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Abstract

Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under sim-
ple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result,
polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high trans-
mission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the trans-
mission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission
represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite trans-
mission intensity. Here, we describe a new metric, RH, that utilizes the correlation in allelic state (heterozygosity) within polygenomic
infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. RH is flexible
and can be applied to any type of genetic data. As a proof of concept, we used RH to quantify polygenomic relatedness and estimate
cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism
(SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to
53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic
infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infec-
tions to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities.
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Significance Statement:

Accurate assessments of malaria transmission intensity are a critical component of public health surveillance and intervention
campaigns. Here, we developed a metric that would determine whether multiple-strain infections resulted from multiple or single
mosquito bites. This issue is relevant to public health because multiple-strain infections are frequently assumed to reflect multiple
bites and high transmission rates. We show that a large fraction of multiple-strain infections in Senegal are the result of a single
bite and thus not as useful for informing transmission intensity as previously believed. Future work should focus on reassessing
the relationship between multiple-strain infections and transmission intensity to ensure malaria genomic surveillance produces
accurate transmission assessments to public health programs.

Introduction
The past two decades have seen an increase in the collection and
application of pathogen genetics in public health surveillance pro-
grams. Genomic epidemiology surveillance is now used for a wide
variety of viral, bacterial, and eukaryotic pathogens (1–5). For Plas-
modium falciparum, a major focus of genomic epidemiology surveil-
lance has been to identify genetic markers associated with para-
site transmission. Collectively, these surveys have revealed sev-

eral genetic markers associated with parasite transmission (6–9).
Chief among them is the frequency of clonal (genetically identical)
parasites in the population, the frequency of multistrain (polyge-
nomic) infections, and the number of strains per infection [com-
monly referred to as complexity of infection (COI)] (10–12).

Each of these metrics represents different aspects of parasite
transmission. The increased frequency of clonal parasites is hy-
pothesized to reflect decreases in transmission due to a reduc-
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Fig. 1. Superinfection and cotransmission. (A) Under standard assumptions of superinfection, individuals in high-transmission settings are exposed to
multiple infectious bites and have multiple opportunities for outcrossing. This results in parasite populations characterized by high proportion of
polygenomic infections, high COIs, and few clones. Individuals in low-transmission settings are exposed to fewer infectious bites, resulting in fewer
polygenomic infections and low COIs. Low transmission also limits outcrossing and promotes the transmission of clonal parasite strains. (B)
Cotransmission weakens the relationships proposed in panel (A) because polygenomic infections can also result from a single bite. Cotransmission is
initiated when a mosquito ingests multiple parasite strains from an initial polygenomic infection. The number of strains present in the initial mosquito
blood feed depends on the COI and strain proportions in the initial host. These parasites undergo sexual outcrossing to produce genetically related
sporozoites that are transmitted into a new host. Cotransmissions do not reflect multiple exposures and instead represent a single exposure event.

tion in parasite genetic diversity and a reduction in outbreeding
opportunities. The frequency of polygenomic infections and their
COIs are hypothesized to reflect the frequency of superinfection,
or the repeated infection of individuals from multiple, infectious
mosquito bites (Fig. 1A). If true, genetic metrics could augment
traditional, but labor-intensive estimates of transmission, such as
the entomological inoculation rate (EIR, the number of infectious
mosquito bites per individual) (13, 14). To date, COI is one of the
most frequently reported genetic metrics of parasite transmission
(5, 12, 15–19), and a variety of statistical tools have been devel-
oped to estimate COI from various sources of genotypic data (20–
22). COI is positively associated with transmission intensity and
typically ranges between 1 and 5, but extreme values >10 have
occasionally been reported (23).

However, polygenomic infections are not always the re-
sult of superinfection. Whole genome sequencing analyses
have detected genetically related parasites in both single-strain
(monogenomic) and polygenomic infections (10, 23–26). These
genetically related parasites are created when a mosquito vec-
tor bites a polygenomic infection and ingests multiple parasite
strains that then mate and undergo sexual reproduction to com-
plete the sexual stage of their life cycle (24, 27) (Fig. 1B). Cotrans-
mission occurs when the mosquito vector bites a new host and
transmits multiple parasite strains that are oftentimes genetically
related. The genetic composition of the resulting polygenomic in-
fection reflects the assortment and segregation of genomes dur-
ing meiosis, the sampling of gametocytes by the mosquito vector,
the injection of sporozoites into the human host, and the inva-
sion of sporozoites into the liver (27). Thus, failing to accurately
distinguish superinfections from cotransmissions could lead to
inaccurate estimates of malaria transmission based on COI
alone.

One way of distinguishing superinfection from cotransmission
is to examine the relatedness of coinfecting strains within polyge-
nomic infections. Superinfection assumes these strains are ran-

domly drawn from the population, while cotransmission assumes
they are genetically related. While several metrics have been de-
veloped to assess parasite relatedness, they have largely required
whole genome sequencing and/or the establishment of genomic
phase (22, 28). Here, we developed a new metric, RH, that uti-
lizes intrahost heterozygosity to assess the relatedness of malaria
infections and distinguish cotransmission from superinfection.
Both superinfection and cotransmission contribute to the com-
plexity of parasite population genetics, and distinguishing the two
could lead to greater insight into how transmission and parasite
genetics are linked. As a proof of concept, we used RH to quan-
tify the genetic relatedness of parasites genotyped with a 24 sin-
gle nucleotide polymorphism (SNP) barcode (29). Using RH, we
show that cotransmission is prevalent in three epidemiologically
distinct regions of Senegal with moderate-to-low transmission
intensity.

