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Background: Identification of a simplified prediction model for lymph node metastasis
(LNM) for patients with early colorectal cancer (CRC) is urgently needed to determine
treatment and follow-up strategies. Therefore, in this study, we aimed to develop an
accurate predictive model for LNM in early CRC.

Methods: We analyzed data from the 2004-2016 Surveillance Epidemiology and End
Results database to develop and validate prediction models for LNM. Seven models,
namely, logistic regression, XGBoost, k-nearest neighbors, classification and regression
trees model, support vector machines, neural network, and random forest (RF) models,
were used.

Results: A total of 26,733 patients with a diagnosis of early CRC (T1) were analyzed. The
models included 8 independent prognostic variables; age at diagnosis, sex, race, primary
site, histologic type, tumor grade, and, tumor size. LNM was significantly more frequent in
patients with larger tumors, women, younger patients, and patients with more poorly
differentiated tumor. The RF model showed the best predictive performance in
comparison to the other method, achieving an accuracy of 96.0%, a sensitivity of
99.7%, a specificity of 92.9%, and an area under the curve of 0.991. Tumor size is the
most important features in predicting LNM in early CRC.

Conclusion: We established a simplified reproducible predictive model for LNM in early
CRC that could be used to guide treatment decisions. These findings warrant further
confirmation in large prospective clinical trials.
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INTRODUCTION

Colorectal cancer (CRC) is a major cause of morbidity and
mortality worldwide, its importance is expected to continue
increasing over time (1, 2). In recent years, increased awareness
and the introduction of population-based surveillance and
screening programs have led to achieving higher rates of
precancerous dysplastic lesions or early CRC detection (3, 4).

Early CRC is a tumor that is confined to the mucosa and/or
submucosa regardless of the presence of regional lymph node
metastasis (LNM). In certain cases of early CRC, endoscopic
resection is a less invasive and cost-effective treatment compared
to surgery (5–7). However, the CRC patients with LNM or distant
metastasis cannot be adequately cured by local endoscopic
treatment alone, and therefore subsequently require surgical
resection for achieving a curative treatment.

LNM is found in approximately 6–16% of the patients with
submucosal invasive CRC (8–10), however, the number might be
underestimated, as clinicians make important treatment decisions
based on limited examinations, such as computed tomography
(CT) and ultrasonography.

Thus, an accurate and fast assessment of locoregional and/or
distant metastases in patients with early CRC is essential to
determine whether these patients should undergo additional
surgical resections or be needed surveillance regularly. Currently,
no universally accepted indications and criteria exist for additional
surgical resection after endoscopic resection, even though a fast and
accurate assessment of the risk of locoregional LNM after local
endoscopic treatment of patients with early CRC is necessary.

Therefore, the aim of present study was to develop a novel
prediction model for LNM by using simple histopathological and
clinical parameters with high reliability, that can be used to
improve patient risk stratification in early CRC.
MATERIALS AND METHODS

