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Abstract The change detection paradigm has become an
important tool for researchers studying working memory.
Change detection is especially useful for studying visual
working memory, because recall paradigms are difficult to
employ in the visual modality. Pashler (Perception &
Psychophysics, 44, 369-378, 1988) and Cowan (Behavioral
and Brain Sciences, 24, 87-114, 2001) suggested formulas
for estimating working memory capacity from change
detection data. Although these formulas have become widely
used, Morey (Journal of Mathematical Psychology, 55, 8-24,
2011) showed that the formulas suffer from a number of
issues, including inefficient use of information, bias, volatil-
ity, uninterpretable parameter estimates, and violation of
ANOVA assumptions. Morey presented a hierarchical
Bayesian extension of Pashler’s and Cowan’s basic models
that mitigates these issues. Here, we present WoMMBAT
(Working Memory Modeling using Bayesian Analysis
Techniques) software for fitting Morey’s model to data.
WoMMBAT has a graphical user interface, is freely available,
and is cross-platform, running on Windows, Linux, and Mac
operating systems.

Keywords Visual short term memory - Working memory -
Visual change detection - Capacity estimates - Bayesian
hierarchical models - Bayesian models - Multinomial models

It is presumed that mental representations of visual images
are encoded and maintained (Logie, 1995; Paivio, 1990;
Repovs & Baddeley, 2006); however, measuring visual
memory is a methodological challenge. How can research-
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ers ascertain what participants remember from a visual
scene? Unlike with verbal materials, it is not straightfor-
ward to elicit free recall of visual materials. Possibilities for
approximating recall with visual materials range from
prompting participants for verbal descriptions of visual
stimuli (Parra, Della Sala, Logie & Abrahams, 2009) to
asking for hand-drawn representations of memories (Rubin
& Kontis, 1983). These techniques, while adequate for
some research questions, are frequently unsuitable. In many
instances, researchers need to use stimuli that are visually
complex and, perhaps, difficult to verbally label (for
instance, variations of a shaded cube or Asian characters;
Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel, 2007).
These needs limit the usefulness of interpreting partic-
ipants’ verbal descriptions of visual memories. Likewise,
for many such stimuli, hand-drawn responses may not be
sufficiently clear to distinguish one stimulus from another.
These difficulties make recall an implausible technique for
identifying limits in visual short-term memory capacity.
Fortunately, recognition memory paradigms do not suffer
from the same limitations. Using visual change detection
(Luck & Vogel, 1997; Phillips, 1974), researchers can
manipulate visual stimuli along any feature dimension.
Researchers can choose abstract, rather than easily name-
able, stimuli. Researchers can vary the number of stimuli
presented, their spatial configuration, and their temporal
configuration. This level of control is ideal for hypothesis
testing, and thus this technique has produced a wealth of
novel research since Luck and Vogel reintroduced this
paradigm. However, unlike a study of verbal memory
through recall, discovering precisely how much participants
remember from some visual display through change
recognition requires modeling, and models have been
developed for this purpose. Using hit and correct rejection
rates, total number of items to be remembered, and sensible
assumptions about how participants might use the informa-
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tion available at test to inform guessing, researchers can
estimate how many items participants must have remem-
bered in order to achieve some known proportion correct
(Cowan, 2001; Cowan, Elliott, Saults, Morey, Mattox,
Hismjatullina, & Conway, 2005; Pashler, 1988).

These models are frequently used (e.g., Awh et al., 2007;
Fougnie & Marois, 2009; Gold, Fuller, Robinson, McMahon,
Braun, & Luck, 2006; Kumar & Jiang, 2005; Morey, Cowan,
Morey, & Rouder, 2011; Olsson & Poom, 2005; Treisman &
Zhang, 2006; Vogel, McCollough, & Machizawa, 2005;
Wilken & Ma, 2004; Xu & Chun 2006) and are often helpful
for elucidating relationships that might otherwise be difficult
to interpret. For instance, C. C. Morey et al. compared
performance on concurrent auditory and visual change
detection tasks, with reward for correct responses on each
task varying. Because visual and auditory stimulus sets
included different numbers of items, comparing proportions
correct between tasks would have been problematic. In this
case, computing estimates of capacity allowed for precise
descriptions of trade-offs observed between the two tasks.
Sometimes, however, the simple methods typically used for
calculating these estimates result in volatile or uninterpret-
able output. Users of these models will encounter the
occasional negative capacity estimate, which is the result of
below-chance responding. When too few trials contribute to
the mean of some combination of conditions, some sub—
chance means are expected due merely to sampling noise.
Simple methods for computing these estimates also produce
output that logically conflicts with itself. Consider the data of
Woodman and Vogel (2005), which beautifully illustrate a
typical pattern observed when set size is manipulated and
extremely small set sizes are included. Woodman and Vogel
estimated participants’ capacity for unmasked sample arrays
of one or two items. When these sample arrays included two
items, average capacity estimates were greater than one item,
but when these sample arrays included only one item,
average estimates were less than one item. If capacity
estimates are used as dependent variables to express the
effects of some other manipulated variable, this is not an
alarming logical problem. However, if researchers use these
to truly model the capacity of visual short-term memory,
internal consistency is necessary, and simple methods for
estimating visual short-term memory capacity fail to provide
it (R. D. Morey, 2011).

