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To achieve a better therapeutic effect and suppress side effects for lung cancer treatments, latency involved in current radiotherapy
devices is aimed to be compensated for improving accuracy of continuous (not gating) irradiation to a respiratory moving tumor.
A novel prediction method of lung tumor motion is developed for compensating the latency. An essential core of the method
is to extract information valuable for the prediction, that is, the periodic nature inherent in respiratory motion. A seasonal
autoregressive model useful to represent periodic motion has been extended to take into account the fluctuation of periodic nature
in respiratory motion. The extended model estimates the fluctuation by using a correlation-based analysis for adaptation. The
prediction performance of the proposedmethod was evaluated by using data sets of actual tumor motion and compared with those
of the state-of-the-art methods. The proposed method demonstrated a high performance within submillimeter accuracy. That is,
the average error of 1.0 s ahead predictions was 0.931 ± 0.055mm. The accuracy achieved by the proposed method was the best
among those by the others. The results suggest that the method can compensate the latency with sufficient accuracy for clinical use
and contribute to improve the irradiation accuracy to the moving tumor.

1. Introduction

In radiation therapy, some internal organ motions can make
critical misalignment between irradiated field and the target
volume during a treatment fraction. For example, a lung
tumor can move over a centimeter per second mainly due to
patients’ respiration [1].

A real-time image-guided technique can be used forman-
aging such tumor motion [2]. Indeed, kV X-ray fluoroscopes
[3–5] and electronic portal imaging devices (EPIDs) [6] have
been developed for monitoring the intrafractional tumor
motion in real time. The measured tumor position is then
potentially used for targeting the irradiation field by using
a dynamic multileaf collimator (dMLC) [7]. In the real-time
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targeting system, the exposure to normal tissues can be
reduced, and thus the dose rate escalation can be allowed for
better treatment results. The system takes, however, up to
several hundred milliseconds to control the irradiation field
by using dMLC after the moment of measuring the tumor
position [8]. Obviously such time delay causes a misalign-
ment between the controlled isocenter and the center of the
moving target volume.

A general and useful way to compensate the time delay is
to predict respiratory-induced tumor motion [9], and many
prediction methods of respiratory motion have been pro-
posed [10]. In fact, there are many approaches for predicting
respiratory motion, such as linear and nonlinear regres-
sion models [11, 12], neural networks [13–15], autoregressive
moving-average models [16, 17], probabilistic approaches
[18], and singular spectrum analyses [19]. However, to the
best of our knowledge, no approach that can satisfy clinical
requirements in the sense of prediction accuracy has yet been
developed due to the complexity of the respiratory motion.

Even the respiratory motion is very complex it is not
surprising that a fundamental pattern involved in the tumor
motion is periodical behavior because respiration consists of
repetition of inhaling and exhaling alternately. The period-
icity tells us much information about what the future will be
because the current state will arise again after a certain period
of time.This periodic nature can be useful for themotion pre-
diction, but the time varying and fluctuated periodicity, or
quasi-periodicity, involved in the respiratory motion remain
as an impediment to periodicity-based prediction.

To model the time-varying periodical nature of respira-
tion, periodic autoregressive moving-average (PARMA) [16]
and modified seasonal autoregressive integrated moving-
average (SARIMA) [17] approaches have been proposed. The
PARMA model-based method decomposes the time series
into two components: a fully periodic component consisting
of an average wave form and the other component. However,
it is unclear how to extract the periodical component. Also,
fast response of themodel adaptation to the fluctuation of the
periodicity might be difficult due to the hysteresis in the
calculation of the average wave form for the periodic com-
ponent extraction. On the other hand, the SARIMA model-
based method converts the time-varying periodic nature to
a constant periodic one by adjusting the time variation.
However, themodel cannot express the target time series with
desirable accuracy unless the conversion is perfect, which is
very difficult in general. Consequently, these time-varying
periodical models need to be improved to achieve better per-
formance with sufficient prediction accuracy.

In this paper, to improve the prediction accuracy, we
develop a new prediction method by taking into account
the periodical respiratory nature with complex fluctuation
observed in the lung tumor motion. The goal is to predict
the tumor motion at several hundred milliseconds ahead
with a high accuracy less than 1mm, so that a minimal
requirement for irradiation with submillimeter accuracy [20]
would be satisfied.The proposedmodel is based on a seasonal
autoregressive model, but newly designed to adapt to the
fluctuated periodicity by using a correlation analysis-based
methodology. The prediction performance of the proposed
method is evaluated by using clinical data sets.
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Figure 1: A part of time series of a lung tumor motion.The position
of the tumor periodically changes with time by patient’s respiration.

