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Tissue-resident macrophages play an important role in 
maintaining tissue homeostasis and innate immune defense 
against invading microbial pathogens. Brain-resident 
macrophages can be classified into microglia in the brain 
parenchyma and non-parenchymal brain macrophages, 
also known as central nervous system-associated or border-
associated macrophages, in the brain-circulation interface. 
Microglia and non-parenchymal brain macrophages, 
including meningeal, perivascular, and choroid plexus 
macrophages, are mostly produced during embryonic 
development, and maintained their population by self-
renewal. Microglia have gained much attention for their 
dual roles in the maintenance of brain homeostasis and 
the induction of neuroinflammation. In particular, diverse 
phenotypes of microglia have been increasingly identified 
under pathological conditions. Single-cell phenotypic analysis 
revealed that microglia are highly heterogenous and plastic, 
thus it is difficult to define the status of microglia as M1/M2 
or resting/activated state due to complex nature of microglia. 
Meanwhile, physiological function of non-parenchymal brain 
macrophages remain to be fully demonstrated. In this review, 
we have summarized the origin and signatures of brain-
resident macrophages and discussed the unique features 
of microglia, particularly, their phenotypic polarization, 
diversity of subtypes, and inflammasome responses related to 
neurodegenerative diseases.

Keywords: brain-resident macrophages, central nervous 
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INTRODUCTION

The brain has been considered an immune-privileged organ 

because of the protection of the blood-brain barrier and the 

absence of lymphatic vessel drainage (Carson et al., 2006). 

This concept is now being re-evaluated by recent findings 

on immune cell trafficking and the presence of lymphatic 

vessels within surrounding barrier regions (Engelhardt et al., 

2017). Brain parenchymal regions are sequestered from the 

external environment and circulating blood or cerebrospinal 

fluid (CSF) by the meningeal barrier, blood-brain barrier, and 

blood-CSF barrier (Mastorakos and McGavern, 2019). These 

barriers surrounding brain parenchyma prevent the efflux of 

parenchymal antigens and influx of circulating immune cells, 

thereby creating a site that is somewhat secure from periph-

eral immune surveillance (Engelhardt et al., 2017). In the 

brain parenchyma, major cell types are the neurons and glial 

cells, such as the astrocytes, oligodendrocytes, and microglia. 

Among these cells, microglia function as the main immune 

cell that monitor pathogen- or damage-associated molecular 

patterns in the brain (Li and Barres, 2018). In addition to mi-
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croglia, other types of macrophages reside in the surrounding 

barrier or border regions, such as the meninges, perivascular 

space, and choroid plexus stroma. These non-parenchymal 

brain macrophages are also referred to as border-associated 

or central nervous system (CNS)-associated macrophages 

(CAMs) (Kierdorf et al., 2019).

	 In pathological conditions, circulating myeloid cells such as 

neutrophils or monocytes can infiltrate into brain parenchy-

ma and some monocytes differentiate into macrophages or 

microglia-like cells. Contrary to these brain-infiltrated macro-

phages, parenchymal microglia and non-parenchymal CAMs 

reside in the brain under normal condition. In this context, 

Fig. 1. Embryonic development of brain-resident macrophages. Between embryonic day 7.0 (E7.0) and E8.0 of mouse development, 

primary erythromyeloid progenitor (EMP) cells in the yolk sac (YS) generate YS macrophages (A1 and A2), which are able to produce 

all types of tissue-resident macrophages including the brain. Around E10.5, YS macrophages move to central nervous system (CNS) or 

peripheral regions, and can differentiate into microglia or non-parenchymal macrophages (perivascular, meningeal, or choroid plexus 

macrophages) in the CNS or YS-derived tissue macrophages in the peripheral tissues. Secondary EMP cells in the YS and hematopoietic 

stem cells (HSCs) in the aorta-gonad-mesonephros (AGM) of embryo migrate to fetal liver during E8.5-10. Then, this fetal liver progenitor 

cells differentiate into fetal liver monocytes, which then invade all peripheral tissues except CNS at E14.5 of embryonic development.
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we categorized microglia and non-parenchymal brain macro-

phages (termed as CAMs) into brain-resident macrophages 

in the current review. Microglia have diverse physiological 

non-immune functions, such as neuronal homeostasis 

regulation and synapse elimination (Li and Barres, 2018). 