R. D. Morey (2011) introduced a hierarchical Bayesian
version of the models that Pashler (1988) and Cowan
(2001) advocated for the measurement of working memory
capacity and showed that the model was superior in a
number of ways to the formulas currently in use for
estimating working memory capacity. In this article, we
introduce WoMMBAT (working memory modeling using
Bayesian analysis techniques), graphical software for
estimating capacity using Morey’s hierarchical model.

Before introducing the WoMMBAT software, however, we
first describe Pashler’s and Cowan’s multinomial tree
models, on which the formulas are based, and Morey’s
hierarchical extension.

Change detection and working memory capacity

Figure 1 shows a typical trial sequence in a visual change
detection task. After fixation, a study array is presented for
a short time. The study array may be followed by either a
mask or a blank screen, which is, in turn, followed by a
test display. The test display consists of either a whole
array (Fig. 1, left) or a single item (Fig. 1, right); Wheeler
and Treisman (2002) called these two variations on the
change detection task whole display and single probe,
respectively. On some proportion of trials, a single square
differs from the study array. The participant’s task is to
detect whether a change has occurred and to respond
accordingly.

Pashler (1988) suggested a simple psychological model
for modeling change detection performance, irrespective
of the chosen paradigm. Suppose that participants have a
fixed capacity, K, for remembering items in a display. At
study, participants encode K out of the N items in the
display. Items not encoded are lost. The K encoded items
may be used at test to determine whether the display has
changed. The all-or-none encoding property of this model
is a strong assumption, but the model has been supported
empirically (Cowan & Rouder, 2009; Rouder, Morey,
Cowan, Zwilling, Morey, & Pratte, 2008; but cf. Bays &
Husain, 2009).

Of interest is to estimate the capacity K of a participant,
given his or her change detection performance. Pashler
(1988) and Cowan (2001) both suggested formulas, derived
from different multinomial tree models, that might be used
to estimate capacity; they differed in the paradigms that
they applied. To see why, consider, first, trials on which a
change occurs between study and test; change trials can be
treated similarly in both whole-display and single-probe
paradigms. Because there are N items in the array and the
participant encodes K items, the probability that the
participant will encode the changed item and, thus, detect
the change is

D—min(K,1>.
N

The min function ensures that the probability never
exceeds 1. With a probability of 1— D, the participant will
not encode the item that changes and does not know
whether it changed. In this case, the participant guesses
“change” with a probability of G. The tree in Fig. 2, top
left, shows a multinomial tree for trials on which the
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Fig. 1 Visual change detection
paradigms. After fixation, an
array of colored squares is
presented for study and
subsequently masked. In the
whole-display paradigm (left),
the whole array is tested, and [ ]
one square may have change. In =
the single-probe paradigm
(right), a single item is tested,
which may have changed
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stimulus changed. From the tree, it is apparent that the true
hit rate H is

npr - pio=mn(5.1) + (1-ma(.1))o

This true hit rate holds for both the whole-display and
single-cue designs. The whole-display and single-cue
designs differ, however, in how same trials are modeled.

