1. Direct visualization of 3D growth of Ovcar-3 cells under various treatments over time. 
In 3D culture, paclitaxel spheroids continue to grow to at the same rate of the control, while pano-
binostat is superior in effecting spheroid shrinkage. Spheroids exposed to cisplatin and cisplatin–
paclitaxel grow at a rate similar to the control. Scale bar is 500 µm. 
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Figure A1. Direct visualization of 3D growth of Ovcar-3 cells under various treatments over time. In
3D culture, paclitaxel spheroids continue to grow to at the same rate of the control, while panobinostat
is superior in effecting spheroid shrinkage. Spheroids exposed to cisplatin and cisplatin–paclitaxel
grow at a rate similar to the control. Scale bar is 500 µm.
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