Results
Genomic epidemiology of Kédougou, Thiès, and
Richard Toll
A total of 1,758 malaria infections were collected and genotyped
using a TaqMan-based molecular barcode (Fig. 2; see the “Mate-
rials and methods” section). These samples were collected from
three regions of Senegal: Kédougou, Thiès, and Richard Toll. Ké-
dougou has the highest intensity of transmission (Fig. 2B), with
incidences of 300 to 500 + cases per thousand reported by the
National Malaria Control Program (PNLP, Programme National de
Lutte contre le Paludisme) (30–35) between 2014 and 2020. Thiès
and Richard Toll have lower transmission intensity and incidences
of <10 and <1 case per thousand. Based on incidence data, we ex-
pected Kédougou to have the least amount of clonal population
structure, the highest proportion of polygenomic infections, and
the highest COI. The allele frequencies observed for each of the
assays used in the molecular barcode are presented in Fig. S1.
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Fig. 2. Epidemiology of Senegal and sampling structure. (A) Sampling of clinical isolates throughout Senegal. The white circles indicate the locations of
the sampling clinics. The shaded areas denote the administrative regions that each of the clinics are in: Kédougou (red), Thiès (orange), and Richard
Toll/St. Louis (blue). (B) Longitudinal incidence profiles obtained from the 2015 to 2020 annual Senegal National Malaria Control Program (PNLP,
Programme National de Luttte contre le Paludisme) reports (30–35). Region-level incidences were used to represent the incidences of each clinic site.
The shading represents two Poisson SDs from the mean. (C) Examples of the 24 SNP molecular barcode. Homozygous sites were denoted by A, T, C, or
G. Heterozygous sites were denoted by N. Missing sites due to assay failure were denoted by X. Barcodes with two or more Ns were considered
polygenomic. Longitudinal sample profiles for (D) Kédougou, (E) Thiès, and (F) Richard Toll. Gray bars indicate monogenomic samples, while colored
bars indicate polygenomic samples. Black numbers and colored numbers are the monogenomic and polygenomic sample sizes for each year,
respectively. Shapefiles for the map used in panel (A) were accessed from https://data.humdata.org/dataset/senegal-administrative-boundaries?
under the Creative Commons Attribution for Intergovernmental Organisations (CC BY-IGO).

Polygenomic fraction and COI were elevated in Kédougou (Fig. 3
and Fig. S2A). The inverse-variance-weighted averages for polyge-
nomic fraction (the proportion of infections polygenomic) were
0.53 (0.50, 0.57) for Kédougou, 0.27 (0.24, 0.31) for Thiès, and 0.33
(0.28, 0.38) for Richard Toll. There was no statistically significant
change associated with the sampling year in Richard Toll between
2012 and 2015 (ordinary least-squares regression, slope = −0.01, P-
value = 0.601 for Richard Toll). For Thiès and Kédougou, we found
a small, but statistically significant increase in the polygenomic
fraction from 2015 to 2020 at a rate of 0.03 (0.010, 0.04) per year
(P-value = 0.01) for Thiès and 0.020 (0.001, 0.035) per year for Ké-
dougou (P-value = 0.04).

As expected, we observed the least amount of clonal popula-
tion structure in Kédougou (Fig. 3B and C). We detected a total
of 7 clonal haplotypes in Kédougou, 23 in Richard Toll, and 38 in
Thiès. We found no evidence of persistent clonal haplotypes in

Kédougou (Fig. 3C). Two of the clonal haplotypes in Richard Toll
and six of the clonal haplotypes in Thiès were detected in mul-
tiple years (Fig. 3F and I). Most clonal haplotypes were detected
twice, but some haplotypes were detected five or more times per
year in Thiès and Richard Toll.

Our point estimates for the unique monogenomic fraction
were 0.95 (0.92, 0.98) for Kédougou, 0.70 (0.66, 0.75) for Thiès,
and 0.86 (0.83, 0.90) for Richard Toll (Fig. 3B, E, and H and Fig.
S2B). These were calculated as the inverse-variance-weighted av-
erage across all years. We found little evidence that the unique
monogenomic fraction changed significantly over time in Ké-
dougou between 2015 and 2019 or Richard Toll between 2012
and 2015 (ordinary least-squares regression, P-value >0.23). In-
terestingly, we detected a small increase of 0.07 (0.038, 0.102)
per year (P-value = 0.004) in the unique monogenomic fraction
in Thiès, but the increase was negligible when compared with

https://data.humdata.org/dataset/senegal-administrative-boundaries?
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Fig. 3. Genetic epidemiology of Kédougou (A to C), Thiès (D to F), and Richard Toll (G to I) using the 24 SNP molecular barcode. Column 1 (A, D, and G):
the proportion of monogenomic (gray) and polygenomic (colored) samples. The annotated numbers show the proportion of monogenomic samples.
Column 2 (B, E, and H): The proportion of clonal haplotypes. The gray bars indicate the unique monogenomic haplotypes and the colors indicate
repeated clonal haplotypes within each year, with clonal groups shaded distinctly. The annotated numbers indicate the total proportion of barcodes
with at least one clone. Column 3 (C, F, and I): The abundance of clonal haplotypes in each population. Each row represents a unique clonal haplotype,
and the number of samples per haplotype is indicated by the size of the circle and the number next to each circle. Connected circles indicate
persistent haplotypes observed across multiple years.

the differences in the unique monogenomic fraction between
populations.

THE REAL McCOIL-based estimates for polygenomic fraction
(COI > 1) were 0.40 (0.44, 0.36) for Kédougou, 0.20 (0.17, 0.24) for
Thiès, and 0.26 (0.22, 0.30) for Richard Toll (Fig. S2C). The aver-
age COI of polygenomic infections was 2.70 (2.53, 2.92), 2.30 (2.15,
2.45), and 2.32 (2.32, 2.48) in Kédougou, Thiès, and Richard Toll, re-
spectively. Note that these estimates exclude monogenomic sam-
ples. However, the distribution of COI was highly skewed with
most polygenomic infections: 0.60 (0.54, 0.66), 0.74 (0.66, 0.83), and

0.80 (0.75, 0.83) of the polygenomic infections in Kédougou, Thiès,
and Richard Toll, respectively, estimated to have COI = 2.