Data Source
This study used the Surveillance, Epidemiology, and End Results
(SEER) Program database from the National Cancer Institute,
which is publicly available U.S. cancer registries. The registry
collects and publishes cancer incidence, mortality, and survival
data from 17 population-based cancer registries, covering
approximately 34.6% of the U.S. population (Iowa, Los Angeles,
Connecticut, Utah, Greater California, Idaho, Georgia Center for
Cancer Statistics, San Francisco-Oakland, San Jose-Monterey,
Louisiana, Hawaii, Massachusetts, Alaska Native tumor registry,
Kentucky, NewMexico, New York, Seattle-Puget Sound) (11). The
database is roughly represent the U.S. population and includes
information on over 9 million cancer cases with over 550,000 new
cases added to the database annually. It offers a powerful resource
for researchers focused on understanding the natural history of
CRCand improvingqualityhealthcare for thepatients (11, 12). This
retrospective cohort study was evaluated and approved by the
Institutional Review Board of the Kyung Hee University Hospital
at Gangdong (KHNMC IRB 2020-01-015).
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Study Population
The SEER registry collects data including age at diagnosis, sex,
race, primary site, histologic type, tumor grade, tumor size, and
tumor depth. Using the SEER 1975–2016 database (released 4/
15/2019), we analyzed data from all patients diagnosed with T1
CRC for the years 2004-2016. T1 CRC was defined as infiltration
of the tumor into the submucosa. We extracted clinical
demographic data, including age at diagnosis, sex, race and
tumor information including location, size, grade, histologic
type, and American Joint Committee on Cancer 7th TNM
stages by using SEER disease codes. Tumor location was
determined by using the following codes: C18.0 (cecum); C18.1
(appendix); C18.2 (ascending colon); C18.3 (hepatic flexure);
C18.4 (transverse colon); C18.5 (splenic flexure); C18.6
(descending colon); C18.7 (sigmoid colon); C18.8 (overlapping
lesion of colon); C18.9 (colon); rectosigmoid (C19.9); and rectum
(C20.9). The morphology of cancer was categorized according to
the ICD-0-3 histology and behavior codes: 8010/3, (carcinoma,
NOS); 8020/3, (carcinoma, undifferentiated, NOS); 8140/3,
(adenocarcinoma, NOS); 8144/3, (adenocarcinoma, intestinal
type); 8210/3, (adenocarcinoma in adenomatous polyp); 8211/3,
(tubular adenocarcinoma); 8255/3, (adenocarcinoma with mixed
subtypes); 8261/3, (adenocarcinoma in villous adenoma); 8262/3,
(villous adenocarcinoma); 8263/3, (adenocarcinoma in
tubulovillous adenoma); 8440/3, (cystadenocarcinoma, NOS);
8470/3, (mucinous cystadenocarcinoma, NOS); 8480/3, (mucinous
adenocarcinoma); 8481/3, (mucin-producing adenocarcinoma);
8490/3, (signet ring cell carcinoma); and8221/3, (adenocarcinoma
inmultiple adenomatous polyps). For tumor differentiation grading,
we used a four tier classification including well differentiated,
moderately differentiated, poorly differentiated, undifferentiated,
which is proposed by WHO grading system (13). In order to
exclude potentially confounding factor, the patients who received
preoperative radiation treatment were excluded. The overall scheme
of the workflow is illustrated in Figure 1.
Establishment of the Predictive Model
In this study, we used seven machine-learning (ML) models that
are commonly used to predict LNM in patients with early CRC.
For the linear model, the logistic regression model (LR) was
selected (14). The neural network model (NN), which is one of
the important classes of nonlinear prediction models and has
been reported in a previous study was used (15). For the kernel-
based model, we applied the support vector machine (SVM),
which is adopted in many clinical applications (16). For the
decision tree approach, the classification and regression trees
model (CART), XGBoost (XGB) model and random forest (RF)
model, which have also been used in clinical researchwere included
(17–19). Finally, for the basic prediction technique, k-nearest
neighbor algorithm (kNN) was selected (20).

We used random oversampling method to improve the
classifier performance for the minority classes in our
imbalanced classes (21). First, the patients were randomly
assigned to a training set (90%) and a test set (10%), where the
two class (LNM group vs. non-LNM group) proportions in each
March 2021 | Volume 11 | Article 614398
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set were the same. In the training set, we performed k-fold cross-
validation (k = 10), and grid search was used to find the best
parameter combinations. For each set of parameters, we fitted
the model in turn with 9/10 of data and used 1/10 of data
for validation.
Frontiers in Oncology | www.frontiersin.org 3
Assessment of Prediction Models
To ensure a fair comparison of the models, we used the
confusion matrix, area under the curve (AUC), sensitivity
(recall), specificity, accuracy, average precision (AP), false
positive rate, and precision as performance indicators. We used
FIGURE 1 | The Workflow of the development process.
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the AU-ROC as the performance index and the AP value as the
criterion for the precision-recall (PR) curve (22). The average
value of the parameter was finally executed on the test set.

