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ABSTRACT
Identification and quantification of microorganisms is a significant step in studying
the alpha and beta diversities within and between microbial communities respectively.
Both identification and quantification of a given microbial community can be carried
out using whole genome shotgun sequences with less bias than when using 16S-rDNA
sequences. However, shared regions of DNA among reference genomes and taxonomic
units pose a significant challenge in assigning reads correctly to their true origins. The
existing microbial community profiling tools commonly deal with this problem by
either preparing signature-based unique references or assigning an ambiguous read
to its least common ancestor in a taxonomic tree. The former method is limited to
making use of the reads which can be mapped to the curated regions, while the latter
suffer from the lack of uniquelymapped reads at lower (more specific) taxonomic ranks.
Moreover, even if the tools exhibited good performance in calling the organisms present
in a sample, there is still room for improvement in determining the correct relative
abundance of the organisms. We present a new method Species Level Identification
of Microorganisms from Metagenomes (SLIMM) which addresses the above issues by
using coverage information of reference genomes to remove unlikely genomes from the
analysis and subsequently gainmore uniquelymapped reads to assign at lower ranks of a
taxonomic tree. SLIMM is based on a few, seemingly easy steps which when combined
create a tool that outperforms state-of-the-art tools in run-time and memory usage
while being on par or better in computing quantitative and qualitative information at
species-level.

Subjects Bioinformatics, Computational Biology, Genomics, Microbiology, Taxonomy
Keywords Metagenomics, Microbial communities, Microorganisms, Taxonomic profiling, NGS
data, Microbiology

INTRODUCTION
In the context of microbial communities, alpha diversity is the mean diversity of a single
microbial community and one way to represent diversity (richness) is using the number of
different species in a given sample. Beta diversity on the other hand is the degree to which
the species composition of the various microbial communities differ from another
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(Whittaker, 1960). Determining the alpha and beta diversity of microbial communities
in relevance to the host corresponding environment is ubiquitous in comparative
metagenomics. Due to this identification and quantification of microorganisms using
shotgun metagenomic reads obtained by Next Generation Sequencing (NGS) has become
a subject of growing interest in the field of microbiology. The publication of numerous
taxonomic profiling tools within the last decade only shows how appealing the subject truly
is. Lindgreen, Adair & Gardner (2016) considered 14 different sequence classification tools
based on various approaches in a recent review of such methods.

Turning raw metagenomic reads into the relative abundance of multiple groups of
microorganisms (clades) residing on the sample from which the environmental DNA
was extracted and sequenced is a complicated task for several reasons. To mention a few:
(1) shared (homologous) regions of genome sequences across multiple microorganisms
make an assignment of reads to their true exact difficult. (2) The range of variation in the
abundance of individual groups of microbes in the sample can be high. In such cases, it
is harder to detect the least abundant ones and not mistake them for noise. (3) The high
degree of variation in publicly available genome sequence lengths of different microbes
makes the quantification non-trivial (Brady & Salzberg, 2009).

In the past benchmarking of taxonomic profiling tools was done at the genus or higher
level of the taxonomic tree. This is due to the shortcomings of many earlier tools to report
species-level taxonomic profiles with acceptable accuracy. However, species-level resolution
of microbial communities is desirable and more modern tools do address this (Lindgreen,
Adair & Gardner, 2016; Piro, Lindner & Renard, 2016; Lindner & Renard, 2015; Francis et
al., 2013). For this reason, all the benchmarks in this study were done at species-level.

In general, two distinct approaches have been widely used to tackle the challenge of
ambiguous reads that originate from genomic locations shared among multiple groups of
organisms. The first approach is to prepare a signature-based database with sequences that
are unique to a clade. This method represents taxonomic clades uniquely by sequences
that do not share common regions with other clades of the same taxonomic rank. Even
if this approach makes use of the fraction of metagenomic data from the sequencer, it
can guarantee to have only a single assignment of sequencing reads to a clade. Tools like
MetaPhlAn2 (Truong et al., 2015), GOTTCHA (Freitas et al., 2015) andmOTUs (Sunagawa
et al., 2013) use this method. The second approach is based on using the full set of reference
sequences available as a database and assigning ambiguous reads to their least common
ancestor (LCA) in a taxonomic tree. Kraken (Wood & Salzberg, 2014), a k-mer based
read binning method, is an example of such an approach. Both approaches have certain
advantages and disadvantages. The former has an advantage in speed and precision but
is limited to utilizing the reads that can be mapped uniquely to the curated regions. The
latter approach, on the other hand, suffers from the lack of uniquely mapped reads at lower
(more specific) taxonomic ranks.