Verifying the accuracy of RH for identifying
cotransmission and superinfection based on
samples genotyped with the 24 SNP molecular
barcode
The main goal of this study was to determine if genetic met-
rics that measure intrahost heterozygosity and inbreeding could
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Fig. 4. Theoretical Expectations of RH. (A) Simulated expectations of RH from 800 simulated barcodes under different cotransmission (red, “cotx”) and
superinfection models (blue, “super”). The legend indicates the initial COI used. The 1x, 2x, and 3x notations indicate the expected RH values after the
first, second, and third cotransmission events. The dotted red line indicates an RH of 0.3, which is the threshold used to identify cotransmission events.
The doted black lines indicate an RH of 0.0, which is the expectation from a COI = 2 superinfection. Superinfection was simulated by randomly
sampling monogenomic samples according to the specified COI. (B) The proportion of serial cotransmission events with COI 2 to 5 identified as
cotransmission when defining cotransmission as an RH > 0.3. Shading indicates the bootstrapped 95% confidence interval. (C) The proportion of
superinfection events with COI 2 to 4 identified as cotransmission when defining cotransmission as an RH > 0.3. Shading indicates the bootstrapped
95% confidence interval.

distinguish superinfection from cotransmission. Theoretically, an
RH > 0 reflects cotransmission, an RH = 0 reflects superinfection
with COI = 2, and an RH < 0 reflects superinfection with COI ≥ 3.
However, it was unclear whether the 24 SNP molecular barcodes
would bias RH estimates and result in errors in its interpretation.
To address this, we simulated polygenomic infections genotyped
with the 24 SNP molecular barcode under different hypotheses
of superinfection and cotransmission ( “Materials and methods”
section, Supplementary Material).

These simulations showed that an RH quantified from the 24
SNP molecular barcode could be used to distinguish superinfec-
tion from cotransmission (Fig. 4A). Superinfection with a COI = 2
resulted in a theoretical expectation (RH) of zero. Superinfection
with COI > 2 resulted in negative RH values of −0.5 for a COI = 3 in-
fection and −1.0 for a COI = 4 infection. Cotransmission resulted
in positive RH values even when the COI of the initial infection
was high. For cotransmission chains originating from a COI = 2

superinfection, RH increased from 0.40 to 060 and 0.70 following
the first, second, and third cotransmission event.

However, these simulations also showed that individual super-
infection and cotransmission events could result in positive and
negative RH values (Fig. 4A). To address this, we used the Bayes fac-
tor to define a classification scheme that would (1) distinguish co-
transmission from superinfection (Fig. S3C), (2) identify serial co-
transmission (Fig. S3D) or (3) estimate the COI of superinfections
(Fig. S3E and F). Based on these results, we defined cotransmission
as RH > 0.30, superinfection with COI = 2 as –0.1 < RH < 0.3, and
superinfection with COI > 2 as RH < –0.1 (Table 1).

Of key interest was to determine whether using a threshold of
RH > 0.30 accurately discriminated cotransmission from superin-
fection. With this threshold, the true cotransmission identifica-
tion rates were 0.66 (0.63, 0.69), 0.85 (0.83, 0.87), and 0.93 (0.92,
0.95) for the first, second, and third cotransmission events follow-
ing a COI = 2 superinfection (Fig. 4B). These rates decreased to 0.47
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Table 1. Classification of polygenomic infections as cotransmis-
sion or superinfection using RH.)

RH Classification

> 0.4 Cotransmission
0.3 > RH > 0.4 Likely cotransmission
−0.1> RH > 0.3 Superinfection, COI = 2
−0.1 > RH > -0.2 Superinfection, likely COI = 2
−0.4> RH > -0.2 Superinfection, COI = 3
−0.6 > RH > -0.4 Superinfection, likely COI = 3
−0.8< RH < -0.6 Superinfection, likely COI = 4
−0.8 < RH Superinfection, COI = 4

The boundaries and classification notations are based on the standards for
Bayes factor classification described in ref. (36)

(0.44, 0.51), 0.73 (0.70, 0.76), and 0.88 (0.87, 0.91) following a COI = 5
superinfection. This threshold misidentified 0.13 (0.11, 0.15), 0.006
(0.002, 0.011), and 0.0 (0.0, 0.002) of COI = 2 to 4 superinfection
events, respectively, as cotransmission (Fig. 4C).

We next evaluated the performance of this threshold using
three diagnostic tests designed to evaluate how accurately a given
threshold distinguishes cotransmission and serial cotransmis-
sions from COI = 2 superinfections (Fig. S4). These tests showed
that the optimum threshold differs for cotransmission and se-
rial cotransmissions and depends on the COI of the originat-
ing polygenomic infection (Fig. S4B to D). In general, the optimal
threshold is lower for cotransmission events originating from high
COI infections. In the context of Senegal, where the average COI
was 2, our tests show that a cotransmission threshold of RH > 0.30
is near the optimum threshold needed to accurately detect single
and serial cotransmission events (Fig. S4B). Note that the true op-
timum is somewhat uncertain, as identifying it requires priors for
the relative proportion of cotransmissions, and serial cotransmis-
sions in the population.

RH versus FWS

We compared RH with another commonly used estimate of intra-
host heterozygosity, FWS (37, 38) ( “Materials and methods” sec-
tion, Supplementary Material). However, because the original def-
inition of FWS reported in (37) required the use of reads generated
from next generation sequencing data, we could only compare
RH and FWS for the 2020 samples where barcode and Illumina
short-read whole genome sequencing data were available for
both monogenomic and polygenomic infections. Barcode-derived
RH estimates were consistent with their corresponding whole
genome sequencing-derived FWS estimates (R-squared = 0.66,
ordinary-least squares) (Fig. S5).

To examine the theoretical differences between RH and FWS, we
simulated barcode-derived RH and FWS in populations with dif-
ferent levels of clonal parasite sharing. For these simulations, we
relied on the FWS described in (39–41) that normalizes intrahost
heterozygosity with the expected, population-level heterozygos-
ity but relaxes the requirement that heterozygosity be estimated
from sequence counts. In populations with no clonal parasites, RH

and FWS can both be used to identify cotransmissions and evalu-
ate COI (Fig. S6). However, as the frequency of clones increases
and the total heterozygosity of the population declines, the ex-
pected FWS values for simulated cotransmissions and superinfec-
tions shift and deviate from the expectations observed in non-
clonal populations (Fig. S6). Simulated RH values were unaffected.
The first cotransmission always had an expected RH of 0.5, while

COI = 2 and COI = 3 superinfections always had an expected RH

of 0.0 and −0.5, respectively (Fig. S6).