The outline of this paper is as follows. In the next section,
the target motion of a lung tumor is analyzed briefly. Based
on the analysis, a new time-varying seasonal autoregressive
model is proposed in Section 2.2. In Section 3, experimental
details including clinical data sets are tested, and evaluation
index for prediction performance is described. Prediction
results by using the clinical data sets are discussed in
Section 4. The last section provides concluding remarks.

2. Methods and Materials

2.1. Time Series of Lung TumorMotion. Let us consider a time
series of a lung tumor motion as shown in Figure 1, denoted
by {𝑦(𝑡)}, 𝑡 = 1, 2, . . .. Here 𝑦(𝑡) is a coordinate of the tumor
position at discrete time index 𝑡.

It is apparent that the lung tumor position changes almost
periodically with some amplitude variation. It can be found
that the tumor returns to the same position or its neighbor
every 3 s (90 samples in this case) in average. It was how-
ever confirmed that time intervals between positive/negative
peaks and their preceding or following positive/negative
peaks are not constant but time varying, even if the ampli-
tudes of the positive/negative peaks are almost similar to each
other.

It may be worth to mention that the periodical nature
involves complex fluctuation even the fact that the lung tumor
moves almost periodically is very useful information for
predicting the motion.

2.2. Prediction Methods

2.2.1. Seasonal Autoregressive Model-Based Prediction. Sea-
sonal autoregressive (SAR) model is an autoregressive (AR)
model to express time series with periodical or seasonal vari-
ation [21]. The SAR model of time series {𝑦(𝑡)}, 𝑡 = 1, 2, . . . is
given as follows:

𝑦 (𝑡) = 𝜖 (𝑡) +

𝑃

∑

𝜌=1

Φ
𝜌
⋅ 𝑦 (𝑡 − 𝜌 ⋅ 𝑠) , (1)
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where Φ
𝜌
, 𝜌 = 1, 2, . . . , 𝑃 are SAR coefficients, 𝑃 is the order

of SAR model, and 𝜖(𝑡) is a white Gaussian noise with mean
𝜇 = 0 and variance 𝜎2 at time 𝑡, respectively. Note that 𝑠 is
a period such that a time series of {𝑦(𝑡), 𝑦(𝑡 − 𝑠), . . .} is
represented by the 𝑃th autoregressive model [21]. The period
can be estimated based on an analysis of the past samples
available at the current time 𝑡, {𝑦(𝑡−1), 𝑦(𝑡−2), . . .}. Onemay
use the autocorrelation analysis and Fourier analysis for such
estimation. Then, for ℎ ∈ {1, 2, . . .}, the ℎ-sample forward
prediction can be obtained by substituting 𝑡 + ℎ for 𝑡 in (1)
as follows:

𝑦 (𝑡 + ℎ | 𝑡) =

𝑃

∑

𝜌=1

Φ̂
𝜌
⋅ 𝑦 (𝑡 + ℎ − 𝜌 ⋅ 𝑠) . (2)

Here, 𝑦(𝑡 + ℎ | 𝑡) denotes an estimate of 𝑦(𝑡 + ℎ) at time 𝑡,
and Φ̂

𝜌
, 𝜌 = 1, 2, . . . , 𝑃 are estimates ofΦ

𝜌
. Note that ℎ in the

right side of (2) must not be greater than 𝜌 ⋅ 𝑠, that is, ℎ ≤ 𝜌 ⋅ 𝑠,
to predict the future value using only the past values.

As is clear from (1) and (2), the SAR model predicts the
target value 𝑦(𝑡 + ℎ) as the weighted sum of 𝑃 past values at
𝜌th (𝜌 = 1, 2, . . . , 𝑃) period samples back.

An apparent problem here is that the SAR model inher-
ently assumes the constant period 𝑠which is not time varying.
In other words, the constant period 𝑠 of the SAR model
cannot accurately refer to the past values correlated to the pre-
diction target if the target time series involves quasi-periodic
nature. This mismatch has a bad effect on the prediction
accuracy. In this sense, the SAR model is not suitable for
predicting time-varying periodic respiratory motion.