Pashler (1988) considered the equivalent of a whole-
display design and noted that, on same trials in which the
whole stimulus is tested, a participant will always be in a
state of uncertainty. No change can be detected, but the
participant is unsure about whether no change was detected
because there was not a change or because he or she failed
to encode the item that changed. Again, the participant
guesses “change” with a probability of G. This leads to the
true false alarm rate F:

F=G
o_JG K<N
10 K>N.
Change Same
o Hit , False Alarm
o 0 G
B
] G Hit \
o 1P 1-G Correct Rejection
1-G Miss
c Hit Correct Rejection
© D D
s
Q G Hit G False Alarm
O 1D 1-D
1-G Miss 1-G Correct Rejection

Fig. 2 Pashler’s (1988; top row) and Cowan’s (2001; bottom row)
models of change detection performance, with change detection
probability D = min(K/N, 1) and guessing rate G. The left and right
columns show the trees for change trials and same trials, respectively.
Pashler’s model is appropriate for the whole-display paradigm;
Cowan’s model is appropriate for the single-probe paradigm

@ Springer

The term G’ ensures that if a participant can encode all
items in the array, that participant will never respond
“change” on a same trial. The corresponding multinomial
tree is shown in Fig. 2, top right.

Change detection data offer estimates of true hit and
false alarm probabilities, which are used to estimate K in
whole-display designs:

H-F
A i
Kp=N —] K<N
1-F

(1)

where N is the array size, I/—} and I? are estimates of hit and
false alarm probabilities, and Kp is the estimate of capacity
(subscripted by P, for Pashler). The restriction K < N
underscores the fact that the formula does not provide
meaningful estimates when capacity is greater than the
array size; performance in this case is predicted to be
perfect. N

While the estimate Kp is appropriate in whole-display
designs, it is not appropriate for estimating capacity in
single-probe designs. In single-probe designs, the partici-
pant has information not available in whole-display
designs: The single probe indicates which, if any, square
changed from study to test. This difference manifests itself
as a difference between the false alarm rates in the two
models. Consider a same trial in the single-probe design. If
the participant has encoded the probed item, the participant
can confidently respond “no change.” This occurs with a
probability of D = min(K/N,1). If the participant has not
encoded the probed item, he or she guesses “change” with a
probability of G. The resulting tree for same trials in the
single-probe design is shown in Fig. 2, bottom right.

The estimates of hit and false alarm rates from single-
probe data can be used to estimate capacity results in the
following estimate, suggested by Cowan (2001):
A A A
Ke=NH-F) K<N

(2)

A
where K¢ is the estimate of capacity, subscripted by C, for
Cowan.
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Although for any given hit and false alarm rate it is
possible to compute either Pashler’s (1988) estimate or
Cowan’s (2001) estimate of capacity, the estimate will be
interpretable only if the formula matches the experimental
design used. Pashler’s estimate should be used for whole-
display designs, and Cowan’s estimate should be used only
for single-probe designs (Rouder, Morey, Morey, &
Cowan, 2011).

The advantage of using the formulas above for estimat-
ing capacity from visual change detection data is clear: The
estimates give a measure of the amount of available WM
capacity, without contamination by response bias. Although
the model underlying the formulas requires assumptions,
these assumptions are testable and appear to be reasonable
in light of current research.

One assumption that has been reconsidered concerns the
model predictions when capacity is greater than the array
set size. If K > N, performance is predicted to be perfect in
both whole-display and single-probe designs. If a partici-
pant can encode every item in the study array, he or she can
always detect a change and correctly reject non—changes.
However, this prediction does not appear to hold. Rouder et
al. (2008) tested participants in three array set-—size
conditions: 2, 5, and 8 items. In the 5- and 8-item
conditions, participants generally performed consistently
with a capacity of 3 to 3.5 items. For participants with
capacities of 3 items, an array with only 2 items should
pose no difficulty: Both items can be stored, so perfor-
mance should be perfect. Indeed, participants scored well
for the 2-item arrays, often greater than 95% correct. The
model, however, predicts perfect performance; the finding
of errors in the set size 2 condition appears to violate the
assumption that participants have a constant capacity K.

Rouder et al. (2008) suggested a simple extension of the
model to account for imperfect performance at low set
sizes. Rouder et al. (2008) reasoned that it is too simplistic
to assume that participants pay attention to the task on
every trial. Participants may “zone-out,” or experience an
attentional lapse, on a small number of trials. Psychophys-
ical models have long incorporated a lapse rate parameter
as a theoretical ceiling on performance. The addition of a
lapse parameter to the working memory models outlined is
straightforward; on every trial, participants pay attention to
the task at hand with a probability of Z." If the participants
lapse, they encode no items and guess “change” with a
probability of G. If they do not lapse, the appropriate
model, as outlined above, applies. The resulting trees, for
both the whole-display and single-probe designs, are shown
in Fig. 3.