RH detects widespread cotransmission in
Kédougou, Thiès, and Richard Toll
We next calculated RH for all the polygenomic infections collected
from Kédougou, Thiès, and Richard Toll. Individual polygenomic
samples had a wide range in individual RH values, with some sam-
ples with RH values close to one and some samples with nega-
tive RH values (Fig. 5A to C). Despite this variation, the average RH

(R̂H) in each population was positive but inversely associated with
regional incidence estimates. The R̂H was 0.14 (0.12, 0.17) in Ké-
dougou, 0.25 (0.23, 0.28) in Thiès, and 0.31 (0.29, 0.34) in Richard
Toll. We also noted that the polygenomic infections collected from
Thiès in 2018 exhibited anomalously low RH values relative to
those collected between 2015 and 2017 and between 2019 and
2020. Excluding the 2018 samples resulted in an R̂H of 0.30 (0.26,
0.32) for Thiès.

Based on the RH thresholds for classifying superinfection and
cotransmission defined in Table 1, we found that most polyge-
nomic infections were the result of cotransmission (Fig. 5D to F).
Despite its relatively high incidence, we found that 0.43 (0.33, 0.54)
of the polygenomic infections from Kédougou were the most likely
result of cotransmission. This was smaller than either Thiès or
Richard Toll, where the proportion was 0.53 (0.38, 0.69) and 0.52
(0.45, 0.60), respectively. These cotransmitted polygenomic infec-
tions were classified as either COI = 1 or COI = 2 by the THE REAL
McCOIL (Fig. S7). Approximately half of the THE REAL McCOIL
COI = 2 samples had RH values consistent with cotransmission.

These elevated RH values could also result from a technical
inability to accurately detect heterozygous sites (29). From the
laboratory-generated 3D7, Dd2, and TM90C6B mixtures, we knew
that heterozygous site detection was reduced in polygenomic mix-
tures with extreme strain ratios (Supplementary Material). We ad-
justed the heterozygosity of each polygenomic barcode based on
the strain proportions inferred from the cycle thresholds (CTs) re-
ported by the TaqMan-based barcode assays (Supplementary Ma-
terial Figs. S8 and S9). This adjustment resulted in reduced RH val-
ues but had no effect on our overall results (Fig. S10).

Discussion
To date, most genetic epidemiology analyses have ignored co-
transmission and interpreted polygenomic fraction and COI un-
der simple assumptions of superinfection. However, it is uncertain
how well this assumption holds as transmission falls in moderate-
or near-elimination settings where superinfection is expected to
be comparatively rare. Resolving this conundrum requires collect-
ing additional data regarding polygenomic relatedness and co-
transmission rates across diverse epidemiological settings.

To enable broad-scale genetic surveillance of polygenomic re-
latedness and cotransmission in parasite populations, we devel-
oped a new metric, RH, that normalizes the observed polygenomic
heterozygosity with the expected heterozygosity of a COI = 2 su-
perinfection as a possible means for distinguishing superinfection
from cotransmission in parasite populations. Polygenomic infec-
tions with less heterozygosity than a typical COI = 2 superinfec-
tion indicate cotransmission, while polygenomic infections with
more indicate a superinfection whose COI is greater than 2.

The normalization of observed polygenomic heterozygosity to
the expected heterozygosity of a COI = 2 superinfection is critical
and differentiates RH from previous metrics of intrahost heterozy-
gosity such as FWS (37–41). FWS normalizes intrahost heterozygos-
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Fig. 5. Polygenomic infections exhibit reduced heterozygosity. (A to C) The individual RH estimates for each of the clinical polygenomic samples
collected from (A) Kédougou (red), (B) Thiès (orange), and (C) Richard Toll (blue). The open-faced square indicates the average RH of the samples in
each year and the dark line is the R̂H point estimate obtained for the entire region. The R̂H point estimate for the entire region and its associated 95%
confidence interval are reported in the legend. The proportion of polygenomic infections inferred to be the result of cotransmission or superinfection
with COI of two (COI = 2), three (COI = 3), or four strains (COI = 4) in Kédougou (D), Thiès (E), and Richard Toll (F), respectively . The error bars indicate
two binomial SDs from the mean for each category.

ity to the total, population-level heterozygosity of the population
(HS, Eq. S10). Unlike FWS, the sampling of genetic clones is ex-
cluded from RH because they are indistinguishable from COI = 1
monogenomic infections and do not directly contribute to out-
crossing or cotransmission. In highly diverse populations with few
genetic clones, FWS behaves similarly to RH. However, FWS esti-
mates are sensitive to the presence of parasite clones in the pop-
ulation. This complicates FWS based inferences of either cotrans-
mission or COI because these inferences would need to be recali-
brated to consider the frequency of clones in each population.

In contrast, RH is unaffected by the frequency of parasite clones,
and its predictions remain consistent across populations with dif-
ferent clonalities. This property makes RH particularly relevant for
examining parasite populations in historically low-transmission
settings such as Southeast Asia and South America, where pop-
ulation fragmentation and clonal parasite populations are the
norm (37, 42, 43). In fact, the frequency of parasite clones in
these regions can be as extreme as the simulated populations
used in Fig. S6; 60% of the P. falciparum cases collected in Quibdó,
Columbia, in 2001 showed evidence of being infected by the same
parasite strain (44). While the advantages of RH are clearest in
low-transmission settings with highly clonal parasite populations,
it can also be advantageous in moderate- and high-transmission
settings to account for parasite clonality arising from falling
transmission intensity or focal transmission (45).

Another advantage of RH compared to other metrics used to
assess relatedness or inbreeding (22, 28, 37) is that RH does not
require whole genome sequencing or that the genomes within
polygenomic infections be phased. In fact, barcode-derived RH

were consistent with whole genome sequence-derived estimates
of Fws despite relying on a small number of SNPs present through-
out the genome. This greatly expands our ability to assess super-
infection and cotransmission in epidemiological settings using ac-
cessible genotyping technologies like the 24 SNP TAQman-based
molecular barcodes where whole genome sequencing is unfeasi-
ble due to logistical or financial constraints.

Estimating RH from the 24 SNP molecular barcode also avoids
some of the issues involving microsatellites (39). Use of an
SNP barcode rather than microsatellites based on di- and tri-
nucleotide repeats avoids the potential problems of replication
slippage and unequal crossing over, which can alter the number
of repeating units (46). SNP markers are not prone to such events,
although they may change due to random mutation or gene con-
version; these events are infrequent.