2.2.2. Time-Varying SAR Model-Based Prediction. To over-
come the limitation of the conventional SAR model-based
method, a time-varying interval is introduced instead of the
constant period 𝑠 for referring to the past values correlated to
the prediction target. In the following, let us keep considering
the linear regression approach of SARmodel. However, other
approaches such as nonlinear adaptive filtering can be incor-
porated into the proposed concept of time-varying interval
model.

(a) Basic Concept of Time-Varying SARModel. A time-varying
SAR (TVSAR) model is defined as follows:

𝑦 (𝑡) = 𝜖 (𝑡) +

𝑃

∑

𝜌=1

Φ
𝜌
⋅ 𝑦 (𝑡 − 𝑟

𝜌 (𝑡)) , (3)

where 𝑟
𝜌
(𝑡) > 0, 𝜌 = 1, 2, . . . , 𝑃 are the 𝜌th reference intervals

by which the target value 𝑦(𝑡) is matched with the past values
at the reference intervals 𝑟

𝜌
(𝑡)-sample back, {𝑦(𝑡 − 𝑟

𝜌
(𝑡))}.

For a time series with a constant period 𝑠, the reference
intervals are given as 𝑟

𝜌
(𝑡) = 𝜌⋅𝑠.Thus, the conventional SAR

model in (1) can be regarded as a special case of the model
in (3). In other words, the time-varying SAR model is an
extension of the conventional SAR model for adapting to a
time-varying periodical nature.

(b) Reference Interval Estimation. How to estimate the ref-
erence intervals is a fundamental problem to be solved for
building the time-varying SARmodel. In this study, a correla-
tion analysis-based approach was adopted for estimating the
reference intervals. That is, the intervals are estimated based
on the best match between the target and past subsets of the
time series in the sense of the correlation.

The correlation function CF between the target subset at
time 𝑡, [𝑦(𝑡 − 𝑤 + 1), 𝑦(𝑡 − 𝑤), . . . , 𝑦(𝑡)], and 𝑘-sample lagged
subset, [𝑦(𝑡 − 𝑘 − 𝑤 + 1), 𝑦(𝑡 − 𝑘 − 𝑤), . . . , 𝑦(𝑡 − 𝑘)], is given
as follows:

CF (𝑡, 𝑘) = 1

𝑤

𝑤−1

∑

𝑗=0

𝑦 (𝑡 − 𝑗) − 𝜇
𝑡

𝜎
𝑡

⋅
𝑦 (𝑡 − 𝑘 − 𝑗) − 𝜇

𝑡−𝑘

𝜎
𝑡−𝑘

, (4)

where 𝜇
𝑡
and 𝜎

𝑡
are the sample mean and standard deviation

of the subset at time 𝑡, respectively. Then, the estimates of the
𝜌th reference interval 𝑟

𝜌
(𝑡) are obtained as the interval from

lag 𝑘 = 0 to the 𝜌th positive peak of the correlation function
𝑟
𝜌 (𝑡) = argmax

𝑘∈𝐾𝜌

CF (𝑡, 𝑘) , (5)

where 𝐾
𝜌
, 𝜌 ∈ {1, 2, . . . , 𝑃} determines a search range for the

𝜌th intervals and is set as 𝐾
𝜌
= {𝑘 | 𝑟

𝜌
(𝑡 − 1) − 𝑟

1
(𝑡 − 1)/2 ≤

𝑘 ≤ 𝑟
𝜌
(𝑡 − 1) + 𝑟

1
(𝑡 − 1)/2}.

The subset-length 𝑤 affects the sensitivity of the esti-
mation. The shorter length of subset can follow the quicker
change of the reference interval, while it may lack the more
information for measuring the similarity and be the more
susceptible to noise. The longer subset can cover the larger
number of the sample values to evaluate the similarity, while it
can follow the slower internal change. In this sense,𝑤 should
be determined by balancing the amount of information for
similarity estimation against the response speed. It is rational
to assume that at least a cycle-length subset may be needed
to estimate the reference interval that implies a cycle length.
Since the estimate of the first reference interval 𝑟

1
(𝑡) is

expected to cover an approximate full length of the current
respiratory cycle,𝑤 is updated as 𝑟

1
(𝑡) each time in this paper.

That is, 𝑤 = 𝑟
1
(𝑡).

The effect of the past information can be reduced by using
information from the shorter-length subset. Especially, the
point-to-point analysis uses the shortest subset of 𝑤 = 1

implying a value 𝑦(𝑦). To compensate the lack of information
due to the short length, not only the values of a subset, but also
the derivatives can be used. Then, the correlation analysis-
based estimates of reference intervals 𝑟

𝜌
(𝑡) will be adjusted

by the point-to-point analysis of the value and the first
derivatives in this paper.