Based on the final output of a method there are two categories of metagenomic
classification tools i.e., a read binning method and a taxonomic profiling method. A
read binning method assigns every single read to a node in a taxonomic tree, whereas a
taxonomic profiling method tries to report which organisms or clades are present in the
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sample with or without having to assign every read to a corresponding taxon. There exists
an overlap between the two categories making it possible for some read binning methods
to be used as a taxonomic profiling tool as well.

GOTTCHA uses a signature-based database specific to a given taxonomic rank, and
it is highly optimized for low false discovery rate (FDR). Kraken instead uses a database
comprising a hash table of k-mers and their corresponding node in a given taxonomic
tree. Then it assigns reads based on where the majority of its k-mers are located in the tree.
Whenever no clear vote by the k-mers of the read exists, Kraken will assign that read to its
least common ancestor. Kraken is a very fast read binning method, which is also often used
to do taxonomic profiling. mOTUs uses single copy universal marker genes to achieve a
species-level abundance resolution of microbial communities. Even if the tools exhibited
good performance in calling the organisms present in a sample, there is still room for
improvement in determining the correct relative abundance of the detected organisms.

In the following, we present a novel method called Species Level Identification of
Microorganisms from Metagenomes (SLIMM), which addresses the limitations noted
above. During the preprocessing stage, we gather from a group of interests (e.g., Archaea,
Bacteria, Viruses or any combination of these) as many reference sequences as possible and
downsize and compile taxonomic information of the gathered sequences. The taxonomic
information is stored in the form of the SLIMM database (SLIMM_DB). We then use a
read mapper to align metagenomic reads against the gathered reference sequences, which
we consider as a preprocessing step that is often done for numerous other analyses as well
(we will report the run time and memory requirement with and without preprocessing).
SLIMM works on the resulting BAM/SAM alignment file. First, SLIMM uses coverage
information both by the reads that mapped on different reference sequences and by reads
uniquely mapped to a reference sequence to remove unlikely genomes from the analysis
similar to an approach taken by Lindner et al. (2013). This filtration, in turn, allows us
to subsequently gain a larger number of uniquely mapped reads assigned to the reduced
set of genomes which we can assign to lower ranks of a taxonomic tree. We will show
that this simple approach has indeed positive effects on the analysis. The second step is
to assign the remaining non-uniquely mapped reads to the lowest common ancestor.
Overall SLIMM is based on a few, seemingly easy steps resulting in a tool that outperforms
state-of-the-art tools in run-time and memory usage while being on par or better in
computing quantitative and qualitative information at the species-level which we show in
the results section. Following the recommendation in Piro, Lindner & Renard (2016) with
caution, we have carried out digital normalization on the raw reads (Brown et al., 2012)
which discards low quality and redundant reads. This works by removing reads belonging
to a region with high coverage depth. In our experience, the digital normalization showed
a negligible improvement in calling the correct organisms.

METHOD
Nonredundant Reference genomes database
Reference genomes from NCBI GenBank (ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/)
and RefSeq (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq) archives, downloaded on
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21.05.2016, were used for the method described here. SLIMM is not limited to these public
databases when provided a proper mapping from sequence identifiers to a taxonomic id
and a taxonomic tree that represents all the sequences in the database. For this study, we
considered microbes under the super-kingdom of archaea and bacteria. However, one can
also easily integrate viruses into the database by using the provided SLIMM preprocessing
tool. Before downloading all the genomes, we checked for redundancy by counting the
number of available files for each species of interest. If multiple genomes were available
for download, we then chose one in the order of (1) RefSeq (2) Complete Genome and
(3) Draft Genome. This way, we received as many species as possible represented by their
best reference genome so far available. After downloading the sequences, we checked if
every genomic file contained only a single FASTA entry. If not, we take their concatenation
separated by a contiguous sequence of ten N’s so that reads will not accidentally map at
the joining point. The final result is a reference genome library of organisms from the
interest groups, which contains a single representative sequence per species. To cope with
the dynamically expanding reference genomes library, we implemented a feature for the
SLIMM preprocessing tool that can seamlessly update the reference genome database. In
this way, we received two databases that we named small_DB and large_DB. Small_DB
contains 2163 species with their corresponding complete genomes while large_DB contains
13,192 species including those with only draft genomes available.