Using RH, we provide new evidence that cotransmission is ubiq-
uitous among symptomatic infections reporting to clinics in three
sites spread across Senegal. These results are consistent with our
previous analyses of whole-genome sequences of polygenomic in-
fections in Thiès, which also suggest that cotransmission occurs
at high frequency (24). Here, we also found evidence of high rates
of cotransmission in both Richard Toll and Kédougou. These re-
sults were unexpected for Kédougou, where the incidence was
300 to 500 + cases per thousand per year, as the prevailing con-
sensus was that polygenomic infections in moderate- to high-
transmission settings were the result of superinfection. However,
our results are consistent with previous reports of cotransmission
in polygenomic infections collected from Malawi , where trans-
mission is high (25, 26). Altogether, our results showed that at
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nearly half of the sampled polygenomic infections are the result
of a single infectious bite. The true cotransmission rates are likely
higher, based on the theoretical misclassification rates reported
in Fig. 4. Regardless, these results imply that a significant fraction
of polygenomic infections result from single infectious bites and
that superinfection is a rarer than expected in populations with
incidences less than 500 cases per thousand per year. Whether co-
transmission is equally prevalent in asymptomatic infections is a
topic for future research.

Our results present a problem for genetic epidemiology analy-
ses, as they show that a large fraction of polygenomic infections
do not reflect multiple bites. Accurate EIR inference will likely re-
quire model-based approaches that incorporate all available in-
formation regarding superinfection, cotransmission, host immu-
nity, and age (47), and any potential observation or sampling bi-
ases, such as focal transmission heterogeneity, that could affect
COI estimation. An important application of RH would be to en-
able calibration of superinfection and cotransmission rates in fu-
ture model-based inferences of EIR. Superinfection and cotrans-
mission represent two distinct types of transmission whose im-
pact on parasite genetics may be useful for helping genomic epi-
demiology models disentangle different aspects of parasite trans-
mission. However, these models should also assess the effects of
host immunity on COI as immunity could also cause intrahost
heterozygosity to be depressed and be conflated with cotransmis-
sion.

Interestingly, initial genomic surveillance with the 24 SNP
molecular barcode suggests that metrics of parasite clonality, COI,
and polygenomic fraction did not distinguish Thiès from Richard
Toll, both of which have incidences less than 10 cases per thou-
sand per year. While this could reflect a limitation of the 24 SNP
molecular, we note that whole genome sequences of polygenomic
infections in Thiès also reported high cotransmission frequencies
(24). Alternatively, importation from migration and migrant work-
ers in Richard Toll could be obscuring the genetic signals associ-
ated with reduced transmission intensity (48–50). High levels of
importation could explain the high unique monogenomic frac-
tion relative in Richard Toll and the anomalously low RH values
observed in Thiès during 2018. Additional analyses throughout
different epidemiological clines will be valuable for determining
which genetic signals are most strongly associated with transmis-
sion intensity and whether anomalies like the low RH in Thiès 2018
reflect other epidemiological factors such as migration.

To guide our understanding of epidemiology and malaria pop-
ulation genetics, genomic epidemiology analyses should identify
and separate cotransmission from superinfection polygenomic
infections. RH represents a significant advancement in malaria
genomic epidemiology by explicitly measures the genetic impact
of sexual reproduction and outcrossing when evaluating the re-
lationship between malaria population genetics and transmis-
sion. Understanding the differences between these two types of
polygenomic infections and their relationship with parasite trans-
mission is relevant for future model-based estimates of para-
sites transmission and operational decision-making by national
malaria control programs.

Materials and methods
Sample collection
Samples were collected through passive-case detection from
febrile patients reporting to health posts or clinics during the
malaria transmission season in Senegal (September to Decem-
ber), or actively detected in households in response to a case de-

tected at the Richard Toll clinics. Patients over 6 months of age
with fever within the past 24 hours of visiting the clinic with no
history of antimalarial use were diagnosed with malaria using
microscopy or rapid diagnostic tests (RDTs). Filter papers spot-
ted with blood were collected from malaria-positive patients in
Thiès and Kédougou. RDTs were collected from malaria-positive
patients in Richard Toll as previously described (49). Ethical ap-
proval for the study was obtained (IRB Protocols: 16,330 and 17 to
1288 from Harvard T.H. Chan School of Public Health).

Molecular barcode genotyping and SNP calling
The molecular barcode consists of a series of 24 neutral SNPs
spread across the malaria genome that are genotyped using a
panel of TaqMan-based quantitative PCR genotyping assays. Nu-
cleic acid material was extracted from either filter paper or RDT
material and preamplified using the methods described in (49, 51).
A description of the reagents and methods used for the TaqMan
assays is in (29).

Criteria for calling homozygous and heterozygous sites were
determined using a set of laboratory-generated mixes contain-
ing 3D7, Dd2, and TM90C6B DNA mixed with proportions ranging
from 1 : 1 to 1 : 5 (Supplementary Material Table S1). These crite-
ria were based on the normalized CTs calculated by the Applied
Biosystems ViiA 7 Real-Time PCR System (v1.2). Baselines for al-
lele 1 and allele 2 were determined by the software, and the �RN
that determines CTs was set to 20.

Homozygous sites were denoted by their allelic identity (A, T,
C, and G) and identified as sites with (1) no heterogeneous am-
plification, (2) heterogeneous amplification where the difference
in CT between allele 1 and allele 2 (�CT) was greater than 8 , or
(3) heterogeneous amplification, where one of the alleles had a
CT > 38. For homozygous sites with heterogeneous amplification,
the allelic identity was determined by the allele with the smaller
CT value.

Heterozygous sites were denoted as “N” and identified as sites
with heterogeneous amplification and (1) a �CT < 8 and (2)
CT < 38 for both alleles. Barcodes with two or more heterozygous
sites were considered polygenomic. Sites without amplification
were considered missing and denoted as “X.” Barcodes with more
than two missing sites were excluded from analysis. These thresh-
olds were identified by benchmarking their accuracy in detecting
heterozygous and homozygous sites using a set of lab-generated
DNA mixtures generated from DNA isolated from 3D7, Dd2, and
TM90C6B P. falciparum strains (Supplementary Material Figs. S11
to S13).