Microglia exhibit unique homeostatic phenotypes depend-

ing on the CNS microenvironment (Colonna and Butovsky, 

2017). Under pathological conditions, microglia undergo 

remarkable phenotypic changes into distinct subsets such as 

disease-associated or aged microglia, which are implicated 

in the neurodegenerative diseases, traumatic brain injury, 

and psychiatric diseases (Bar and Barak, 2019; Deczkowska 

et al., 2018; Safaiyan et al., 2016). Therefore, understanding 

of these microglial subsets during disease progression can 

provide significant insights to aid in the development of ther-

apeutic strategies for neurologic disorders.

	 Here, we have summarized the development and special-

ized features of the brain-resident macrophages. Moreover, 

we have characterized distinct subtypes of microglia based 

on their regional heterogeneity and plasticity during a disease 

state. Finally, we have discussed the inflammasome respons-

es of microglia related to neurological disorders.

DEVELOPMENT OF BRAIN-RESIDENT MACROPHAGES

Brain-resident macrophages are classified into parenchymal 

microglia and non-parenchymal CAMs, such as meningeal, 

perivascular, and choroid plexus macrophages (Kierdorf et 

al., 2019; Li and Barres, 2018; Mrdjen et al., 2018). Microglia 

represent the largest population of immune cells in the brain 

parenchyma, whereas other cell types are localized at the in-

terface between the brain parenchyma and circulation (Prinz 

et al., 2017). During the development of brain-resident mac-

rophages, three waves of hematopoiesis occur in two major 

sites, yolk sac (YS) and fetal liver. In the first wave, “primitive” 

hematopoiesis generates primary erythro-myeloid progenitor 

(EMP) cells in the YS during embryonic day 7.0 (E7.0) and 

E.8.0 (Sevenich, 2018). Primary EMP cells predominantly 

generate YS macrophages (A1 and A2), which colonize the 

entire embryo to generate all types of tissue-resident mac-

rophages, including those in the brain (Fig. 1) (Ginhoux and 

Guilliams, 2016; Hoeffel et al., 2015; Li and Barres, 2018). YS 

macrophages move to the CNS or peripheral region around 

E10.5 (Li and Barres, 2018; McGrath et al., 2003), then dif-

ferentiate into microglia or non-parenchymal macrophages in 

the CNS and YS-derived tissue macrophages in the peripheral 

tissues.

	 In the overlapping second and third waves, “definitive” 

hematopoiesis is initiated by hematopoietic progenitors, sec-

ondary EMPs in the YS and hematopoietic stem cells (HSCs) 

in the aorta-gonad-mesonephros of the embryo, during 

E8.5-E10 (Epelman et al., 2014b). Both progenitor cells mi-

grate into the fetal liver during E9.5-E10.5 and differentiate 

into fetal liver monocytes. At approximately E14.5, the fetal 

liver monocytes invade all surrounding tissues except the 

brain parenchyma, where the blood-brain barrier, formed at 

approximately E13.5, presumably blocks their entry (Frade 

and Barde, 1998; Li and Barres, 2018). Fetal liver monocytes 

then develop into fetal liver-derived tissue macrophages or 

non-parenchymal macrophages in the brain. Notably, the two 

tissue macrophage populations, fetal liver- and YS-derived, 

cannot be distinguished in the peripheral tissues in adults (Li 

and Barres, 2018). Primary EMPs, secondary EMP-derived 

fetal liver monocytes, and HSC-derived fetal liver monocytes 

disproportionately contribute to all tissue macrophages. Fetal 

liver serves as the major hematopoietic organ during defin-

itive hematopoiesis, and around birth, hematopoiesis starts 

being restricted to the bone marrow (Perdiguero and Geiss-

mann, 2016).