Read mapping against a database of interest
SLIMM requires an alignment/mapping file in SAM or BAM format as an input (Fig. 1A).
The alignment file can be obtained by aligning the short metagenome shotgun sequencing
reads against a library of reference genomes of interest (Fig. 1B). To do so, one can use
a read mapper of choice. Nevertheless, the pipeline could benefit from a faster but yet
accurate read mapper as this preprocessing step is relatively time-consuming. We make the
read mapping program output secondary alignments because (1) it is very likely to have
a sequencing read mapped to multiple targets, (2) a read might have multiple best hits
and (3) the best hit of a read might not be its true origin. SLIMM uses coverage landscape
information as shown in Fig. 1C to resolve this. We used bowtie2 (Langmead & Salzberg,
2012) and Yara (Siragusa, 2013) in our preliminary experiments because they are known to
be fast read mappers with multi-threading options. Since Yara is several times faster, does
not employ heuristics and its resulting alignments produced better profiles in some of the
cases, we used it as the default mapper for this study.

Collecting coverage information of each reference genome
We first identify which reads are mapped to which reference genomes. Then we separate
the reads uniquely assigned to a single reference sequence from those assigned to multiple
reference sequences. Reads that are mapped to multiple places within a reference are also
considered uniquely mapped. During this stage, SLIMM collects information like the
number of reference genomes with mapping reads, the total number of reads and the
average read length, which will later be used for discarding reference genomes. We then
map reads into bins of specific width across each reference genome based on the location of
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Figure 1 Overview of the SLIMMmethodology: (A) The SLIMM algorithm: SLIMM takes two inputs,
i.e., the SLIMMDB and an alignment file in either SAM or BAM format and calculates statistical data
for each reference sequences in the database. SLIMM uses coverage information to leave out reference
sequences from consideration and recalculate the statistics again. We use this, in turn, to receive read
counts that are uniquely mapped to a clade at a given taxonomic rank. (B) SLIMMPipeline: the pre-
processing module of SLIMM downloads/updates all available genomes of a certain interest group
(e.g., Archaea, Bacteria, Viruses or any combination of them) and tags the sequences with their corre-
sponding taxonomic information. A readmapper is then used to map theWGS reads to these reference
sequences. Then SLIMM algorithm uses the mapping results to produces taxonomic profile reports. (C)
Reference filtering based on coverage information: an illustration of how SLIMM uses reference filter-
ing based on coverage information: G2 and G3 could not pass the filtering steps because they did not
contain enough coverage by uniquely mapped reads and all reads respectively.

their mapping. The binning is done twice, once for mapped reads in general and once only
for uniquely mapped reads. The default width for the bins is set to the average length of
sequencing reads with an option to set it to a different value. Higher bin width means fewer
bins and faster runtime, but it could lead to underrepresentation of coverage information
which in turn is based on whether a bin is empty or not. The bin number corresponding
to a read mapped to a reference is defined by the centeral position of its mapping location
divided by the width of the bins (integral part only). The bin number of a read mapped to
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a reference starting from locstart all the way to locend is given by:

binNumber =
⌊
locstart + locend

2×w

⌋
(1)

where w is the width of bins a reference is partitioned into.
After binning is done, coverages based on mapping reads and uniquely mapped reads

are calculated based on the corresponding bin sets. Coverage information of each reference
sequence is represented by coverage percentage (%Cov) and coverage depth (CovDepth) as
shown in Eqs. (2) and (3) respectively.

%Cov =
|nonzeroBins|
|bins|

×100 (2)

CovDepth=

∑|bins|
i=1

∑Nbin
j=1 readLength

|bins|
(3)

Where |nonzeroBins| is the number of non-zero bins, |bins| is the total number of bins in
the reference, Nbin is the number of reads in a bin and readLength is the number of bases
in a read.