The adjustment procedure is as follows.
(1) Estimate the reference intervals, 𝑟

𝜌
(𝑡) by using the

correlation analysis-based approach.
(2) Evaluate the difference between the current and past

samples around 𝑦(𝑡 − 𝑟
𝜌
(𝑡)). The evaluation function

is given as

𝐹
𝜌 (𝑙) = 𝛼√(𝑦 (𝑡 + 𝑙 − 𝑟

𝜌 (𝑡)) − 𝑦 (𝑡))
2

+ 𝛽√(sgn ( ̇𝑦 (𝑡 + 𝑙 − 𝑟
𝜌 (𝑡)) − ̇𝑦 (𝑡)))

2

,

(6)
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where 𝑙 is a lag from 𝑡 − 𝑟
𝜌
(𝑡), 𝛼 and 𝛽 are coefficients

for the nondimensionalization, sgn(⋅) is a signum
function, and ̇𝑦(𝑡) denotes the first derivative of 𝑦(𝑡)
and is approximated by ̇𝑦(𝑡) = (1/3)∑

3

𝑗=1
{𝑦(𝑡 − 𝑗) −

𝑦(𝑡 − 𝑗 − 1)}.
(3) Find the local minimum of the evaluation function

𝐹
𝜌
(𝑙) and then obtain an amount of adjustmentΔ𝑟

𝜌
as

Δ𝑟
𝜌
= arg min

−𝐿≤𝑙≤+𝐿

𝐹
𝜌 (𝑙) , (7)

where 𝐿 determines a range of adjustment.
(4) Adjust the correlation analysis-based estimates by

using Δ𝑟
𝜌
as

̌𝑟
𝜌
(𝑡) = 𝑟

𝜌
(𝑡) + Δ𝑟

𝜌
, (8)

where ̌𝑟
𝜌
(𝑡), 𝜌 = 1, 2, . . . , 𝑃 are new estimates.

Thus, the adjusted estimates ̌𝑟
𝜌
(𝑡), 𝜌 = 1, 2, . . . , 𝑃 can refer to

the past values which are feasible to predict the current one
𝑦(𝑡) in terms of amplitude and velocity.

(c) Prediction Equations Based on TVSAR Model. For the ℎ-
sample ahead prediction, the proposed time-varying SAR
model can be represented by substituting 𝑡 + ℎ for 𝑡 in (3)
as

𝑦 (𝑡 + ℎ | 𝑡) =

𝑃

∑

𝜌=1

Φ̂
𝜌
⋅ 𝑦 (𝑡 + ℎ − 𝑟

𝜌 (𝑡 + ℎ)) . (9)

Here, the reference intervals at the ℎ-sample future, 𝑟
𝜌
(𝑡 +

ℎ), are unknown values. Therefore, the prediction equation
above is rewritten in practice as follows:

𝑦 (𝑡 + ℎ | 𝑡) =

𝑃

∑

𝜌=1

Φ̂
𝜌
⋅ 𝑦 (𝑡 + ℎ − 𝑟

𝜌 (𝑡 + ℎ | 𝑡)) , (10)

where 𝑟
𝜌
(𝑡 + ℎ | 𝑡), 𝜌 = 1, 2, . . . , 𝑃 denote the reference

interval estimates at time 𝑡 + ℎ, predicted at the current time 𝑡.
Note that reference intervals must be greater than prediction
horizon ℎ, that is, ℎ ≤ 𝑟

𝜌
(𝑡 + ℎ | 𝑡), to compose the prediction

using the past values.
Then, we have two types of reference intervals, correla-

tion analysis-based and its adjusted estimates, as mentioned
earlier; thus the following two types of TVSAR model-based
prediction equations are introduced.