	 Microglial population of the fetal brain is almost estab-

lished before the onset of monocyte production in the fetal 

liver and blood-brain barrier closure (Ginhoux et al., 2013; 

Sevenich, 2018). Thus, microglia originate exclusively from 

YS-derived progenitors, whereas CAMs are replenished by 

fetal liver-derived progenitor cells during embryonic develop-

ment (Sevenich, 2018). In this way, all brain-resident macro-

phages are predominantly generated by embryonic precursor 

cells and maintain their population by self-renewal under nor-

mal conditions except for the choroid plexus macrophages 

(Li and Barres, 2018). In adults, choroid plexus macrophages 

are further replenished by circulating HSC-derived progenitor 

cells (Fig. 2) (Goldmann et al., 2016; Li and Barres, 2018; 

Prinz et al., 2017).

	 Normally, microglia sustain the microglia pool via local 

clonal expansion throughout life (Butovsky and Weiner, 

2018); however, fate-mapping studies have proposed that 

monocyte-derived macrophages, which are recruited into the 

brain parenchyma, can differentiate into the microglial pop-

ulation under certain physiological conditions, while main-

taining their own unique identity (Cronk et al., 2018; Lund 

et al., 2018). In contrast, Huang et al. (2018) demonstrated 

that microglial depletion resulted in repopulation of microglia 

by remaining residual microglia but not by peripheral mac-

rophages. Therefore, at present, it remains unclear whether 

peripheral macrophages can contribute to microglial pool.

Ontogeny of peripheral tissue macrophages
For a long time, it was believed that tissue-resident macro-

phage homeostasis relied on constant recruitment of bone 

marrow-derived blood monocytes (Sawyer et al., 1982; van 

Furth and Cohn, 1968; Volkman et al., 1983). However, 

many ontogenic studies revealed that a majority of tissue 

macrophages originated from embryonic precursors that 

were derived from the YS and fetal liver (Fig. 2) (Ginhoux and 

Guilliams, 2016; Li and Barres, 2018; Sevenich, 2018). Tis-

sue-resident macrophages maintain themselves in adults by 

self-renewal except in the gut, dermis, and heart (Epelman et 

al., 2014a; Tamoutounour et al., 2013). The gut and dermis 

are considered open tissues with fast recruitment kinetics 

and differentiation of bone marrow-derived monocytes into 

macrophages (Ginhoux and Guilliams, 2016). For example, 

although at birth, embryonically derived macrophages are 

present in the gut, they are replaced by cells derived from 

an influx of CCR2-dependent Ly6Chi monocytes (Bain et al., 

2014). Likewise, cardiac macrophages originate from the 

embryonic YS and fetal monocyte progenitors and give rise 

to embryonic resident macrophages; however, they can be 

replenished by bone marrow-derived monocytes, especially 
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after a heart injury such as cardiac ischemia (Fig. 2) (Epelman 

et al., 2014a).

SIGNATURES OF BRAIN-RESIDENT MACROPHAGES

Microglia express common macrophage markers such as 

F4/80, CD11b, CD45, Iba1, and CX3C chemokine receptor 1 

(CX3CR1) (Li and Barres, 2018). Although many of these pro-

teins are expressed by macrophages, their expression levels 

can be used to distinguish microglia from other related cell 

types (Butovsky and Weiner, 2018). For instance, CD45 and 

CD11b are downregulated in microglia than in monocytes, 

which makes it possible to distinguish resident microglia from 

infiltrated monocyte-derived cells in the brain (Bennett et 

al., 2016; Butovsky and Weiner, 2018; Li and Barres, 2018). 

CX3CR1 is expressed in other tissue macrophages; howev-

er, its expression is higher in microglia (Jung et al., 2000). 

