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Systemic lupus erythematosus (SLE) is a complex and heterogeneous autoimmune
disease that the immune system attacks healthy cells and tissues. SLE is difficult to
get a correct and timely diagnosis, which makes its morbidity and mortality rate very high.
The pathogenesis of SLE remains to be elucidated. To clarify the potential pathogenic
mechanism of SLE, we performed an integrated analysis of two RNA-seq datasets of SLE.
Differential expression analysis revealed that there were 4,713 and 2,473 differentially
expressed genes, respectively, most of which were up-regulated. After integrating
differentially expressed genes, we identified 790 common differentially expressed
genes (DEGs). Gene functional enrichment analysis was performed and found that
common differentially expressed genes were significantly enriched in some important
immune-related biological processes and pathways. Our analysis provides new insights
into a better understanding of the pathogenic mechanisms and potential candidate
markers for systemic lupus erythematosus.

Keywords: systemic lupus erythematosus, differential expression analysis, gene functional enrichment analysis,
RNA-seq, protein-protein interaction

INTRODUCTION

Systemic lupus erythematosus is a chronic autoimmune disease (Beccastrini et al., 2013; Davies et al.,
2021). Its clinical manifestations are heterogeneous and involve one or more organs such as skin,
kidney, joints, and nervous system (Von Feldt, 1995; Adinolfi et al., 2016; Ronco et al., 2021). The
latest data from the US Lupus Registry and published studies around the world can more accurately
estimate the incidence and prevalence of SLE. It is estimated that the incidence of 23.2 cases per
100,000 people in North America is the highest in the world (Tsokos, 2011; Rees et al., 2017). SLE is a
heterogeneous rheumatic systemic disease with extremely diverse clinical manifestations and diverse
pathogenesis (Wu et al., 2021). In addition, it is one of the most varied diseases in its epidemiology
and etiology, with different types of immune dysfunction (Oku and Atsumi, 2018). SLE patients’
immune system activation is characterized by exaggerated B cells and T cells responses (Tsokos,
2011). The health-related quality of life of SLE patients is significantly impaired (Di Battista et al.,
2018). To obtain a better diagnosis and treatment method, it is necessary to explore the pathogenesis
of SLE.

Since the successful application of high-throughput technology, it has been widely used in almost
all biological research fields (Hess et al., 2020). With the development of high-throughput technology
(Hess et al., 2020), biological research has been transformed from a single gene level to a full

Edited by:
Lei Deng,

Central South University, China

Reviewed by:
Chen Qingfeng,

Guangxi University, China
Shihua Zhang,

Wuhan University of Science and
Technology, China

*Correspondence:
Zhiyi Zhang

zhangzhiyi2014@163.com

Specialty section:
This article was submitted to

Statistical Genetics and Methodology,
a section of the journal
Frontiers in Genetics

Received: 23 September 2021
Accepted: 20 October 2021

Published: 04 November 2021

Citation:
Zhang H, Wang Y, Feng J, Wang S,

Wang Y, Kong W and Zhang Z (2021)
Integrative Analysis for Elucidating

Transcriptomics Landscapes of
Systemic Lupus Erythematosus.

Front. Genet. 12:782005.
doi: 10.3389/fgene.2021.782005

Frontiers in Genetics | www.frontiersin.org November 2021 | Volume 12 | Article 7820051

ORIGINAL RESEARCH
published: 04 November 2021

doi: 10.3389/fgene.2021.782005

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2021.782005&domain=pdf&date_stamp=2021-11-04
https://www.frontiersin.org/articles/10.3389/fgene.2021.782005/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.782005/full
https://www.frontiersin.org/articles/10.3389/fgene.2021.782005/full
http://creativecommons.org/licenses/by/4.0/
mailto:zhangzhiyi2014@163.com
https://doi.org/10.3389/fgene.2021.782005
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2021.782005


transcriptome level, which has greatly advanced many
research fields in biology (Wang et al., 2009; McDermaid
et al., 2019). Cheng. et al. based on the genome-wide
expression data of peripheral blood mononuclear cells
(PBMC) of SLE patients found a novel marker of SLE
(Cheng et al., 2021). Jiang. et al. discovered a new type of
lncRNA that plays an important role in the pathogenesis of
SLE based on the whole transcriptome data of PBMC of SLE
patients (Jiang et al., 2021). However, these studies were only
conducted on a single dataset, and there was heterogeneity
between different datasets. Therefore, through a
comprehensive analysis of multiple datasets, more robust
results will be obtained.

In this study, we conducted a systematic analysis of two gene
expression datasets of SLE. First, differential expression analysis
was performed to obtain differentially expressed genes (DEGs) in
each dataset. To obtain robust results, we intersected the DEGs s
of the two datasets. We found that 790 genes were differentially
expressed in both datasets. Finally, gene function enrichment
analysis showed that common DEGs were enriched in immune-
related biological pathways. Overall, our research provided new
insight into the molecular mechanism of SLE.