! Although the Z parameter is actually the probability of not lapsing, it
is referred to as the lapse parameter because it governs lapsing.

Same

Hit False Alarm
o Miss Correct Rejection
ﬁ Hit False Alarm
©
o

Hit

Correct Rejection

Miss

Hit False Alarm
c Miss Correct Rejection
®©
= Hit Correct Rejection
o
o

Hit False Alarm

Miss

Correct Rejection

Fig. 3 Extending Pashler’s (1988; top row) and Cowan’s (2001;
bottom row) models of change detection performance to include a
(non) lapsing parameter Z. The left and right columns show the trees
for change trials and same trials, respectively. The extended Pashler
model is appropriate for the whole-display paradigm; the extended
Cowan model is appropriate for the single-probe paradigm

Although the addition of a lapse rate is a reasonable and
necessary addition to the model, there are no longer easy-
to-compute formulas for estimating capacity. However, R.
D. Morey (2011) showed that the simple formulas in Egs. 1
and 2 are prone to bias, volatility, inefficient use of
information, uninterpretable negative capacity estimates,
and violations of ANOVA assumptions. Although the
formulas suggested by Pashler (1988) and Cowan (2001)
are simple, these problems make an alternative approach
desirable. Morey extended Rouder et al. (2008) nonhierar-
chical model to a hierarchical Bayesian model that
mitigates the issues mentioned above, providing efficient,
stable estimates of capacity. In the following section, we
provide an overview of Morey’s model and then present
WoMMBAT, which allows analysts to easily fit the
hierarchical model to data and make inferences.

Morey’s hierarchical model

The mathematical details of the hierarchical model can be
found in R. D. Morey (2011). Here, we attempt to give a
less technical introduction to the Bayesian hierarchical
model that is accessible to non—methodologists. Figure 4
depicts the hierarchical model graphically. The following
development of the model follows the figure from top (the
observed data) to bottom (the Bayesian priors).

The observed data are at the first level of the hierarchical
model. Consider the data from a single condition, for 1
participant. Suppose the participant observes M, change
trials and M, same trials. Then the observed number of hits
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Fig. 4 A graphical depiction of the structure of R. D. Morey’s (2011)
Bayesian hierarchical model of working memory capacity

and false alarms are assumed to come from binomial
distributions:

Y}, ~ Binomial(M,, p;) (3)

Yy ~ Binomial (MS , pf) (4)

where p, and p, are the true hit and false alarm
probabilities, respectively. Observed hits and false alarms,
Y;, and Y, are binomial random variables that arise from the
true hit and false alarm rates, as depicted by the arrows
joining the first and second rows of Fig. 4.

The true hit and false alarm rates are, in turn, dependent on
the underlying capacity, lapse, and guessing parameters for that
condition. Given the capacity, lapse, and guessing parameters,
the true hit and false alarm rates may be computed using the
multinomial trees in Fig. 3. Choosing the correct multinomial
tree capacity model for the design that yielded the data (full-
display or single—cue) is critical; analyzing the data with the
wrong capacity model will yield uninterpretable results.

The capacity (K), lapsing (Z), and guessing (G)
parameters are the parameters of interest for researchers.
Analysts are most interested in how manipulations affect
these three parameters. However, these parameters are

@ Springer

not defined in a convenient space for analysis by linear
model techniques. The parameters Z and G are both
probabilities and are thus constrained to be in the interval
(0,1). The capacity parameter K is not as constrained; all
nonnegative values are possible capacities. However, this
constraint still causes difficulties for analysis, such as
distortions near floor.

Problems arising from constraints on parameters are
well known, and there are a number of solutions in the
statistics literature. The most common solution is to treat
the constrained parameters as arising from other, uncon-
strained parameters through a transformation. For in-
stance, in logistic regression, models are placed on
probabilities by assuming that the probability parameters
arise from transformations of parameters on the log-odds
scale (McCullagh & Nelder, 1989). Because log-odds
parameters are defined within the range (—o0,00),
distortions from ceiling or floor probabilities are mitigated. It
is straightforward to place linear models on the unconstrained
parameters.

In the case of the hierarchical working memory model,
the lapsing (Z) and guessing (G) parameters are both
probabilities, making the logistic transformation a natural
choice. This is depicted in Fig. 4 by the logistic function
between Z and G, the probabilities, and z and g, the
unconstrained parameters. In mathematical notation,

_ 1
Z= 1+e*

_ 1
G= Tre=s-

Linear models may then be placed on z and g.