Notably, CX3CR1 deficiency leads to transient reduction in 

microglia number during the early postnatal period and a 

consequent defect in synaptic pruning, synaptic transmission, 

and functional brain connectivity (Zhan et al., 2014). It is 

thus widely used to study the role of microglia in the CNS by 

using CX3CR1-deficient or CX3CR1-Cre mouse lines (Reshef 

et al., 2017; Wolf et al., 2013; Zhao et al., 2019). Besides, 

microglia express other highly restricted, specific molecules 

such as transmembrane protein 119 (TMEM119), P2Y puri-

noceptor 12 (P2RY12), and Sal-like protein 1 (SALL1) (Table 

1) (Butovsky and Weiner, 2018; Buttgereit et al., 2016; Li and 

Barres, 2018).

	 Some microglial markers exhibit a distinct expression pat-

tern depending on the surrounding environment. Triggering 

receptor expressed on myeloid cells 2 (TREM2) is a crucial 

transmembrane receptor in microglia to scavenge extracel-

lular toxic molecules such as amyloid-β and its expression is 

restricted to some CNS regions (Poliani et al., 2015; Schmid 

et al., 2002). Although TREM2 mutation is considered a risk 

factor for non-familial Alzheimer’s disease (AD), its expression 

does not change in AD patients (Colonna and Wang, 2016; 

Del-Aguila et al., 2019). Additionally, the expression of CD33 

(Siglec3), another transmembrane receptor of microglia, is 

elevated in AD patients, and the increased CD33 expression 

is associated with the inhibition of amyloid-β clearance and 

Fig. 2. Location of brain-resident macrophages. Microglia are the major innate immune cells in the brain parenchyma that are 

exclusively derived from yolk sac (YS)-derived embryonic precursor cells. All other brain-resident macrophages, including meningeal, 

perivascular, and choroid plexus macrophages, which originate from both YS- and fetal liver (FL)-derived progenitor cells, are located at 

the brain-circulation interface. Brain-resident macrophages maintain their population by self-renewal, whereas only the choroid plexus 

macrophages receive input from the circulating hematopoietic stem cell (HSC)-derived progenitors. Cardiac and intestinal macrophages 

also originate from the HSC-derived progenitor cells. Peripheral tissue macrophages in the epidermis and heart are derived from 

embryonic precursors. FL-derived precursor cells are committed to forming Kupffer cells in the liver and alveolar macrophages in the lung. 

CSF, cerebrospinal fluid; CNS, central nervous system.
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phagocytosis (Griciuc et al., 2013). CD68, a lysosomal pro-

tein, is highly expressed in activated microglia but not in rest-

ing microglia (Griciuc et al., 2013; Hopperton et al., 2018; 

Walker and Lue, 2015).

	 Non-parenchymal CAMs express pan-macrophage mark-

ers similar to those expressed by microglia, such as CX3CR1, 

CD45, CD11b, and Iba1 (Table 1) (Brioschi et al., 2020). Of 

note, higher expression of CD45 and MHCII in CAMs gener-

ally distinguishes them from microglia (Li and Barres, 2018). 

However, the presence of CD45low non-parenchymal brain 

macrophages makes it difficult to discriminate from microglia 

(Mrdjen et al., 2018). Additionally, lymphatic vessel endo-

thelial hyaluronan receptor 1 (LYVE1) was also expressed 

in perivascular and meningeal macrophages, but not in mi-

croglia (Ayata et al., 2018). During embryonic development, 

YS-derived progenitor cells (CD206-positive) can differentiate 

into non-parenchymal macrophages with a specific CD206 

expression at E10.5 (Utz et al., 2020). Choroid plexus macro-

phages that originate from embryonic precursor cells express 

SALL1, whereas monocyte-derived choroid plexus macro-

phages do not (Buttgereit et al., 2016). Moreover, SALL1 

is not expressed in meningeal or perivascular macrophages 

(Buttgereit et al., 2016). Recent studies using single-cell 

sequencing technologies revealed that meningeal and peri-

vascular macrophages are considered as homogenous pop-

ulations, while more heterogeneity was observed in choroid 

plexus macrophages (Jordao et al., 2019; Kierdorf et al., 

2019).