Statistical Analysis
All data were obtained using the SEER*Stat software (8.3.6
version; Surveillance Research Program, National Cancer
Institute). All analyses were performed with Python (version
3.6.9) and R statistical software (version 3.6.0). Demographic
differences between the two groups were tested using the
Student’s t-test and Pearson chi‐square test. To better evaluate
the performance of the models, we used a paired t test to
compare the AU-ROC further in each resampling calculation.
A two‐sided P ≤ 0.05 was considered statistically significant.
RESULTS

Baseline Characteristics
A total of 347,956 patients with CRC between 2004 and 2016 were
collected, of which about 292,201 patients were excluded from the
study because theywere diagnosedwithT0 or advancedCRCwith or
without distant metastasis. After excluding 28,197 patients with
insufficient data and 825 patients treated with preoperative
radiation therapy, 26,733 patients with a diagnosis of early CRC
(T1) were analyzed. The model included eight independent
prognostic variables, including age at diagnosis, sex, race, primary
site, histologic type, tumor grade, and, tumor size. The analyzed
patients were divided into the LNM (2,543 patients, 9.5%) and non-
LNM groups (24,190 patients, 90.5%). The younger people (< 60
years) tended to have more LNM at diagnosis compared with the
older group (P < 0.001). Significantly higher LNM in women
compared with men was observed in the patients with early CRC
(P < 0.001). The proportion of LNM in the distal colon included the
descending colon, sigmoid colon, and the rectosigmoid junction, was
significantly higher than that in the colon proximal to the splenic
flexure (P < 0.001). The overall racial and/or ethnic distribution was
69.7% non-Hispanic whites, 11.9% non-Hispanic blacks, 9.0%
Hispanics, 8.9% non-Hispanic Asians or Pacific Islander, and 0.5%
others (non-Hispanic American, Indian, Alaska natives). Among all
patients evaluated, 20.8% (n=5,572) had well differentiated tumor;
71.2% (n=19,026), moderately differentiated; 7.1% (n=1,902), poorly
differentiated; 0.9% (n=233), undifferentiated cancer. The mean
tumor size was significantly larger in the early CRC patients with
LNM than in those of without LNM (22.8mm vs. 20.6 mm) (P <
0.001). Table 1 shows the overall distribution of baseline
characteristics of the study population.

Tuning of Parameters
We trained the SVM a combination of a C value of 1.0 and a
kernel smoothing parameter s of 0.001. For kNN, a relatively large
number of k = 14 was optimal. XGB was performed using the
parameters with a maximum depth of 6 and a minimum child
weight of 1. For NN, the hyper-parameters were changed during
training to obtain the optimal model based on the validation set.
The final selected hyper-parameters were a learning rate of 0.001,
epoch of 300, hidden layer of 3, dropout rate of 0.3, and batch size
Frontiers in Oncology | www.frontiersin.org 4
of 128. For RF, a relatively large number of randomly selected 61
subtrees provided the best performance.

Performance of Developed Models
The average ROC curves and PR curves during the training are
shown in Figure 2. Most models had AUC values above 0.81, but
the values of LR, XGB, and SVM were lower. The confusion
matrix was also calculated for the seven models (Table 2). As
shown in Table 2, LR, XGB, and SVM generated a large number
of FNs, and kNN and CART models had a large number of FPs
during the prediction process. The RF model produced the
minimum number of FN (= 5) and FP (= 171). Table 3 shows
the AUC, sensitivity, specificity, precision, negative predictive
value (NPV), false discovery rate (FDR), accuracy, AP, F1, and
Matthews correlation coefficient of each model. The linear model
LR showed the worst performance; its accuracy rate was up to
0.60, whereas the accuracy of RF was up to 0.96.

The accuracy of the other models was less than 0.90. RF
achieved the highest AUC value of 0.991, and CART had an AU-
ROC value of 0.944. LR had the lowest AUC value of 0.623. The
RF model showed the best sensitivity and specificity, as well as
the best precision, NPV, FDR, accuracy, AP score, F1 score and
Matthews correlation coefficient value.