TVSAR(a)—Prediction with Correlation Analysis-Based Ref-
erence Interval. If we adopt the zero order hold of the
correlation-based reference intervals 𝑟

𝜌
(𝑡) in (5) as the pre-

diction

𝑟
𝜌 (𝑡 + ℎ | 𝑡) = 𝑟𝜌 (𝑡) (11)

then the prediction equation based on TVSAR is given as

𝑦 (𝑡 + ℎ | 𝑡) =

𝑃

∑

𝜌=1

Φ̂
𝜌
⋅ 𝑦 (𝑡 + ℎ − 𝑟

𝜌 (𝑡)) . (12)

TVSAR(b)—Prediction with Adjusted Reference Interval. Sim-
ilarly, if we adopt the zero order hold of the adjusted reference
interval estimate ̌𝑟

𝜌
(𝑡) in (8) as the prediction

𝑟
𝜌 (𝑡 + ℎ | 𝑡) = ̌𝑟

𝜌 (𝑡) (13)

then TVSAR model-based prediction is given as

𝑦 (𝑡 + ℎ | 𝑡) =

𝑃

∑

𝜌=1

Φ̂
𝜌
⋅ 𝑦 (𝑡 + ℎ − ̌𝑟

𝜌 (𝑡)) . (14)

3. Experimental Setup

We have evaluated the prediction performance of the pro-
posed method by using some clinical data sets.

3.1. PredictionMethods. For comparison, the followingmeth-
ods including the-state-of-the-art ones were tested on the
data sets:

(i) zero order hold (ZOH);
(ii) singular spectrum analysis (SSA) based method [19];
(iii) kernel density estimation (KDE) based method [18];
(iv) adaptive SAR model-based method [17]:

(a) adaptive SAR is given as (2) by substituting 𝑠(𝑡+
ℎ | 𝑡) = 𝑟

1
(𝑡) for 𝑠;

(v) time-varying SAR (TVSAR) model-based method
(proposed):

(a) reference interval estimates based on correla-
tion analysis;

(b) adjusted reference interval estimates.

Table 1 summarizes the experimental settings used for the
performance evaluation. These are based on the original set-
tings and partially modified to obtain better performance for
the data sets.

3.2. Data Sets of Lung Tumor Motion

3.2.1. Original Data Sets. Three data sets of lung tumor
motion acquired at Hokkaido University Hospital were used
for the evaluation. The three-dimensional lung tumor posi-
tions weremeasured as the trajectory of gold fiducial markers
implanted near the tumor, by usingX-ray fluoroscopic system
with sampling rate of 30Hz. To eliminate the outliers and
high-frequency noise in each time series, low-pass and sta-
tistical filters were used preliminarily for all the data sets.
The three data sets used in this paper are shown in Figure 2.
Table 2 summarizes the characteristics of each data set.

3.2.2. Data Sets with Lower Sampling Rate. There are several
systems for measuring or estimating the tumor motion, such
as CCD camera systems with chest markers and fluoroscopic
imaging systemswith implanted goldenmarkers.These imag-
ing systems have a variety of sampling rates, and actual sam-
pling rate in clinical use may be less than or equal to the
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Table 1: Tested prediction methods and settings.

Method Setting
ZOH None —

Samples back length 300 samples
SSA [19] Dimension number of covariance matrix 250 samples

Number of largest eigenvalues 18
Sampling interval 15 samples

KDE [18]
Dimension number of covariate 3
Length of moving window 300 samples
Representing value of distribution Mean

Adaptive SAR [17]
Order of seasonal AR 𝑃 = 2

Coefficients of SAR Φ̂
𝜌
= 1/2, 𝜌 = 1, 2, . . . , 𝑃

Order of TVSAR 𝑃 = 2

TVSAR Coefficients of TVSAR Φ̂
𝜌
= 1/2, 𝜌 = 1, 2, . . . , 𝑃

(proposed method) Reference interval estimation (a) Correlation analysis-based approach
(b) Adjustment with adjustment range 𝐿 = 5

Table 2: Characteristics of data sets tested. The sampling frequency is 30Hz for all the data sets.

Axis Case number
No. 1 No. 2 No. 3

Max. amplitude of respiration cycle max |𝑦(𝑡)| (mm)
LR 1.1409mm 0.8268mm 1.1748mm
CC 7.6957mm 9.4093mm 8.3144mm
AP 1.9169mm 1.7538mm 1.7833mm

Standard deviation of time series 𝜎
𝑦
(mm)

LR 0.3351mm 0.2064mm 0.2475mm
CC 3.6548mm 3.9511mm 3.8863mm
AP 0.622mm 0.6179mm 0.6743mm

Average period of breathing cycle 𝑠/𝐹
𝑠
(s) 3.0341 s 2.9681 s 3.0341 s

Length of time series (s) 116.7 s 107.6 s 130.0 s

maximum sampling rate of the device in order to suppress
the additional radiation exposure. To evaluate the effect of
the sampling rate on the prediction performance, data sets
with the lower sampling rates 𝐹

𝑠
= 5, 10, 15, 20, and 25Hz

were generated from the original data sets and used for this
experiment.