Discarding unlikely genomes based on coverage landscape
We discard reference sequences with coverage percentages below a specific threshold.
The threshold is calculated based on a given percentile (default 0.001) of all coverage
percentages of the genomes. In other words, after sorting the reference sequences based
on their coverage percentages in descending order we take the top N sequences that cover
99.999% of the sum of all coverage percentages. This step is done for both coverage
percentage by reads that mapped on multiple references and uniquely mapped reads. This
process eliminates many genomes even if they have a lot of reads mapping to them as long
as they do not have a good enough coverage. Furthermore, this method was also proven to
eliminate reference sequences that acquire a stack of reads only in one or two bins across
their genomes which could be a result of either a sequencing artifact or a conserved region
in the genome among distant relatives.

Recalculating reads uniqueness after discarding unlikely genomes
After discarding reference sequences, SLIMM recalculates the uniqueness of the reads
again. This recalculation can increase the number of uniquely mapped reads assigned
to lower-level clades in a taxonomic tree. The recalculation of uniquely mapped reads is
shown to improve the abundance estimation of a clade.

Assigning reads to their LCA and calculating abundances at a given
rank
After recalculating the uniqueness of reads, we assign non-uniquely mapped reads to
their LCA taxon based on the NCBI taxonomic tree downloaded from ftp://ftp.ncbi.nih.
gov/pub/taxonomy. Instead of using the whole NCBI taxonomic tree we use a reduced
subtree produced by the SLIMM preprocessing tool. Since we only report for a given major
taxonomic ranks namely superkingdom (domain), phylum, class, order, family, genus
and species, the reduced tree contains only these taxonomic ranks. We also discarded the

Dadi et al. (2017), PeerJ, DOI 10.7717/peerj.3138 6/15

https://peerj.com
ftp://ftp.ncbi.nih.gov/pub/taxonomy
ftp://ftp.ncbi.nih.gov/pub/taxonomy
http://dx.doi.org/10.7717/peerj.3138


branches of the tree which are outside of the interest groups i.e., Archaea and Bacteria for
this study. This reduction saves a significant amount of computational time as assigning a
read to its LCA is computationally expensive. We also propagate the number of uniquely
mapped reads at a node to any of its ancestors. Then we calculate the relative abundance
of each taxonomic unit at a given rank as the uniquely mapped reads that are assigned to it
divided by the total number of uniquely mapped reads at the rank Eq. (4). We also report
an aggregated coverage depth of each clade defined as in Eq. (5).

RelABclade =
Nclade

Nmapped
(4)

CovDepthclade =
∑Nclade

i=1 readLength∑Nchild
i=1 refLength

(5)

where RelABclade is the relative abundance of a clade, Nclade is the number of reads that
are assigned to a clade, Nmapped is the total number of reads that are mapped to any clade,
CovDepthclade is coverage depth of a clade, readLength is the number of bases in a read,
and

∑Nchild
i=1 refLength is the sum of reference lengths of children of a clade that contribute

at least one read.

RESULTS AND DISCUSSION
Datasets
For this study, we assembled 18 different metagenomic datasets of various origins and
simulation strategies. The datasets contain (1) mock community metagenomes from
two different studies which were are sequenced using Illumina Genome Analyzer II
(2) simulated metagenomes that resemble community profile of a real metagenome
as identified by MetaPhlAn2 (Truong et al., 2015) (3) simulation of randomly created
microbial communities with a varying number of organisms and range of relative
abundances. We used NeSSM (Jia et al., 2013) to do the simulations. (4) Medium
complexity CAMI (The Critical Assessment of Metagenome Interpretation) challenge
toy datasets that are publicly available at https://data.cami-challenge.org/participate. We
believe that this collection of datasets can represent most of the metagenomic communities
that a taxonomic identifier will have to handle.

We used three mock community datasets, two from the Human Microbiome Project
(HMP) (HMP, 2012) containing genomes of 22 microorganisms and one from the study
(Shakya et al., 2013) containing genomes of 64 microorganisms. The two datasets from
HMP are similar in the species they contain. They only differ in the abundance distribution.
One contains an even abundance distribution of the microorganisms whereas the other
contains a differing abundance distribution of the 22 microorganisms.