Feature Importance Comparisons
between Algorithms
We quantified the variable importance using the coefficients of
permutation importance for LNM in each model (Figure 3). For
most of the models, the variables including tumor grade, depth of
tumor, and age had important influences on the predictability for
LNM in early CRC. Based on our quantification, tumor size
showed the highest frequency for the top predictors in four of the
six models.
DISCUSSION
In this study, we established a novel predictive model by
combining eight clinicopathologic parameters to predict LNM in
early CRC using seven ML models. To the best of our knowledge,
this is the first large-scale study to develop a predictive model for
LNM by combining easily available simple clinical and
pathological data in patients with early CRC. Clinicians are
often confronted with the difficulty of selecting candidates who
will benefit from surgery after local endoscopic resection.

Currently, in clinical practice, risk stratification in these
patients is usually performed by histopathologists carefully
analyzing the specimen to determine the risk of LNM, caused
by the limited capacity of CT to accurately identify LNM (23).

In previous studies, the pathological factors that showed the
strongest independent predictive value for LNM in early CRC are
tumor type, poor histological differentiation, and the depth of
submucosal invasion (24–27). However, the high interobserver
variability in the pathological assessment limits their clinical
usefulness and should therefore be interpreted with caution as a
univariate marker when deciding whether to proceed with surgery
(28, 29). Therefore, the multivariable risk model combining the
March 2021 | Volume 11 | Article 614398
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histopathological data with clinical data can reduce the inaccuracies
associated with relying on individual subjective markers and to
better define the optimal treatment strategy for early CRC.

With the recent rapid development of computer-aided
technology, the application of ML model in cancer diagnosis
Frontiers in Oncology | www.frontiersin.org 5
has an important role; it is being widely used in the medical field
with growing trend toward predictive medicine (30–32). We
hereby developed an ML model by using the simple
clinicopathological parameters in large data, which provided
high predictive ability of LNM for patients with early CRC.
TABLE 1 | Baseline characteristics.

Variables LNM (-) LNM (+)

N = 24190 N = 2543 P-value

Age at diagnosis, n (%) <0.001
0-9 0 (0.0) 1 (0.0)
10-19 5 (0.0) 1 (0.0)
20-29 73 (0.3) 10 (0.4)
30-39 339 (1.4) 61 (2.4)
40-49 1511 (6.3) 241 (9.5)
50-59 5684 (23.5) 730 (28.7)
60-69 6775 (28.0) 683 (26.9)
70-79 5952 (24.6) 544 (21.4)
80-89 3410 (14.1) 245 (9.6)
90-99 441 (1.8) 27 (1.1)

Sex, n (%) <0.001
M 12864 (53.2) 1254 (49.3)
F 11326 (46.8) 1289 (50.7)

Primary site, n (%) <0.001
Cecum 3355 (13.9) 381 (15.0)
Appendix 119 (0.5) 4 (0.2)
Ascending colon 3493 (14.4) 300 (11.8)
Hepatic flexure of colon 665 (2.7) 61 (2.4)
Transverse colon 1545 (6.4) 119 (4.7)
Splenic flexure of colon 381 (1.6) 39 (1.5)
Descending colon 1009 (4.2) 97 (3.8)
Sigmoid colon 6193 (25.6) 773 (30.4)
Overlapping lesion of colon 78 (0.3) 5 (0.2)
Colon, NOS 111 (0.5) 7 (0.3)
Rectosigmoid junction 1737 (7.2) 268 (10.5)
Rectum, NOS 5504 (22.7) 489 (19.2)

Tumor grade, n (%) <0.001
Well differentiated 5284 (21.8) 288 (11.3)
Moderately differentiated 17173 (71.0) 1853 (72.9)
Poorly differentiated 1538 (6.4) 364 (14.3)
Undifferentiated 195 (0.8) 38 (1.5)

Race, n (%) <0.001
Hispanic 2186 (9.1) 228 (9.0)
Non-Hispanic American Indian/Alaska Native 129 (0.5) 10 (0.4)
Non-Hispanic Asian or Pacific Islander 2099 (8.7) 270 (10.6)
Non-Hispanic Black 2837 (11.7) 354 (13.9)
Non-Hispanic White 16939 (70.0) 1681 (66.1)