PHENOTYPES AND FUNCTIONS OF MICROGLIA

M1/M2 polarization of macrophages
Tissue-specific or context-dependent microenvironments 

result in diverse macrophage phenotypes that show dis-

tinct gene expression profiles and specific time-dependent 

functions (Ivashkiv, 2013; Lawrence and Natoli, 2011). De-

pending on the extracellular conditions, such as cytokines, 

lipid mediators, or pattern-recognition receptor agonists, 

macrophages can be activated into two groups, M1 and M2 

macrophages, which have distinct phenotypic and functional 

characteristics (Ginhoux et al., 2016; Ivashkiv, 2013). Given 

the intensive efforts to highlight previous works regarding 

M1/M2 polarization, macrophage polarization is not going to 

be rigorously discussed in this review. However, macrophage 

activation status cannot be simply classified into two groups. 

Macrophages do not show a clear M1 or M2 phenotype in 

physiological conditions and instead present with phenotyp-

ic plasticity in many homeostatic or pathological situations 

(Martinez and Gordon, 2014).

Resting and activated microglia
Under normal and physiological conditions, microglia exist in 

a so-called “resting state.” Resting microglia, characterized by 

a highly ramified morphology, continuously attempt to detect 

any pathological or homeostatic changes in the brain pa-

renchyma (Nimmerjahn et al., 2005). On observing a distur-

bance or damage in the CNS homeostasis, the microglia shift 

toward an “activated state.” (Davalos et al., 2005; Kawabori 

and Yenari, 2015) Further, upon sensing foreign molecules 

associated with an infection and damage-associated factors 

from damaged neurons, microglia undergo transformation 

from their resting state to an activated state, which can in 

turn initiate protective or detrimental microglial functions 

(Fig. 3) (Butovsky et al., 2005). However, the nomenclature 

of “resting” and “activated” microglia has been recently chal-

lenged because of the highly dynamic surveillance in the 

resting status (Nimmerjahn et al., 2005; Sierra et al., 2014). 

Interestingly, microglial activation is also controlled by two 

types of signals from neurons, namely, the “on” and “off” sig-

nals (Biber et al., 2007; Szepesi et al., 2018). Neuronal “off” 

signals include constitutive production of CX3CL1, CD22, 

neurotransmitters, or neutrophins from healthy neurons 

to keep the microglia in a resting state (Biber et al., 2007). 

Conversely, damaged or stressed neurons rapidly trigger the 

activation of microglia by producing “on” signals, such as 

CCL21, CCL10, or ATP production. Although microglial acti-

vation can also be classified into M1 and M2 polarization just 

like macrophage activation (Hu et al., 2015; Orihuela et al., 

2016), microglia show more heterogeneous phenotypes than 

peripheral macrophages due to a brain-specific regional dif-

ference and pathological conditions (Ginhoux et al., 2016). 

Thus, neither the terms “resting” and “activated,” nor M1 and 

M2 are sufficient for defining and explaining the complex 

plasticity of microglia.

	 Microenvironments in the brain may drive the differenti-

ation of distinct microglial subtypes, resulting in microglial 

regional heterogeneity (Stratoulias et al., 2019). Microglial 

regional heterogeneity includes microglial density, morphol-

ogy, molecular signatures, and functions across different 

brain regions (Tan et al., 2020). Notably, microglial subtypes 

in each brain region respond differently to identical stimuli 

or conditions (Furube et al., 2018; Hui et al., 2018; Tay et al., 

Table 1. Molecular signatures of brain macrophages

Type Name Expression markers

Brain-resident (parenchymal) Microglia CD45int, CD11bint, CX3CR1, IBA1, TMEM119, P2RY12, TREM2, 

SALL1, Siglec-H

Brain-resident (non-parenchymal) Meningeal macrophages CD45hi , CD11b, CX3CR1,  

IBA1, LYVE1, MHCIIhi

CD206, Siglec-1 (CD169), 

CD36Perivascular macrophages

Choroid plexus macrophages SALL1, Siglec-H, CCR2, Ly6Chi

Brain-infiltrated (parenchymal) Monocyte-derived macrophages CD45hi, CD11bhi, IBA1, Siglec-1 (CD169), CCR2, Ly6Chi, CD44 