For simulated datasets resembling an existing community we chose: (1) a metagenome
obtained from the human gut sample during theHMP (2012) (2) a freshwater metagenome
dataset from Lake Lanier (Oh et al., 2011). We used MetaPhlAn2 (Truong et al., 2015)—a
popular metagenomic profiling tool based on use clade-specific marker genes. Next we
used the reported profile as a basis for the simulation.
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Table 1 Runtime andmemory comparison of SLIMM against existing methods.

Alignment+ SLIMM Kraken GOTTCHA mOTUs

Avg. Runtime (Seconds) 422.1+ 61.0 157.4 1727.1 1526.6
Peak Memory (GB) 33.67 + 5.2 102 4 1.6

For randomly created microbiomes, we considered three communities with randomly
selected member organisms. The number of organisms in these communities is 50, 200
and 500. We then chose three different ranges of relative abundances i.e., even, [1–100]
and [1–1,000]. This provided us with a total of 9 randomly created metagenomes with
varying complexity both regarding diversity and in abundance differences. The different
settings of metagenomic datasets are important to make sure that the tested methods work
with a broad range of input datasets. To resemble an actual metagenome and to make the
taxonomic profiling more difficult, we contaminated all the simulated datasets with real
world metagenomic reads sequenced by Illumina MiSeq, after removing the reads that
could be mapped to any of the prokaryotic genomes available. Details of all the datasets
used for evaluation can be found in the Supplemental Information.

Performance comparison
We compared the runtime and accuracy of SLIMMwith other existing taxonomic profiling
tools. For this we considered GOTTCHA, mOTUs, and Kraken as recent and frequently
used reference-based shotgunmetagenome classification tools for comparison. For Kraken,
we created a Kraken database corresponding to both small_DB and large_DB. We used
large_DB only for the CAMI datasets as these datasets contain species for which only draft
genomes were available. GOTTCHA and mOTUs use their own special curated database.
Table 1 shows the average runtime and the average peak memory usage of the tools across
runs on the 14 different datasets, excluding the CAMI datasets, used in this study.We used a
machine with 32 (Intel(R) Xeon(R) CPU 3.30 GHz) processors and 378GB of memory. The
CAMI datasets are not included in the runtime and memory comparison. That is because
we could not ran Kraken with large_DB on the same machine since it required 500GB of
memory. Instead, we run Kraken on a cluster for these particular datasets. Without the
time needed for the preprocessing SLIMM is proven to be faster than any of the other tools
considered while using a fair amount of memory footprint. With the preprocessing, Kraken
is faster but uses much more memory. SLIMM is faster than GOTTCHA and mOTUs.
More information regarding runtime can be found in the supplement.

We used different accuracy measures namely precision(specificity), recall (sensitivity)
and F1-Score to compare the accuracy of each tool with SLIMM. The definition of the
accuracy measures is given below.

precision=
TP

TP+FP
(6)

recall =
TP

TP+FN
(7)

F1= 2×
precision× recall
precision+ recall

(8)
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Figure 2 PR Curves: comparison of SLIMM against existing methods (A) and (B): true Positive
Rate(TPR)/recall drawn against precision. SLIMM showed the highest performance. GOTTCHA did
not discover any false positives but is low in recall. PR curves different variants of SLIMM (C) and (D):
SLIMM i.e., SLIMM-DG (with digital normalization), SLIMM-NF (without filtration step based on
coverage landscape), SLIMM-NF-DG (without filtration but with digital normalization) and SLIMM
using alignment produced by the read mapper Bowtie2.

where TP = true positives (species which are in the samples and called by the tools); TN =
true negatives (species which are not in the samples and not called by the tools); FP = false
positives (species which are not in the samples and yet called by the tools) and FN = false
negatives (species which are in the samples but not called by the tools)

Table 2 shows the results of the performance comparison among SLIMM and existing
metagenomic classifiers using 18 different datasets described above. SLIMM outperforms
all of the tools in 13 of the 18 cases in precision. SLIMM and Kraken showed good results
in recall. SLIMM came in second place exceeding Kraken occasionally. However, Kraken
produced a higher number of false positives to attain this recall, hence the lower numbers
in precision. GOTTCHA performed well with the HMP datasets while it underperformed
in the rest of the datasets in general. mOTUs does not perform well in all of the datasets.
We provided F1-Score in the table as a measure of the right balance between precision and
recall. SLIMM outperforms all the other tools both in precision and F1-Score in 17 of the
18 cases while Kraken is slightly better in recall for the majority of the cases.