The problem here is that the lower rate provides only the
lower pieces of information about the tumor motion, and
thus it may badly affect the prediction accuracy. To avoid the
bad effects of low sampling rates, online interpolation using
cubic-spline was adopted as a preprocessing for the predic-
tion methods. Using the interpolation, any low sampling rate
less than 30Hz was upsampled to 30Hz in this evaluation.

3.3. Evaluation Index for Prediction Performance. Weevaluate
the prediction accuracy by using mean absolute error (MAE)
given as a function of the prediction horizon ℎ,

MAE (ℎ) = 1

𝑡
𝑒
− 𝑡
𝑠

𝑡𝑒

∑

𝑡=𝑡𝑠

𝑒euc (𝑡 | 𝑡 − ℎ)
 . (15)

Here 𝑡
𝑠
and 𝑡
𝑒
are, respectively, the lower and upper bounds

for defining the evaluation interval, and 𝑒euc(𝑡 | 𝑡 − ℎ)

is the Euclidean distance between the predicted and actual
positions given by

𝑒euc (𝑡 | 𝑡 − ℎ) = √∑
𝑖

(𝑦
𝑖
(𝑡 | 𝑡 − ℎ) − 𝑦

𝑖
(𝑡))
2
, (16)

where 𝑖 = {LR,CC, and AP} are indices for three-dimen-
sional space and correspond to lateral-, cephalocaudal-, and
anteroposterior-axes, respectively.

The lower bound was fixed as 𝑡
𝑠
= 551 (approximately

18.4 s), and the upper bounds were determined as 𝑡
𝑒
= 𝑇 −

ℎmax, where 𝑇 denotes the length of the time series, and
ℎmax = 30 is the maximum prediction horizon. Then, for the
data sets of no. 1, no. 2, and no. 3, 𝑡

𝑒
= 3470, 3198, and 3870

(approximately 115.7, 106.6, and 129.0 s), respectively.
Generally, MAE increases when increasing prediction

horizon ℎ becomes large, but it is required to be less than
1mm at prediction horizon of several hundred milliseconds
at least for dMLC tracking with submillimeter accuracy [20].

4. Results and Discussions

4.1. Prediction with the Full Sampling Rate. Figure 3 shows
selected examples of one-dimensional time series from the
cephalocaudal-axis (𝑖 = CC) of data sets no. 1 predicted by
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Figure 2: Three data sets of lung tumor motion. The vertical-axis labels LR, CC, and AP stand for lateral-axis, cephalocaudal-axis, and
anteroposterior-axis, respectively.

the proposed method for ℎ = 15 samples ahead (i.e., 0.5 s
future). Gray dots, dashed, solid, and dotted lines depict the
actual position, the position predicted, the error 𝑒(𝑡 | 𝑡 − ℎ) =
𝑦(𝑡 | 𝑡 − ℎ) − 𝑦(𝑡), and the standard deviation of the error
𝑒(𝑡 | 𝑡 − ℎ), 𝑡 = 𝑡

𝑠
, . . . , 𝑡

𝑒
, respectively.

According to the figures, it can be seen that tumor posi-
tions predicted by TVSAR(a) and (b) are close to the actual
one in appearance. TVSAR(a) prediction is smoother than
TVSAR(b) prediction, and this fact suggests that TVSAR(a)
is better than TVSAR(b) from a viewpoint of the smoothness.
On the other hand, the averages and standard deviations
of prediction errors by TVSAR(a) and (b) were −0.0667 ±
1.0677mm and −0.0043 ± 1.0291mm, respectively. Both are
almost within 1mm accuracy, but TVSAR(b) is slightly better
than (a).

The error of TVSAR(b), which is peaky, but smaller than
TVSAR(a) on average, might be caused as the result of the
adjustment of the reference interval. Indeed, once the differ-
ence between the current value 𝑦(𝑡) and its predicted value
𝑦(𝑡−𝑟

𝜌
(𝑡)) of TVSAR(a) becomes large, the reference interval

estimate of TVSAR(b) is adjusted to reduce the difference by
using past values. Consequently, large errors of TVSAR(a) are
basically suppressed by TVSAR(b).