The situation for K is slightly more complicated. Unlike
the probabilities Z and G, K is defined for values greater
than 1, making the logistic transformation inappropriate.
Also, the K parameter has natural units: capacity. A
nonlinear transformation, like the logarithmic function,
would distort the natural capacity space and make effects
difficult to interpret. These two considerations, that K is
defined for all positive numbers and that we wish to avoid
nonlinear transformations, lead to the following transfor-
mation between K, the constrained parameter, and x, the
unconstrained parameter:

K = max(x,0).

For all positive values, x and K are the same, preserving the
natural capacity units. All negative values of x are mapped
to K = 0, making this a type of mass-at-chance (MAC)
transformation (Morey, Rouder, & Speckman, 2009;
Rouder et al. 2007). Negative x values may, at first glance,
seem undesirable. Indeed, when the capacity formulas in
Egs. 1 and 2 are used, negative capacity estimates are
interpretable only as the result of sampling error. Using the
MAC transformation within the hierarchical model allows
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for a different interpretation. Imagine that, on the basis of
many participants, we know that a certain memory load
manipulation decreases WM capacity by 3 units. If we test
a participant whose working memory capacity is 2, we
expect to see behavior consistent with a capacity of 0.
However, the participant is overloaded by 1 unit. If we tested
the participant’s working memory capacity both under load
and not under load, the MAC transformation would allow us
to estimate the participant’s capacity under load as x = —1.
Likewise, a participant whose unloaded capacity is estimated
at 1 will, under load, yield an estimate of k = —2. Although
these 2 participants will both behave consistently with
having 0 capacity under the load (i.e., K = 0), one participant
is less overloaded than the other, and the hierarchical model
uses negative x estimates to reflect this.

With the introduction of parameters «, z, and g whose
parameter space is unconstrained, it is possible to place
linear models on each of the parameters, depicted in matrix
notation in Fig. 4. Up to this point, we have considered the
parameters only in a single condition, for a single
participant. As in standard linear models such as regression
and ANOVA, individual parameters in the hierarchical
model arise by linearly combining the effects of various
factors. As an example, we continue the previous memory
load example. Implied by the previous paragraph is the
following main effects model:

iy = 1 4y

where 1(*) is the grand mean capacity, 7;; is the effect on
capacity of the ith participant (i.e., how far it is above the
mean capacity), and 7,; is the load effect of the jth load
manipulation condition. In this model, we treat the load
manipulation as a factor and estimate the effect of the load
at each level of the factor.

We could also estimate the effect of the load manipu-
lation in a regression-type model:

ki = 1 + 1y + x5

where x; is the size of the jth load manipulation. Here, we
estimate only one parameter for the effect of the memory
load, 7,. This parameter represents the slope of the
relationship between memory load and capacity. We can
use the slope to estimate how much visual working memory
capacity is occupied by each unit of load.

Another model we might entertain is

Kij = u™) + My

where n,;; is the effect of the interaction between participant
and load; that is, each participant x load combination is
allowed to have its own effect. Note that in this interaction
model, the two main effects are not included with the
interaction, as they would be in an ANOVA model. In many

Bayesian hierarchical models, including Morey’s working
memory model, interaction effects are completely unstruc-
tured, aside from being constrained to have a mean of 0
(Gelman, Carlin, Stern, & Rubin, 2004). Thus, the interaction
can account for main effects, with the added expense that
interaction models are more complex. It is the added
complexity that will enable model comparisons between
interaction models and main effects models; all other things
being equal, less complex models are preferred to more
complex models. We discuss model comparisons in the
context of our demonstration of the WoMMBAT software
below. Regardless of which model we may fit, our interest is
in estimating the effect parameters represented by the various
n parameters above. The WoMMBAT software allows
researchers to easily build models of arbitrary complexity
simply by adding factors and continuous covariates in a
graphical user interface, whose parameters are then estimated.
After the linear models, there are two additional levels of
the hierarchical model. First, each group of parameters—for
instance, all levels of a factor—are assumed to come from a
normal parent distribution. For categorical factors, the mean of
the distribution is constrained to be 0; for slopes, the mean is
estimated. Because the model is Bayesian, unknown param-
eters of these parent distributions have prior distributions
placed on them. For more details, see R. D. Morey (2011).
With the structure of the hierarchical model sketched, we
now turn to a demonstration of the software designed for
building specific models for the analysis of data. In the
example below, we analyze the dataset of Rouder et al.
(2008) within the WoMMBAT software. The analysis shows
the important features of WoMMBAT and gives potential
analysts enough information to perform their own analyses.