Tumor type, n (%) <0.001
Carcinoma, NOS 40 (0.2) 6 (0.2)
Carcinoma, undifferentiated, NOS 1 (0.0) 1 (0.0)
Adenocarcinoma, NOS 9657 (39.9) 1148 (45.1)
Adenocarcinoma, intestinal type 2 (0.0) 2 (0.1)
Adenocarcinoma in adenomatous polyp 5943 (24.6) 513 (20.2)
Tubular adenocarcinoma 47 (0.2) 2 (0.1)
Adenocarcinoma with mixed subtypes 20 (0.1) 4 (0.2)
Adenocarcinoma in villous adenoma 1378 (5.7) 130 (5.1)
Villous adenocarcinoma 27 (0.1) 1 (0.0)
Adenocarcinoma in tubulovillous adenoma 6420 (26.5) 614 (24.2)
Cystadenocarcinoma, NOS 1 (0.0) 0 (0.0)
Mucinous cystadenocarcinoma, NOS 11 (0.1) 0 (0.0)
Mucinous adenocarcinoma 487 (2.0) 82 (3.2)
Mucin-producing adenocarcinoma 107 (0.4) 20 (0.8)
Signet ring cell carcinoma 49 (0.2) 20 (0.8)

Tumor size, mm, mean (SD) 20.6 (25.4) 22.8 (20.9) <0.001
M
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Todate, a fewMLmodels for predictionofmetastasis in patients
with early CRC have been developed and evaluated for prognosis
and prediction in patients with early CRC (33–36). Ichimasa et al.
Frontiers in Oncology | www.frontiersin.org 6
developed the SVM model with 45 clinicopathologic factors for
prediction of LNM in patients with early CRC. They reported that
artificial intelligence significantly reduces unnecessary extra surgery
after endoscopic resection of T1 CRC without LNM positive in
comparison to the current guidelines (33). Another Japanese study
showed a deep learningmodel for predicting LNM from pathology
images with cytokeratin immunohistochemistry in early CRC (34).
However, these studies were retrospective in nature with single
center or small numbers of patients. Due to the low rate of
metastasis in early CRC, only a limited number of events exist,
leading to limited data. Furthermore, inadequate data could not
provide sufficient satisfactory performance under ML algorithms
andmayhave led to lowerpredictiveperformance ranging from0.821
to 0.913, which is less than the result from our RF model. A recent
Chinese study also presented a predicting model for LNM that
incorporates both the radiomics signature, which combine multiple
individual CT imaging features, and several clinical factors using the
multivariable logistic regression analysis (35). Although thismight be
an interesting attempt, the model validity is not guaranteed
considering the heterogeneity in the quality of CT image between
facilities and its accuracy of approximately 78%, which is lower than
theperformanceof thepredictivemodelwe constructed. Lastly,Kudo
et al. also employeddeep-learning-basedmodeling to predict LNMin
A B

FIGURE 2 | Evaluation of the predictive models. (A) Average ROC curves of seven models. (B) Average PR curves, indicating the tradeoff between precision and recall.
TABLE 2 | Confusion matrices of developed models.

Confusion matrix
Actual Prediction

LNM (-) LNM (+)

LR LNM (-) 1903 516
LNM (+) 1240 696

XGB LNM (-) 2163 256
LNM (+) 1468 468

kNN LNM (-) 1907 512
LNM (+) 18 1918

CART LNM (-) 1907 512
LNM (+) 18 1918

SVM LNM (-) 1898 521
LNM (+) 1053 883

NN LNM (-) 1995 424
LNM (+) 304 1632

RF LNM (-) 2248 171
　 LNM (+) 5 1931
LR, logistic regression; XGB, XGBoost, kNN, k-nearest neighbor; CART, classification and
regression trees model; SVM, support vector machine; NN, neural network; RF, random forest.
TABLE 3 | Performance of developed models.