We did a PR curve analysis for the HMP mock community dataset with uneven
distribution of relative abundances of member organisms and one of the CAMI challenge
datasets. We sorted the predicted species by predicted abundance in decreasing order to
draw the PR curves. The PR curves in Fig. 2 show that SLIMM has a better recall rate than
the other tools while staying precise.

SLIMM’s ability to predict the correct abundances of organisms better than the existing
methods is visualized by the scatterplots in Figs. 3A and 3B by plotting the true abundance

Dadi et al. (2017), PeerJ, DOI 10.7717/peerj.3138 9/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.3138


Table 2 Comparison of SLIMM against different tools regarding precision and recall on species-level: The highest values in each row are marked bold for both preci-
sion and recall.

Precision Recall F1

Type Dataset SLIMM Kraken GOTTCHA mOTUs SLIMM Kraken GOTTCHA mOTUs SLIMM Kraken GOTTCHA mOTUs

MG01 0.8923 0.6264 0.9808 1.0000 0.9355 0.9194 0.8226 0.8065 0.9134 0.7451 0.8947 0.8929
MG02 0.9545 0.8400 1.0000 1.0000 1.0000 1.0000 0.9524 0.8571 0.9767 0.9130 0.9756 0.9231Mock
MG03 0.9524 0.6897 1.0000 1.0000 0.9524 0.9524 0.8571 0.4286 0.9524 0.8000 0.9231 0.6000
MG04 1.0000 0.4250 0.6000 0.9474 1.0000 1.0000 0.6176 0.5294 1.0000 0.5965 0.6087 0.6792

Mimic.Sim
MG05 1.0000 0.6650 0.8714 0.9630 1.0000 1.0000 0.4656 0.1985 1.0000 0.7988 0.6070 0.3291
MG06 0.9783 0.4352 0.6897 0.8718 0.9375 0.9792 0.8333 0.7083 0.9574 0.6026 0.7547 0.7816
MG07 0.9783 0.4352 0.6964 0.9091 0.9375 0.9792 0.8125 0.6250 0.9574 0.6026 0.7500 0.7407
MG08 0.9783 0.4299 0.7143 0.8824 0.9375 0.9583 0.8333 0.6250 0.9574 0.5935 0.7692 0.7317
MG09 0.9929 0.7220 0.8396 0.9286 0.9211 0.9737 0.5855 0.3421 0.9556 0.8291 0.6899 0.5000
MG10 0.9930 0.7178 0.7949 0.9574 0.9276 0.9539 0.4079 0.2961 0.9592 0.8192 0.5391 0.4523
MG11 0.9928 0.7164 0.8058 0.9464 0.9079 0.9474 0.5461 0.3487 0.9485 0.8159 0.6510 0.5096
MG12 0.9855 0.8284 0.7333 0.9773 0.9315 0.9589 0.0377 0.1473 0.9577 0.8889 0.0717 0.2560
MG13 0.9855 0.8237 0.8095 0.9811 0.9315 0.9281 0.0582 0.1781 0.9577 0.8728 0.1086 0.3014

Rand.Sim

MG14 0.9851 0.9857 0.8000 0.9811 0.9041 0.9452 0.0548 0.1781 0.9429 0.9650 0.1026 0.3014
MG15 0.9261 0.7644 0.7397 0.8000 0.8191 0.7990 0.2714* 0.1206* 0.8693 0.7813 0.3971* 0.2096*