MATERIALS AND METHODS

Datasets
“Systemic Lupus Erythematosus” and “RNA-seq” were used
as the keywords for searching the GEO database. The gene
expression datasets of PBMC from freshly isolated healthy
controls and SLE patients were downloaded from the GEO
database (GSE162828 and GSE169080), the platforms used
were GPL24676, and GPL20795. GSE162828 included 10
samples of peripheral blood mononuclear cells and was
divided into the SLE group (5 samples) and healthy
controls group (5 samples). GSE169080 included seven
samples of peripheral blood mononuclear cells and was
divided into SLE group (4 samples) and healthy controls
group (3 samples) (Clough and Barrett, 2016; Cheng et al.,
2021; Jiang et al., 2021).

Data Pre-processing and Identification of
Differential Expressed Genes
R package DESeq2 (1.26.0) was used for the analysis of the
original datasets (Love et al., 2014). |log FC| > 1 and p. adj
<0.05 were defined as the cutoff values for further analysis of
DEGs. Volcano and heatmap were constructed by R package
ggplot2. Venn plot (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was used to draw the intersection of two
databases.

Analyzing of DEGs on Protein-Protein
Interaction Network
Protein-protein interaction (PPI) network analysis helps to
study the molecular mechanism of diseases from a systematic

perspective and discover new drug targets (Wu et al., 2019).
STRING (https://string-db.org/) is a database covering more
than 5,000 organisms with known and predicted protein-
protein interactions, providing direct (physical) and indirect
(functional) associations (Szklarczyk et al., 2017). We used
String (https://string-db.org/) to generate biological
networks for proteins, and the results were analyzed by
Cytoscape (Shannon et al., 2003; Szklarczyk et al., 2017).

Gene Functional Enrichment Analysis
Gene Ontology (GO) is an ontology widely used in the field of
bioinformatics, which covers three aspects of biology:
biological process (BP), cellular component (CC), and
molecular function (MF) (Thomas, 2017). Kyoto
Encyclopedia of Genes and Genomes (KEGG) is a
biological system advanced function and utility database
based on molecular-level information from genome
sequencing and other high-throughput experimental
technologies (Kanehisa et al., 2017). In this study, R
package clusterProfiler was used to perform GO functional
annotation and KEGG pathway enrichment analysis for
DEGs (Yu et al., 2012).

RESULTS

Differentially Expressed Genes Between
SLE Patients and Healthy Controls
To obtain abnormally expressed genes in SLE patients, we
separately analyzed the differential expression of two GEO
datasets (GSE162828 and GSE169080). As shown in
Figure 1A, there were 4,713 DEGs, including 2,717 up-
regulated and 1,996 down-regulated in the GSE162828
dataset. In the GSE169080 dataset, there were 2,473 DEGs,
including 1,552 up-regulated and 921 down-regulated
(Figure 1B). In both datasets, the number of up-regulated
DEGs was more than the number of down-regulated DEGs
(Figure 1C). In the GSE162828 dataset, the up-regulated
DEGs accounted for 56.7% of all DEGs. At the same time,
the up-regulated DEGs accounted for 62.8% of all DEGs in
the GSE169080 dataset. The trends in the two datasets were
roughly the same.

In addition, the heatmap showed that DEGs can group
samples by sample type, namely SLE patients (SLE) and
healthy controls (Norm) (Figures 1D,E). These genes were
highly concordant within groups. The expression level of these
genes between SLE patients and healthy controls exhibited a large
difference in both databases.

Identification of Common Differentially
Expressed Genes by Integrated Analysis
Due to the heterogeneity between different datasets, the analysis
results of different datasets may have certain differences (Ying
et al., 2020). The gene expression in different samples may be
different (Bao et al., 2021). To avoid this problem, integrating
multiple datasets and a large number of samples help obtain more
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FIGURE 1 | Analysis of differentially expressed genes (DEGs) between SLE patients and healthy controls. (A,B) The volcano plots exhibited the differentially
expressed genes in SLE patients groups compared to healthy controls groups. Each dot in the figure represented one gene. The green dots indicated the differentially
expressed genes, while the red dots denoted no significant difference. (C) Barplot showed the number of DEGs whose expression levels were up-regulated (green) and
down-regulated (red) in the two datasets. (D, E)Hierarchy Clustering Analysis. Repeated samples are clustered together, indicating the repeatability of samples and
the differences between samples.

FIGURE 2 | Common differentially expressed genes. (A) Venn plot showed the intersection of DEGs in two datasets (B) The histogram showed the distribution of
DEGs on chromosomes.
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solid results (Kou et al., 2020). In this study, we integrated DEGs
from two datasets to obtain common DEGs.

The Venn diagram showed that 790 DEGs were shared
between the two datasets (Figure 2A). They accounted for
16.8% (GSE162828) and 31.9% (GSE169080) of the two
datasets, respectively. There were 3,923 DEGs only in the
GSE162828 dataset, and 1,683 DEGs only in GSE169080
dataset. This may be caused by different sequencing
technologies and sample heterogeneity.