CX3CR1, CX3C chemokine receptor 1; IBA1, ionized calcium-binding adaptor molecule 1; TREM2, triggering receptor expressed on my-

eloid cells 2; SALL1, Sal-like protein 1; LYVE1, lymphatic vessel endothelial hyaluronan receptor 1; CCR2, C-C chemokine receptor 2.
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2017). For example, cerebellar and hippocampal microglia 

exist in a more “immune-vigilant” state than the microglia in 

the forebrain regions (Grabert et al., 2016). Furthermore, 

cerebellar microglia express increased gene expression asso-

ciated with the detection and phagocytosis of apoptotic cells 

than microglia in striatum or cortex (Ayata et al., 2018). Mi-

croglia within the subventricular zone and rostral migratory 

stream exhibit lower expression of purinoreceptors and less 

phagocytic ability than cortical microglia (Ribeiro Xavier et al., 

2015). This distinct microglial phenotype contributes to the 

support of neurogenesis in the subventricular zone. On the 

contrary, microglia in the cortex shows more rapid chemo-

tactic ability towards ATP than subventricular zone microglia 

(Ribeiro Xavier et al., 2015).

Disease-associated and aged microglia
Under pathological conditions, several microglial subtypes, 

such as disease-associated microglia (DAM) and aged mi-

croglia, are reportedly associated with neurodegenerative 

diseases. DAM have been recently identified as a new subset 

of microglia that are found at neurodegeneration sites and 

show unique transcriptional and functional signatures (Dec-

zkowska et al., 2018; Keren-Shaul et al., 2017). DAM show 

downregulation of homeostatic genes such as TMEM19, 

P2RY12, and CX3CR1 and upregulation of TREM2, CST7, 

and Axl (Brioschi et al., 2020). TREM2 signaling plays a piv-

otal role in DAM activation (Keren-Shaul et al., 2017). DAM 

are frequently detected under conditions of accumulating 

degenerating neurons, myelin debris, or extracellular protein 

aggregates and reportedly alleviate the damage; however, it 

is not clear whether they have a protective or disease-induc-

ing function (Butovsky and Weiner, 2018; Haruwaka et al., 

2019; Liddelow et al., 2017; Simard et al., 2006).

	 Aging of microglia is also a potent risk factor for the devel-

opment of neurodegenerative diseases. Aged microglia are 

characterized by functional impairment, including decreased 

phagocytic activity, lowered threshold of immune stimuli 

activation, and enhanced release of inflammatory cytokines 

Fig. 3. Diversity of microglial phenotypes. Neuronal “off” signals, such as CX3CL1, constantly inhibit microglial activation in physiological 

conditions. Microglia in this environment show a ramified morphology with a low expression of CD68 and are referred to as “resting” 

microglia. Resting microglia can be activated by PAMPs (LPS) or DAMPs (ATP) inside the CNS into M1-like microglia and are characterized 

by ameboid morphology, high CD68 expression, and proinflammatory phenotypes. Neuronal “on” signals also contribute to M1 

microglial polarization. In contrast, loss of “off” signals or anti-inflammatory cytokine-rich milieu can induce the activation of microglia 

into neuroprotective M2-like phenotype. Recently, diverse microglial phenotypes have been identified in pathological conditions, such 

as DAM, WAM, MGnD and LDAM. PAMP, pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern; LPS, 

lipopolysaccharide.
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(Niraula et al., 2017; Perry and Holmes, 2014; Safaiyan et 

al., 2016; Spittau, 2017). Thus, age-related changes in the 

microglia are likely to be related to the onset and progress 

of age-related neurodegenerative diseases (Spittau, 2017). 

Recently, white matter-associated microglia (WAMs) were 

identified in the white matter of aged mouse brain with a 

similar molecular signature to DAM (Safaiyan et al., 2021). 