Whole genome sequencing
Monogenomic and polygenomic samples collected from 2020
were submitted for whole genome sequencing. Selective whole
genome amplification was performed on extracted DNA and used
to construct libraries with a NEBNext Ultra II library Kit for Illu-
mina short-read sequencing. Variant-calling and read alignment
was performed following the best practice standards set by the
Pf3k consortium. Briefly, short-reads were aligned to the P. falci-
parum 3D7 reference genome (PlasmoDB v. 28) using BWA-mem
and Picard Tools, Variants were called using HaplotypeCaller in
GATK v3.5.

Analyses were carried out using a set of ∼150,000 SNPs identi-
fied from a set of 1,328 monogenomic samples obtained from the
Pf3k database (52). These sites were chosen to (1) exclude the core
chromosomal regions, (2) reside in nonoverlapping 2 kb windows
whose average intrahost heterozygosity < 0.03, (3) be farther than
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seven base pairs from indels, and (4) have an average intrahost
heterozygosity < 0.04 across all samples.

Inverse-variance weighting
To correct for the varying sample sizes observed in each year, we
used the inverse-variance-weighted average, which is defined as

ŷ =
∑nyears

i
yi

σ 2
i∑nyears

i
1
σ 2

i

, ((1a))

Var (ŷ) = 1∑nyears

i
1
σ 2

i

, ((1b))

where nyears is the number of sample years, yi is the average of the
ith year, and σ 2

i is the variance of the ith year.

RH: a malaria-specific estimate of polygenomic
infection heterozygosity
RH is derived from Sewall Wright’s original definition for the in-
breeding coefficient (53), which was defined as the correlation be-
tween alleles in uniting gametes relative to those drawn at ran-
dom within a subpopulation. RH is not specific to the 24 SNP
molecular barcode and can be broadly applied to SNP-based geno-
typing methods. RH is related to the FWS metric (37–41). Refer to the
Supplementary Material for additional details regarding FWS and
its differences with RH.

RH is defined as

RH = Hmono − Hpoly

Hmono
. ((2))

Hmono was defined by sampling monogenomic barcode pairs,
summing the total number of discordant alleles between the two
and dividing it by the number of comparable sites. Comparable
sites were defined as those that were nonmissing and homozy-
gous in both sampled monogenomic barcodes. As a result, Hmono

represents the expected heterozygosity of a COI = 2 superinfec-
tion and does not include the sampling of nonunique barcodes.
Hpoly is the expected heterozygosity in polygenomic samples and
defined as the number of heterozygous sites divided by the num-
ber of nonmissing sites in the polygenomic barcode.

Evaluating RH

Individual estimates of RH for each polygenomic sample
(RH,sample) were obtained by rearranging Eq. 1 and minimiz-
ing Eq. 3 using the scipy.optimize.minimize package (v1.5.2) for
Python 3 (v3.8.5) with bounds set at −1 and +1. Setting the lower
bound to values below −1 did not affect our calculations.

f
(
RH,sample

) = (
Hmono, ysample − RH,sampleHmono, ysample − Hpoly, sample

)2
,

((3))
where Hmono,ysample is the expected heterozygosity obtained from
sampling 200 monogenomic pairs from the monogenomic bar-
codes present in each sample year. A sampled monogenomic pair
was treated as an independent one and sampling was propor-
tional to the frequency of each monogenomic barcode haplotype
in each sample year. Monogenomic pairs consisting of identical
monogenomic barcode haplotypes were excluded because these
would not be recognized as polygenomic infections. Hpoly,sample is
the observed heterozygosity of the polygenomic sample. This pro-

cess was repeated 200 times and the average was used as the point
estimate of RH,sample.

The average RH (R̂Hregion ) for each region was calculated
through bootstrapping. Bootstrapped estimates of R̂Hyear, region

were obtained by calculating the average from 200 randomly sam-
plied (with replacement) RH,sample estimates observed in the re-
gion during the specified sample year. This calculation was re-
peated 200 times to obtain the final bootstrapped distribution of
R̂Hyear, region. The average and SDs of these bootstrapped distribu-
tion were then used to evaluate the inverse-variance-weighted av-
erage.

COI estimation
COI was estimated using the categorical method of THE REAL
McCOIL (21) with the following parameter values: maxCOI = 25,
threshold_ind = 20, threshold_site = 20, and err_method = 3. All
other parameters used the default values. The median value es-
timated by THE REAL McCOIL was used as the point estimate of
COI for each sample.

Simulating superinfection and cotransmission
Superinfection was simulated as the random sampling of unique
monogenomic barcodes. Sites that were concordant across all
sampled barcodes were considered homozygous. Sites that were
discordant were considered heterozygous. Sites that were miss-
ing or heterozygous in the sampled monogenomic barcodes were
excluded when quantifying heterozygosity and RH. Our superin-
fection simulations assume mass action and do not incorporate
spatial or temporal transmission heterogeneity.

Cotransmission was simulated using a model that simulates
the mating and sexual recombination of parasites as they are
sampled and deposited by the mosquito vector (27). The model
generates identity-by-descent maps that determine which por-
tions of the genomes in cotransmitted strains were inherited from
either of the parental strains present in the original polygenomic
infection. All cotransmission chains were initiated from a super-
infection with two to five randomly sampled monogenomic bar-
codes that were assumed to be unrelated.

The parameters used in the model were described in (27).
Briefly, oocyst counts were drawn from a modified two-parameter
Weibull distribution defined by

foocystcount (scale, shape) = 1 + rounddown (Weibull (scale, shape)) ,
((4))

where the scale = 2.5 and shape = 1. The rounddown in Eq. 4 indicates
that value drawn from the Weibull distribution is round down to
the nearest integer. This results in a distribution whose median
is 2, mean is 3, and interquartile range is between 1 and 4 . This
distribution reflects the low oocyst intensities observed in natu-
rally infected mosquitoes (54–57). Model predictions were robust
to different assumptions regarding oocyst counts (Supplementary
Material, Figs. S14 and S15).

Infected hepatocyte counts were drawn from a lognormal dis-
tribution (mean = 1.8, SD = 0.8) whose sampled values were
rounded down to the nearest integer unless the sample was less
than 1 (58). In this case, the sampled value was set to 1. Uneven
strain proportions were not simulated because their primary ef-
fect is on the probability of maintaining cotransmission chains
(27).