Analysis of Rouder et al. (2008)

Rouder et al. (2008) presented an experiment in which 23
participants completed a single-probe visual array change
detection task, like that shown on Fig. 1 (right). Participants
performed 540 trials in nine conditions, created by crossing
three set sizes (two, five, and eight) with three levels of
probability change (30%, 50%, 70%). Rouder et al. (2008)
used maximum likelihood methods to show that a nonhierar-
chical version of Cowan’s (2001) model, with the lapse
parameter added, fit the data well for the overwhelming
majority (20/23) of participants. Rouder et al. (2008) took this
as evidence for fixed-capacity, all-or-none models of working
memory capacity. R. D. Morey (2011) provided a more
detailed analysis of the same data, using the hierarchical
model outlined above to show specific color effects on
capacity and guessing. This fine-grained analysis would have
been difficult or impossible with the methods used by Rouder
et al. (2008). The purpose of the remainder of the article is to
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describe for researchers how to conduct a simple analysis of
change detection data, using the Rouder et al. (2008) data as a
model data set. In order to demonstrate the use of the
WoMMBAT software, we will focus on building models to
answer the following question: Did the change-probability
manipulation successfully affect participants’ guessing biases?

Installing and running the necessary software

The WoMMBAT software necessary to fit R. D. Morey’s (2011)
hierarchical model is available as a package in R (R
Development Core Team, 2009). Install the latest version of
R, available for Windows,”> Macintosh, and Linux operating
systems from http://cran.r-project.org. After in-
stalling R, visit the main website for the WoMMBAT project at
http://wmcapacity.r-forge.r-project.org/
for specific instructions on how to install the WoMMBAT
software under your operating system.

After the necessary software is installed, we can start R
and begin a WoMMBAT session. The text below is R script,
which can be copied and pasted into the R console. The #
symbol at the beginning of a line represents a comment,
explaining what the code will do when run. First, we load
the WMCapacity package in R:

# Install the WoMMBAT software,
# from the WMCapacity package
library (' WMCapacity’ )

In Windows, this may also be done through the “Packages —
Install Package(s)...” menu option (and in MacOS, through the
Package Installer). Once the package is loaded, we load the Rouder
etal. (2008) data set, which we will use for demonstration.

# Load the Rouder et al.
# it will be placed

# in a variable called “WisualArray”
data (VisualArray)

# Begin the WoMMBAT analysis GUI
wommbatGUI ()

(2008) data set;

On running the code above, the WoMMBAT interface
should present itself as shown in Fig. 5. The first screen
displayed will be brief instructions on the usage of
WoMMBAT, including how data should be formatted for
import into WoMMBAT.

Data set tab

The first tab after the introduction window is the data set
tab, shown in Fig. 6. The data set tab is used for loading

2 The Windows version of the R installation comes with both 32-bit
and 64-bit executables. We recommend that Windows users run the
32-bit version of R for compatibility with the WoMMBAT software.

@ Springer

data (Fig. 6A), specifying a capacity model for the research
design (Fig. 6B), and telling WoMMBAT which columns in
the data set are of interest (Fig. 6C-E).

There are four methods of loading data into WoMMBAT,
available via the four buttons at the top of the data set tab
(Fig. 6A). The leftmost button, “Unlock data,” resets all
analyses and reloads the currently loaded dataset, allowing
the analyst to change the columns of interest. The “Open
CSV” button allows loading of a comma separated value
(CSV) file. This is useful if data cleaning or analyses are
done in another program and the analyst wishes to import
the data into WoMMBAT. The “R data frame” button allows
loading an R data frame, which is useful if the data are
already loaded for cleaning and analysis within R. Finally,
the “Open saved analysis” button allows opening a
WoMMBAT analysis previously saved via the “Save/
Export” tab.

Because we have already loaded the Rouder et al. (2008)
data into R via the data () function, the “R data frame”
button should be used to load the data into WoMMBAT.
Click “R data frame” and then select VisualArray from
the resulting window. This should load the Rouder et al.
(2008) data, filling the available column list (Fig. 6C) with
the column names.