For three-dimensional performance evaluation with
other prediction methods, Figure 4 shows MAE averaged
over the three clinical data sets, as a function of prediction
horizon ℎ/𝐹

𝑠
(s). Also, Table 3 summarizes the averages and

the standard deviations of MAEs achieved by the prediction
methods at selected prediction horizons of ℎ = 5, 10, 15, 20,
25, and 30. The best MAEs for each prediction horizon are
indicated by boldface.

As shown in Figure 4 and Table 3, the MAEs of the two
types of the proposed methods are less than 1mm for ℎ/𝐹

𝑠
≤

1 s.The least MAE for 1 ≤ ℎ ≤ 30was achieved by TVSAR(b)
in this experiment. On the other hand, other prediction
methods presented that those MAEs are larger than 1mm, at
each different prediction horizon. The MAE of ZOH is very
small at ℎ = 1 but has drastically increased over 1mm for
ℎ > 3. The three methods of KDE, SSA, and the adaptive
SAR showed less MAE than ZOH except for the very short-
term prediction.However, thoseMAE curves were over 1mm
for ℎ/𝐹

𝑠
> 0.4 s. The MAE curve of the SAR is very flat

and seems similar to TVSAR(a) but is slightly larger than
that of TVSAR(a). This may be because SAR and TVSAR(a)
share those first past values used for their predictions, that is,
𝑦(𝑡 + ℎ − 𝑠(𝑡 + ℎ | 𝑡)) = 𝑦(𝑡 + ℎ − 𝑟

1
(𝑡 + ℎ | 𝑡)).

As shown in the result of MAE, the two proposed meth-
ods can predict the tumor motion with the order of sub-
millimeter accuracy on average. In addition to this, it was
shown that the prediction accuracy of TVSAR(b) is the best
among the compared methods including TVSAR(a). Espe-
cially, only TVSAR(b) is superior to ZOH for very short-term
prediction of ℎ/𝐹

𝑠
< 0.1 s. The reference interval adjustment

method used for TVSAR(b) can decrease the prediction error
at short- and mid-term predictions, and there is no apparent
negative effect for long-term prediction.

In summary, the proposed TVSAR(a) and (b) can predict
the lung tumor motion at up to 1 s future with the order
of submillimeter on average. The amplitude-based reference
interval adjustment used for TVSAR(b) is useful to decrease
prediction error at short- and mid-term prediction. These
indicate that the concept of TVSAR plays an important role
to adapt to the fluctuated periodicity and to efficiently use the
past values similar to the current value as accurate as possible
by capturing time-varying periodical nature.

As reported in previous studies [1, 18], there may be
clinical data of the tumormotionwith larger trend and ampli-
tude variation compared to those of data sets used in this
paper. For such complex motions, the proposed adjustment
might provide reference interval estimates with insufficient
accuracy. This is because the proposed method does not
carefully take into account the trend and amplitude variation.
However, it is expected that the trend can be included in the
model as additional components such as integral operators,
and the amplitude variation can be followed by designing the
SAR coefficients. These refinements of the proposed method
can contribute to further improvement of the prediction
performance.

It has also been reported that audiovisual biofeedback can
make breathing pattern stable and improve accuracy of KDE-
based prediction [22, 23]. As shown in the results, TVSAR is
superior toKDE for respiratorymotionwith relatively regular
pattern. Consequently, a combination of the biofeedback
technique and TVSAR can improve the prediction perfor-
mance for various patients.
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Table 3: Average and standard deviation of mean absolute error for each tested prediction method at sampling frequency 𝐹
𝑠
= 30Hz.

Prediction horizon Average and standard deviation of mean absolute error 𝜇MAE ± 𝜎MAE (mm)
ℎ ℎ/𝐹

𝑠
(s) ZOH SSA KDE SAR TVSAR(a) TVSAR(b)

5 0.167 1.248 ± 0.008 0.548 ± 0.051 0.764 ± 0.021 0.833 ± 0.034 0.790 ± 0.011 0.466 ± 0.017
10 0.333 2.394 ± 0.026 0.781 ± 0.072 0.953 ± 0.029 0.896 ± 0.021 0.846 ± 0.019 0.653 ± 0.016
15 0.500 3.446 ± 0.047 1.086 ± 0.094 1.047 ± 0.054 0.940 ± 0.011 0.889 ± 0.027 0.787 ± 0.037
20 0.667 4.387 ± 0.068 1.299 ± 0.099 1.087 ± 0.059 0.966 ± 0.010 0.918 ± 0.032 0.876 ± 0.047
25 0.833 5.188 ± 0.091 1.305 ± 0.066 1.078 ± 0.048 0.983 ± 0.018 0.941 ± 0.037 0.920 ± 0.052
30 1.000 5.834 ± 0.111 1.177 ± 0.039 0.999 ± 0.056 1.011 ± 0.021 0.965 ± 0.039 0.931 ± 0.055
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Figure 3: An example of 0.5 s forward predictions on the data set no. 1 at 𝐹
𝑠
= 30Hz. (a) TVSAR with amplitude-based reference interval