Based on the identity-by-descent maps generated by the model,
the barcodes of cotransmitted strains were generated by (i) deter-
mining which sites of the barcode were inherited from the first or
second strain of the original infection, and (ii) copying the allelic
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identities of those parental barcode sites. After each cotransmis-
sion event, we sampled two unique, cotransmitted strains to gen-
erate polygenomic barcodes representing cotransmitted polyge-
nomic infections with COI = 2.

Acknowledgments
We thank Cory Schlesenger, Claudia R. Taccheri, and Hanamei S.
Shao for their technical support in extracting DNA and molecular
barcode genotyping. We thank Akanksha Khorgade for her help
with the whole genome sequences. We also thank members of
the Neafsey lab for their useful discussions.

Supplementary Material
Supplementary material is available at PNAS Nexus online.

Funding
Funding for this work was provided by the Bill & Melinda Gates
Foundation (OPP1156051) to DFW, and the National Institutes of
Health (5R21AI141843-02) to SKV.

Authors’ Contributions
W.W., S.V., and S.S. led the analyses and computation. S.V. and R.D.
were involved with sample preparation, transportation, and bar-
code genotyping. M.S., Y.D.N., A.S.B., A.B.D., M.A.D., J.G., and N.S.,
and D.N. were involved with sample collection and preparation.
S.V., D.F.W., and D.L.H. were involved with project conceptualiza-
tion and supervision.

Data Availability
Barcode data and analysis code are available at GitHub (https:
//github.com/weswong/RH_manuscript) and archived at Zenodo
(doi: 10.5281/zenodo.7044606). The whole genome sequences used
in this manuscript are available at the Short Read Archive (PR-
JNA882774).

References
1. Gardy JL, Loman NJ. 2017. Towards a genomics-informed, real-

time, global pathogen surveillance system. Nat Rev Genet. 2017
19:1.19:9–20.

2. Holmes EC, Dudas G, Rambaut A, Andersen KG. 2016. The evo-
lution of Ebola virus: insights from the 2013–2016 epidemic. Na-
ture. 538:193–200.

3. Macklin GR, et al. 2020. Evolving epidemiology of poliovirus
serotype 2 following withdrawal of the type 2 oral poliovirus vac-
cine. Science (1979). 368: eaba1238.

4. Ribado Jv, et al. 2021. Linked surveillance and genetic data un-
covers programmatically relevant geographic scale of Guinea
worm transmission in Chad. PLoS Negl Trop Dis. 15:e0009609.

5. Inzaule SC, Tessema SK, Kebede Y, Ogwell Ouma AE, Nken-
gasong JN. 2021. Genomic-informed pathogen surveillance in
Africa: opportunities and challenges. Lancet Infect Dis. 21:e281–
e289.

6. Volkman SK, Neafsey DE, Schaffner SF, Park DJ, Wirth DF.
2012. Harnessing genomics and genome biology to understand
malaria biology. Nat Rev Genet. 13:315–328.

7. Neafsey DE, Taylor AR, MacInnis BL. 2021. Advances and oppor-
tunities in malaria population genomics. Nat Rev Genet 2021.
22:8. 22:502–517.

8. Neafsey DE, Volkman SK. 2017. Malaria genomics in the era of
eradication. Cold Spring Harb Perspect Med. 7:a025544.

9. Tessema SK, et al. 2019. Applying next-generation sequencing to
track falciparum malaria in sub-Saharan Africa. Malar J. 18:1–9.

10. Daniels RF, et al. 2015. Modeling malaria genomics reveals trans-
mission decline and rebound in Senegal. Proc Natl Acad Sci.
112:7067–7072.

11. Tusting LS, Bousema T, Smith DL, Drakeley C. 2014. Measuring
changes in Plasmodium falciparum transmission: precision, accu-
racy, and costs of metrics. Adv Parasitol. 84:151–208.

12. Fola AA, et al. 2017. Higher complexity of infection and ge-
netic diversity of Plasmodium vivax than Plasmodium falciparum
across all malaria transmission zones of Papua New Guinea. Am
J Trop Med Hyg. 96:630.

13. Hay SI, Rogers DJ, Toomer JF, Snow RW. 2000. Annual Plasmodium
falciparum entomological inoculation rates (EIR) across Africa:
literature survey, internet access and review. Trans R Soc Trop
Med Hyg. 94:113.

14. Shaukat AM, Breman JG, McKenzie FE. 2010. Using the entomo-
logical inoculation rate to assess the impact of vector control
on malaria parasite transmission and elimination. Malar J. 9:
122.

15. Arnot D. 1998. Unstable malaria in Sudan: the influence of the
dry season: Clone multiplicity of Plasmodium falciparum infec-
tions in individuals exposed to variable levels of disease trans-
mission. Trans R Soc Trop Med Hyg. 92:580–585.

16. Fola AA, et al. 2017. Higher complexity of infection and ge-
netic diversity of plasmodium vivax than plasmodium falciparum
across all malaria transmission zones of Papua New Guinea. Am
J Trop Med Hyg. 96:630–641.

17. Ndiaye T, Sy M, Gaye A, Ndiaye D. 2019. Genetic polymorphism
of merozoite surface protein 1 (msp1) and 2 (msp2) genes and
multiplicity of Plasmodium falciparum infection across various en-
demic areas in Senegal. Afr Health Sci. 19:2446.

18. Karl S, et al. 2016. Spatial effects on the multiplicity of Plasmod-
ium falciparum infections. PLoS One. 11:e0164054.

19. Miller RH, et al. 2017. A deep sequencing approach to estimate
Plasmodium falciparum complexity of infection (COI) and explore
apical membrane antigen 1 diversity. Mala J. 2017 16:1. 16:1–15.

20. Galinsky K, et al. 2015. COIL: a methodology for evaluating malar-
ial complexity of infection using likelihood from single nu-
cleotide polymorphism data. Malar J. 14.

21. Chang H-H, et al. 2017. THE REAL McCOIL: a method for the con-
current estimation of the complexity of infection and SNP allele
frequency for malaria parasites. PLoS Comput Biol. 13:e1005348.

22. Zhu SJ, et al. 2019. The origins and relatedness structure of mixed
infections vary with local prevalence of P. falciparum malaria.
Elife. 8:e40845.

23. SC N, et al. 2020. Co-transmission of related malaria parasite lin-
eages shapes within-host parasite diversity. Cell Host Microbe.
27:93–103.