AUC Sensitivity Specificity Precision NPV FDR Accuracy AP F1 Score Matthews correlation coefficient
Models

LR 0.623 0.360 0.787 0.574 0.606 0.426 0.597 0.666 0.442 0.162
XGB 0.659 0.242 0.894 0.646 0.596 0.354 0.604 0.700 0.352 0.181
kNN 0.933 0.991 0.788 0.789 0.991 0.211 0.878 0.966 0.879 0.780
CART 0.944 0.991 0.788 0.789 0.991 0.211 0.878 0.972 0.879 0.780
SVM 0.682 0.456 0.785 0.629 0.643 0.371 0.639 0.717 0.529 0.256
NN 0.910 0.843 0.825 0.794 0.868 0.206 0.833 0.841 0.818 0.665
RF 0.991 0.997 0.929 0.919 0.998 0.081 0.960 0.995 0.956 0.922
March
AUC, area under curve; NPV, negative predictive value; FDR, false discovery rate; AP, average precision; LR, logistic regression; XGB, XGBoost, kNN, k-nearest neighbor; CART,
classification and regression trees model; SVM, support vector machine; NN, neural network; RF, random forest.
2021 | Volume 11 | Article 614398
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T1 CRC (36). However, they only used NN model for nonlinear
dynamic systemwith smaller sample size than our study and assessed
LNM using only CT imaging in the cases treated by endoscopic
resection, because pathologic confirmation was not available.

Meanwhile, the reasonwhy the RFmodel outperforms the other
ML algorithms is not easily explained. It might be attributed to that
the RF models generally demonstrate the most substantial
improvement over linear methods and, might be outperform
kernel-based model and neural network model in many
categorical variables and some outliers from the nature of large
retrospective cohort data. However, to build robust prognostic
models for LNM in early CRC, other variables, such as gene
expression and histologic image data beyond clinical-pathological
variables, should be needed.

In our study, we investigated the variable importance of the
predictive models developed, as it could be useful for decision-
making by clinicians. Our findings indicated that tumor size was
the most important factor for predicting the presence of LNM in
early CRC. The prognostic value of tumor size in CRC has long
been studied, but no consensus has been reached. Zhang et al.
and Kornprat et al. demonstrated a significant association
between tumor size and metastasis in CRC (37, 38), whereas
Miller et al. indicated no prognostic significance of tumor size in
CRC (39). Furthermore, its potential prognostic role in patients
with early CRC has not been well investigated. This is the first
largest study to identify the prognostic value of tumor size for
early CRC and provide statistical evidence for further prospective
study. Despite the aforementioned, the current study has several
limitations. First, since the SEER database is a nationwide
Frontiers in Oncology | www.frontiersin.org 7
program, several diagnostic criteria, such as histological grades
and verification of tumor locations might be subjective, which
could cause potential systematic bias. Second, detailed
histopathological data, such as lymphovascular invasion, tumor
budding, and precise depth of tumor invasion that have been
associated with metastasis are insufficient. These data require
further assessment to improve the performance of our ML
algorithms. Third, our study comprised predominately of white
patients; thus, the findings may not be generalized to other racial
populations. Finally, the data have a class imbalance problem
between the patients with and those without LNM, which means
that the rate of LNM is low in early CRC. Therefore, during the
tuning process, the parameters had to be further optimizing to
avoid overfitting. To further improve the accuracy of the
established model, it is necessary to collect more clinical data
and further optimizing the parameters are necessary in
subsequent studies.

In conclusion, we established and compared seven models to
predict metastasis in early CRC by using easily available clinical
and histopathological features in real practice. The RF model, a
simplified reproducible predictive model, showed the highest
predictive power compared with the other models. Tumor size
the most important predictor of LNM in early CRC. Therefore,
the patients with tumor larger than 3 cm, who were identified as
high-risk through the model, may requires careful attention to
selection and additional surgical treatment in early CRC.
However, because of the limitations inherent in studies based
on observational data, these findings should be confirmed in
prospective clinical trials.
A B C

D E F

FIGURE 3 | Factor importance of the developed models. The (A–F) Bar graphs describe the proportion of importance of the different predictors in the model.
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