estimation. (b) TVSAR with correlation-based reference interval estimation.
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Figure 4: AveragedMAEs of tested predictionmethods at sampling
frequency 𝐹

𝑠
= 30Hz.

4.2. Prediction with Low Sampling Rates. To evaluate the
effect of lower sampling rates on the prediction performance,
MAEs for prediction of ℎ/𝐹

𝑠
= 0.2, 0.4, 0.6, 0.8, and 1.0 s

future of the tumor positions sampled at sampling rate of𝐹
𝑠
=

5Hz are shown in Figure 5. The performances of ZOH here
were almost the same as the full sampling rate case shown in
Figure 4 and thus omitted in this evaluation.

As shown in the both figures, the most prediction per-
formances for lower rates were rather equivalent to those for
the full sampling rate. For example, at 1 s ahead prediction for
𝐹
𝑠
= 5Hz, MAEs of the proposed methods were less than

1mm.
Figure 6 summarizes MAEs for prediction of ℎ/𝐹

𝑠
= 0.6 s

future positions sampled at several sampling rates 𝐹
𝑠
= 5,

10, 15, 20, 25, and 30Hz. According to the results for the
sampling frequencies 𝐹

𝑠
= 5, 10, 15, 20, 25, and 30Hz, the

two proposed methods achieved higher performance than
others. KDE and SAR achieved the same accuracies for lower
sampling rates with the online interpolation, but these are
lower than the proposed methods. The accuracy of SSA on
lower rates was worse than that for the full sampling rate case.
This is because therewere differences between the eigenvalues
used for SSA obtained from the interpolated time series
and those obtained from the time series observed by the
full rate. This presents that the interpolated time series are
missing important information required for the SSA-based
prediction.

Generally, prediction performance decreases as sampling
rate decreases because time series with lower sampling rates
have much smaller pieces of information to be used for
prediction. However, most of prediction performances for
various sampling rates have not been changed very much
by the online interpolation used in this study. This suggests
that the online interpolation works well to suppress the bad
effect of lower sampling rates on prediction accuracy. At the
same time, the change of SSA’s performance suggests that
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Figure 5: Mean absolute errors of tested prediction methods at
sampling frequency 𝐹
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= 5Hz.
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unsuitable combination of lower sampling rates and the pre-
diction method may cause larger irradiation error. Thus, the
interpolation, with a feasible prediction method, can be use-
ful to decrease the sampling rate of X-ray fluoroscopic imag-
ing system for suppressing the additional exposure.

In this study, the data sets were acquired by measuring
the internal tumor position directly. On the other hand, an
external respiratory signal such as the surface motion of the
breast can be used as a surrogate signal of internal tumor
motion. Indeed, such surrogate signal can be measured in
an easier way than the direct measurement of the internal
position. It can also avoid the side effect and thus has widely
been used in actual treatment. However, there can be a large
difference between the actual tumor position and the external
surrogates for patients with significant phase shift as reported
in the previous study [24].

5. Conclusions

In this paper, a TVSAR model-based method for respiratory
motion predictionwas proposed for compensating time delay
in radiotherapy devices. To adapt to the fluctuation, a time-
varying interval was introduced for composing the prediction
from the observed past motion. For adapting the interval to
the time series, the correlation analysis-basedmethod and the
adjustment were also proposed. The proposed method was
tested on clinical tumor motion data sets and compared to
several other methods including the state-of-the-art ones. It
has been demonstrated that the proposedmethod performed
prediction within 1mm accuracy at 1 s ahead on average. The
result is superior to those of compared prediction methods.
Especially, the proposed method with the adjustment of the
interval achieved the least average error for a wide prediction
horizon from 0.033 s to 1 s. This suggests that the internal
margin on tumor following irradiation can be set within
submillimeter by using the proposed method. Consequently,
we may conclude that the proposed method can contribute
to improve the irradiation accuracy on real-time tumor
following radiation therapy.
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