We defined these 790 DEGs as common DEGs. To further
explore the distribution of common DEGs on the
chromosomes, we had made statistics on the chromosomal

locations of these genes. As shown in Figure 2B, we found
that these genes were distributed on every chromosome. Most
of these genes were distributed on chromosome 19. On the
contrary, they were only 6 DEGs on chromosome 13.

Analysis of Common Differentially
Expressed Genes on Protein-Protein
Interaction Network
Proteins usually perform biological functions in concert. It
has been shown that there is a close relationship between
Protein-Protein Interaction (PPI) and the biological

FIGURE 3 | Protein-Protein Interaction network of common DEGs. The size and color of the node depending on the degree, the larger the degree, the larger
the node.
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functions of gene/protein clusters (Li H. et al., 2019). To
further analyze the correlation between common DEGs,
STRING and Cytoscape were used to construct the PPI
network (Figure 3). Part of common DEGs was predicted
to have a strong association with other genes. The size and
color of the node depending on the degree, the larger the
degree, the larger the node.

Especially, CCNB2, CDCA8, AURKB, BUB1B, RRM2, BIRC5,
and UBE2C had the largest degree. CCNB2 is an essential
component of the cell cycle regulatory machinery (Takashima
et al., 2014; Li R. et al., 2019). CDCA8 is an essential regulator of
mitosis and cell division (Zhang et al., 2020). AURKB participates
in the regulation of alignment and segregation of chromosomes
during mitosis and meiosis through association with
microtubules (Ahmed et al., 2021). BUB1B encodes a kinase
involved in the spindle checkpoint function (Zhang et al.,
2021). RRM2 encodes one of two non-identical subunits for
ribonucleotide reductase (Mazzu et al., 2020). BIRC5 encodes

negative regulatory proteins that prevent apoptotic cell death
(Adamopoulos et al., 2021).UBE2C is required for the destruction
of mitotic cyclins and cell cycle progression (Jin et al., 2020).

Functional Enrichment Analysis of Common
Differentially Expressed Genes
To investigate the biological function of common DEGs, we used
clusterProfiler to perform Functional enrichment analysis. Biological
Process (BP) enrichment showed that the common DEGs were
enriched in neutrophil mediated immunity, neutrophil
degranulation, neutrophil activation involved in immune response,
neutrophil activation and regulation of inflammatory response
(Figure 4A). Cellular Component (CC) enrichment showed that
the common DEGs were mainly enriched in secretory granule
lumen, cytoplasmic vesicle lumen, vesicle lumen, secretory granule
membrane and vacuolar membrane (Figure 4B). Molecular Function
(MF) enrichment showed that the common DEGs were significantly

FIGURE 4 | Functional Enrichment Analysis of common DEGs. (A) Biological process analysis of common DEGs. (B) Cellular component analysis of common
DEGs. (C) Molecular function analysis of common DEGs. (D) KEGG analysis of common DEGs.
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enriched in tubulin binding, microtubule binding, carbohydrate
binding, cargo receptor activity and immunoglobulin binding
(Figure 4C).

KEGG pathway analysis provided a potential functional cluster of
common DEGs, indicating that the common DEGs were clustered in
Herpes simplex virus one infection, HumanT−cell leukemia virus one
infection, Cell cycle, Transcriptional misregulation in cancer and
Epstein−Barr virus infection (Figure 4D).

DISCUSSION

SLE is a multi-system autoimmune inflammation that can
affect multiple organs and cause extensive and severe clinical
manifestations (Wu et al., 2021). The current understanding
of the pathogenesis of SLE is not comprehensive. The key
driving factors involved in the occurrence and development
of SLE remain to be determined. In this study, we provided
new insights into the transcriptome of SLE based on RNA-
seq data.

The results showed that compared with the normal healthy
control groups, a large number of genes in SLE patients were
abnormally expressed. Through integrated analysis, we found
that there were 790 shared DEGs in the two databases. The results
indicated that these common DEGs may lead to the occurrence
and development of SLE. Previous studies had shown that
lncRNA and circRNA are important factors leading to the
occurrence of SLE (Cheng et al., 2021; Jiang et al., 2021). We
found that the differential expression of these common DEGs
might play an important role in this process.

Through further analysis, we found that the DEGs tended to
up-regulated in the two datasets. Through protein-protein
interaction network analysis of commonly dysregulated genes,
we found that there was a strong correlation between these genes.
These PPI networks may have affected the occurrence and
development of SLE. Pathway enrichment results showed that
common DEGs were significantly enriched in immune-related
pathways such as neutrophil mediated immunity, neutrophil
degranulation, neutrophil activation involved in the immune
response.

In summary, we integrated and analyzed high-throughput
sequencing RNA-seq datasets to uncover potential molecular
mechanisms of SLE. Our findings provide new clues for
possible targeted therapy of SLE. Further studies on the
functions of those common DEGs hoped to better understand
SLE by integrating more data.
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