24. Wong W, et al. 2017. Genetic relatedness analysis reveals the co-
transmission of genetically related Plasmodium falciparum para-
sites in Thiès, Senegal. Genome Med. 9:5.

25. Nkhoma SC, Banda RL, Khoswe S, Dzoole-Mwale TJ, Ward SA.
2018. Intra-host dynamics of co-infecting parasite genotypes in
asymptomatic malaria patients. Infect Genet Evol. 65:414–424.

26. Nkhoma SC, et al. 2012. Close kinship within multiple-genotype
malaria parasite infections. Proc R Soc London Ser B. 279:2589–
98.

https://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgac187#supplementary-data
https://github.com/weswong/RH_manuscript


Wong et al. | 11

27. Wong W, Wenger EA, Hartl DL, Wirth DF. 2018. Modeling the
genetic relatedness of Plasmodium falciparum parasites following
meiotic recombination and cotransmission. PLoS Comput Biol.
14:e1005923.

28. Schaffner SF, Taylor AR, Wong W, Wirth DF, Neafsey DE. 2018.
hmmIBD: software to infer pairwise identity by descent between
haploid genotypes. Malar J. 17:196.

29. Daniels R, et al. 2008. A general SNP-based molecular barcode for
Plasmodium falciparum identification and tracking. Malar J. 7:223.

30. Programme National de lutte Contre le Paludisme. 2019. “ Bul-
letin Epidemiologique Annuel 2018 Du Paludisme au Senegal.”

31. Programme National de lutte Contre le Paludisme. 2020. “ Bul-
letin Epidemiologique Annuel 2019 Du Paludisme au Senegal.”

32. Programme National de lutte Contre le Paludisme. 2018. “ Bul-
letin Epidemiologique Annuel 2017 Du Paludisme au Senegal.”

33. Programme National de lutte Contre le Paludisme. 2017. “ Bul-
letin Epidemiologique Annuel 2016 Du Paludisme au Senegal.”

34. Programme National de lutte Contre le Paludisme. 2016. “ Bul-
letin Epidemiologique Annuel 2015 Du Paludisme au Senegal.”

35. Programme National de Lutte Contre le Paludisme. 2015. “ Bul-
letin Epidemiologique Annuel 2014 Du Paludisme au Senegal.”

36. Jeffreys H. 1961. Theory of probability. 3rd ed. New York: Oxford
University Press.

37. Manske M, et al. 2012. Analysis of Plasmodium falciparum diversity
in natural infections by deep sequencing. Nature. 487:375.

38. Auburn S, et al. 2012. Characterization of within-host plasmodium
falciparum diversity using next-generation sequence data. PLoS
One. 7:e32891.

39. Roh ME, et al. 2019. High genetic diversity of Plasmodium falci-
parum in the low-transmission setting of the kingdom of Eswa-
tini. J Infect Dis. 220:1346–1354.

40. Atuh NI, et al. 2021. High genetic complexity but low related-
ness in Plasmodium falciparum infections from western Savan-
nah highlands and coastal equatorial lowlands of Cameroon.
Pathog Glob Health. https://doi.org/10.1080/20477724.2021.1953
686

41. Tessema S, et al. 2019. Using parasite genetic and human mobil-
ity data to infer local and cross-border malaria connectivity in
Southern Africa. Elife. 8:e43510.

42. Koepfli C, Mueller I. 2017. Malaria epidemiology at the clone
level. Trends Parasitol. 33:974.

43. Echeverry DF, et al. 2013. Long term persistence of clonal malaria
parasite Plasmodium falciparum lineages in the Colombian Pacific
region. BMC Genet. 14:1–13.

44. Osorio L, Todd J, Pearce R, Bradley DJ. 2007. The role of im-
ported cases in the epidemiology of urban Plasmodium falci-
parum malaria in Quibdó, Colombia. Trop Med Int Health. 12:
331–341.

45. Nelson CS et al., . 2019. High-resolution micro-epidemiology of
parasite spatial and temporal dynamics in a high malaria trans-
mission setting in Kenya. Nat Commun 10:5615

46. Brandström M, Bagshaw AT, Gemmell NJ, Ellegren H. 2008. The
relationship between microsatellite polymorphism and recom-
bination hot spots in the human genome. Mol Biol Evol. 25:2579–
2587.

47. Rodriguez-Barraquer I, et al. 2018. Quantification of anti-parasite
and anti-disease immunity to malaria as a function of age and
exposure. Elife. 7.e35832.

48. Littrell M, et al. 2013. Case investigation and reactive case detec-
tion for malaria elimination in northern Senegal. Malar J. 12:331.

49. Daniels RF, et al. 2020. Genetic evidence for imported malaria
and local transmission in Richard Toll, Senegal. Malar J. 19:
276.

50. Daniels R, et al. 2008. A general SNP-based molecular barcode for
Plasmodium falciparum identification and tracking. Malar J 2008
7:1. 7:1–11.

51. Mharakurwa S, et al. 2014. Pre-amplification methods for track-
ing low-grade Plasmodium falciparum populations during scaled-
up interventions in Southern Zambia. Malar J. 13:89.

52. MalariaGEN 2021. An open dataset of Plasmodium falciparum
genome variation in 7,000 worldwide samples. Wellcome Open
Res. 6:42.

53. Hartl DL, Clark AG. 2007. Principles of Population Genetics. 4th
Ed. New England (MA): Sinauer Associates.

54. Ouédraogo AL, et al. 2016. Dynamics of the human infectious
reservoir for malaria determined by mosquito feeding assays
and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis.
213:90–99.

55. Stone WJR, et al. 2013. The relevance and applicability of oocyst
prevalence as a read-out for mosquito feeding assays. Sci Rep. 3.

56. Gnémé A, et al. 2013. Malar J. 12:204.
57. Bompard A, et al. 2020. High Plasmodium infection intensity

in naturally infected malaria vectors in Africa. Int J Parasitol.
50:985–996.

58. Bejon P, et al. 2005. Calculation of liver-to-blood inocula, parasite
growth rates, and preerythrocytic vaccine efficacy, from serial
quantitative polymerase chain reaction studies of volunteers
challenged with malaria sporozoites. J Infect Dis. 191:619–626.

https://doi.org/10.1080/20477724.2021.1953686 https:/doi.org/10.1080/20477724.2021.1953686