Safaiyan et al. (2021) revealed that WAMs are formed in a 

TREM2-dependent, but ApoE-independent manner and re-

quired to remove degenerated myelin. Unlike WAM, TREM2-

ApoE signaling is a major regulator of microglial pheno-

typic change into microglial neurodegenerative phenotype 

(MGnD) in neurodegenerative diseases (Krasemann et al., 

2017). Lipid-droplet-accumulating microglia (LDAM) were 

also recently identified as dysfunctional and proinflammatory 

microglial phenotype in the aged brain (Marschallinger et al., 

2020). Interestingly, LDAM showed impaired phagocytosis 

and might contribute to chronic neuroinflammation and 

neurodegenerative phenotypes (Marschallinger et al., 2020). 

Further research endeavors will likely clarify the correlation of 

these recently-identified disease- or age-associated microglial 

subtypes and the regulation by neuronal on/off signals.

FUNCTIONS OF NON-PARENCHYMAL BRAIN 
MACROPHAGES

Because of their unique anatomical location, non-paren-

chymal CAMs primarily support the barrier function against 

external antigens (Li and Barres, 2018). Although functional 

studies are limited, CAMs reportedly monitor or filter the CSF 

for any harmful antigens and metabolites (Kierdorf et al., 

2019), and also contribute to the drainage of CNS-derived 

antigens (Mundt et al., 2019). CAM-specific markers CD206 

is potentially responsible for their scavenging function (Kier-

dorf et al., 2019). Among brain-circulation barrier regions, 

perivascular spaces in the brain are surrounded by diverse cell 

types, including astrocytes, pericytes and endothelial cells. 

In this context, perivascular macrophages can reciprocally 

interact with these surrounding cells. Of interest, perivas-

cular macrophages drive the activation of hypothalamo-pi-

tuitary-adrenal axis through prostanoid production and the 

anti-inflammatory action on endothelial cells upon systemic 

inflammation (Serrats et al., 2010). Moreover, perivascular 

macrophages can clear amyloid β in a CCR2-dependent 

manner in a mouse model of AD (Mildner et al., 2011). Nev-

ertheless, the physiological function of CAMs is still largely 

unknown and remains to be further elucidated.

	 Non-parenchymal CAMs exhibit distinct morphologies. 

Perivascular and meningeal macrophages have more elon-

gated shape than microglia (Kierdorf et al., 2019), whereas 

choroid plexus macrophages are characterized by stellate 

shape similar to Langerhans cells (Goldmann et al., 2016). 

In addition, CAMs in the dura mater, the most outer layer of 

the meninges, have bipolar structure with more dendrites. 

Meanwhile, the phenotypic heterogeneity of CAMs is recent-

ly being examined and thus requires further extensive inves-

tigation. The diversity of CAMs is supported by recent study 

demonstrating the expression of five core signature genes 

including mannose receptor 1 (Mrc1, encoding CD206). In 

particular, the expression of these CAM-specific genes was 

downregulated in the mouse model of neuroinflammation 

(Jordao et al., 2019). Thus, it will be intriguing to clarify the 

phenotypic diversity of CAMs under pathological condition.

INFLAMMASOME-MEDIATED RESPONSE OF 
MICROGLIA

In the brain, interleukin‐1β (IL-1β) and tumor necrosis factor 

α (TNF-α) are the key proinflammatory cytokines that con-

tribute to CNS inflammation (Clausen et al., 2008). TNF-α 

is produced by the engagement of TLRs in glial or myeloid 

cells, with diverse ligands associated with microbial infection 

or neuronal damage (Rodgers et al., 2020). However, active 

IL-1β production requires further cytosolic inflammasome ac-

tivation along with TLR-mediated transcriptional induction of 

pro-IL-1β (Yu and Lee, 2016). Inflammasome assembly results 

in caspase-1 activation, which then induce the maturation 

and gasdermin D-dependent secretion of IL-1β (Evavold et 

al., 2018; Schroder and Tschopp, 2010). Thus, unlike TNF-α, 

mature IL-1β production is restricted to inflammasome-active 

myeloid cells such as the microglia. It remains to be deter-

mined whether inflammasome activation occurs in non-pa-

renchymal brain macrophages, but a previous study reported 

the expression of inflammasome components in the perivas-

cular macrophages (Kawana et al., 2013).