MG16 0.8377 0.7027 0.6883 0.8462 0.8040 0.7839 0.2663* 0.1106* 0.8205 0.7411 0.3841* 0.1956*

MG17 0.9302 0.7608 0.4531 0.7368 0.8040 0.7990 0.1457* 0.1407* 0.8625 0.7794 0.2205* 0.2363*
CAMI

MG18 0.8223 0.6996 0.4839 0.7778 0.8141 0.7839 0.1508* 0.1407* 0.8182 0.7393 0.2299* 0.2383*

Notes.
*GOTTCHA and mOTUs have unfairly lower recall and F1 values due to their database which does not contain the complete set of references for the corresponding datasets.
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Figure 3 Predicting abundances correctly (A)—RandomDataset and (B)—CAMI Dataset: Abun-
dances predicted by different tools compared to the true abundance used for simulation. SLIMM pre-
dicted the abundances more accurately than the other tools. Kraken overestimates the abundance.
GOTTCHA andmOTUs did not perform well in predicting the abundances. Violin plots (C)—Random
Dataset and (D)—CAMI Dataset: SLIMM has the lowest divergence from true abundances.

of organisms against their predicted abundance by different tools for one of the CAMI
challenge datasets and one of the randomly simulated datasets. From these plots, it can
clearly be seen that SLIMM predicts the abundance more accurately. Even though it was
not originally developed for abundance estimation, the next best tool is Kraken which
slightly overestimates the true abundance. mOTUs and GOTTCHA do not perform well
at predicting the abundances.

Violin plots are similar to box plots, but additionally they visualize the density
distribution of different data points. The violin plots in Figs. 3C and 3D show how
good the different tools predicted the abundances compared to the actual abundances. In
these plots, we can see that SLIMM has the lowest divergence from the true abundance. For
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the randomly simulated dataset, SLIMM has an average absolute difference of 0.00073 and
Kraken has an average absolute difference of 0.00116 which is 159% higher compared to
SLIMM. For the same dataset, GOTTCHA andmOTUs have an average absolute difference
of 0.00206 and 0.00273 respectively. SLIMM also received the most correct (closer)
abundances with absolute differences of first quartile (Q1)= 0.00002 and third quartile
(Q3)= 0.00016. Kraken is the second-best tool in this regard with values Q1= 0.00018,
Q3= 0.00065.

We have also investigated the positive effects of the filtering step in SLIMM. We ran
SLIMM with the filter turned off and compared the results with a standard run of SLIMM.
Figures 2C and 2D show that the filtration step overall leads to better results. It is also
interesting to note that SLIMM’s filtration step effectively reduces the divergence from
the true abundance. Figures 3C and 3D show that SLIMM’s filtration step produced
abundances closer to the real one. The quartiles of absolute differences between real and
predicted abundances are (Q1= 0.00002, Q2= 0.00004, Q3= 0.00016) with filtration
compared to (Q1= 0.00002, Q2= 0.00006, Q3= 0.00082) without filtration. See the
supplement for more plots on the other datasets.

In conclusion, we described a method that results in a simple, fast and scalable tool
for taxonomic profiling and abundance estimation which utilizes coverage information of
individual genomes to filter out those that are unlikely to be in the sample. This is done
by discarding genomes with relatively low coverage percentage by uniquely mapped reads
and mapping reads in general. These simple yet important filtration steps allow SLIMM
to be capable of identifying organisms with high recall rate while remaining precise. We
showed that SLIMMmethodology resulted in more accurate taxonomic profiling as well as
predicting the individual abundance of member organisms more accurately than the other
tools. We evaluated the accuracy of SLIMM against Kraken, GOTTCHA andmOTUs using
18 different datasets from multiple sources. The results show that SLIMM is superior in
detecting the correct member organisms of a microbial community. SLIMM exhibited the
highest F1-Score in 17 out of the 18 cases. The average F1-score across the datasets is 0.93 for
SLIMM, 0.77 for Kraken, 0.54 for GOTTCHA and 0.49 for mOTUs.We have also evaluated
the correctness of individual abundances using average absolute difference of predicted
abundance from the true abundance. SLIMM has the lowest average absolute difference
(0.00073) of all the othermethods and the next best tool in this regard is Krakenwith average
absolute difference of 0.00116. Regarding runtime and memory consumption, SLIMM is
the fastest tool, without the preprocessing step, while using significantly less memory. These
advances on taxonomic profiling of microbial communities will help determine the alpha
(community level) diversity and beta diversity acrossmultiplemicrobial communitiesmore
reliably. This in-turn better facilitate follow-up studies such as the impacts of antibiotic
usage on microbial communities and consequently on the host’s health.
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