	 Inflammasome is normally composed of sensor proteins, 

such as NOD-like receptor (NLR) family, pyrin domain-con-

taining 3 (NLRP3) or CARD domain-containing 4 (NLRC4), 

adaptor protein, apoptosis-associated speck-like protein 

containing a CARD (ASC), and procaspase-1 (Rathinam 

and Fitzgerald, 2016). This inflammasome components 

are assembled only upon the detection of specific inflam-

masome-stimulating agonists by the sensor proteins in the 

cytoplasm (Yu and Lee, 2016). In particular, inflammasome 

activation in microglia has been implicated in neurodegener-

ative disease progression (Labzin et al., 2018). Indeed, NLRP3 

sensor protein is activated by recognizing protein aggregates 

such as amyloid-β and α-synuclein or abnormal endogenous 

metabolites such as 25-hydroxycholesterol in the microglia 

(Codolo et al., 2013; Gordon et al., 2018; Halle et al., 2008; 

Jang et al., 2016; Venegas et al., 2017). This microglial in-

flammasome activation contributes to neuronal cell death, ul-

timately leading to neurodegeneration (Gordon et al., 2018; 

Heneka et al., 2013; Lee et al., 2019). In the brain parenchy-

ma, microglial NLRP3 may function as a key sensor for cellular 

stress-associated molecules resulting from neuronal injury 

and protein inclusions leading to the progression of numer-

ous neurological disorders, such as AD, Parkinson’s disease, 

multiple sclerosis, stroke, and traumatic brain injury (Voet et 

al., 2019; Walsh et al., 2014).

	 Microglia show robust NLRP3 expression particularly in 

the presence of lipopolysaccharide (LPS) stimulation (Gustin 

et al., 2015). Other inflammasome sensor proteins such as 

NLRC4 are also detected at lower levels (Walsh et al., 2014). 

However, it is not certain whether sensors other than NLRP3 

are able to induce inflammasome activation in microglia un-

der physiological conditions. Microglial NLRP3 inflammasome 

responses are more persistent than those by macrophages 
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because of a lack of negative regulation of pro-IL-1β expres-

sion (Burm et al., 2015). Burm et al. (2015) raised the possi-

bility that microglial NLRP3 inflammasome signaling may be 

more harmful to the microenvironment than that by macro-

phages due to a persistent inflammasome activation. Intrigu-

ingly, peripheral inflammation impairs the amyloid-β clearing 

ability of microglia through the NLRP3 inflammasome (Tejera 

et al., 2019). This finding suggests that microglial NLRP3 

inflammasome response can alter the microglial phenotype 

contributing to neurodegeneration. Therefore, further under-

standing of microglial inflammasome response should shed 

light on the development of therapeutic strategies that target 

neuroinflammation-mediated neurological disorders.

CONCLUDING REMARKS

Brain-resident microglia continuously surveil the brain to 

detect homeostatic and pathological changes. Along with 

playing a central role in host defense against invading patho-

gens, microglia maintain tissue homeostasis and develop 

inflammation-mediated diseases. Non-parenchymal CAMs 

may strengthen the barrier function at the brain-circulation 

interface to maintain the CNS immune privilege. Although 

microglia and CAMs share many phenotypic features, they 

also have unique functional differences that result in differ-

ent responses to homeostatic and pathological conditions. 

Additionally, microglia exhibit plasticity and regional hetero-

geneity according to a specific surrounding environment. In 

turn, diverse phenotypes of microglia participate differently 

in disease progression by driving different immunological re-

sponses in a disease-associated environment. Therefore, phe-

notypic approaches can provide important insight into elu-

cidating the pathological mechanisms and developing novel 

therapeutic approaches in a variety of inflammatory diseases 

by targeting specific subsets of microglia. Furthermore, brain 

inflammasome activation may contribute to the development 

of neurodegenerative diseases as well as other neurological 

defects (Heneka et al., 2018). It will be thus intriguing to 

investigate molecular mechanisms by which inflammasome 

signaling is implicated in diseases such as sleep and neuropsy-

chiatric disorders.
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