A data set for WoMMBAT analysis should have at least
four columns and as many rows as there are total trials.
Three necessary columns correspond to elements of the
experimental design. Table 1 lists these three necessary
columns, which are specified by the corresponding buttons
(Fig. 6D). In the case of the Rouder et al. (2008) data set,
the response, change, and set size columns are called resp,
ischange, and N, respectively. If you make a mistake in
specifying the response, change, or set size variables,
simply move the correct variable into the spot, and the
incorrect variable will reappear in the list of available
columns (Fig. 6C).

At least one additional column of interest is required
for a WoMMBAT analysis. Any variable that is of
theoretical interest can be included in the analysis. The
Rouder et al. (2008) data set included 23 participants and
three conditions differing in the proportion of change
trials. Highlighting sub (for subject) and clicking the
“Categorical” button will define participant as a factor of
interest.

For the change probability manipulation, the data may be
analyzed in two ways: We may include prch (probability of
a change trial) as a categorical predictor or a continuous
predictor. In this data set, the variable prch is coded as the
log odds of a change, instead of probability, so it may make
sense to include prch as a continuous predictor. The
difference between specifying a predictor as continuous or
categorical is how they are included in the model,;
categorical predictors are treated as factors, as in an
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Fig. 5 The WoMMBAT
starting tab. a: The tab interface
highlighted by the dashed
rectangle may be used to move
back and forth between screens

ol

Working Memory Modeling using Bayesian Analysis Techniques

WoMMBAT

Beqgin analysis by cicking the "Data set” tab sbove, Each row in the data set must correspond to a trial, which columns containing relevant information about the
Lrial, Data can be loaded in several ways - from a CSY file, from an R data frame (within R), and from & previously saved analysis. At least Four columns are
necessary (but their names may be whatever you like):

software copyright 2010 Richard D. Morey
source code available under GPL 2 licence

Response: must be 0 or 1, 0% means the participant responded "no changs™,
Change: must be 0 or 1, "0 means that there was no stimulus change on that trial,
Set size: indicates stimulus set size on thak trial. must be all integers greater than 0.

The fourth required column is some Factor/covariate.|

o ht and citats
The WoMMBAT software is copyrighted 2010 by Richard D, Morey. The software is free; the source code is avallable under the Gnu Public License, v2.0, For the
most current citation information, contact Richard D, Morey at r.d.morey@rug.nl,

The citation for the hierarchical model underking the sof is:
Morey, R. D. {in press). & hierarchical Bayesian model for the measurement of working memory capacity. Journal of Mathematical Psychology.

The article ko cke For the WolMMBAT software is currently in preparation:
Morey, R. D. and Morey, C. C, {in preparation). WoMMBAT: a graphical user interface For estimating warking memory capacity in change detection data,

ANOVA. For factors, WoMMBAT will estimate the effect of
each factor level. Continuous predictors, on the other hand,
allow for regression slopes to be estimated. The WoMMBAT
software will automatically select the appropriate model given
the predictor type. For this demonstration, include the
probability change variable prch as a categorical predictor.

Fig. 6 The WoMMBAT data
tab. a: Buttons to unlock loaded

- WoMMBAT

Figure 6 shows how the data tab window will look after the
columns have been specified for our analysis of the Rouder
et al. (2008) data set. Clicking the “Apply” button in the
lower right will lock the data, preventing further changes to
the columns of interest, and will advance the analysis to the
models tab.

He tep
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Table 1 It is necessary to

Contents

Whether the participant responded “change”
Whether the trial was a change trial
Number of to-be-remembered elements

0 = “no change”, 1 = “change”
0 = no change, 1 = change
Integer > 0

specify which data columns Column Description
contain the response, change,
and set size information for Response
each trial Change
Set size
Models tab

After loading the data and specifying the columns of
interest, the next step is to build a model using the specified
columns. Figure 7 shows the model specification window,
which has five main sections: the available effect list (A),
the model on each parameter (B), covariance models (C),
prior parameters (D), and the list of defined models (E).

The effect list (Fig. 7A) shows every main effect and
interaction effect that can be constructed from the specified
columns of interest. The goal in the model tab is to build
models to help answer our research questions. For the
purposes of this demonstration, we build two models that
will enable us to answer our question of interest: whether
the change probability manipulation had an effect on
guessing biases.

As a starting point, we build a model similar to that fit
by Rouder et al. (2008). The Rouder et al. (2008) model
had five parameters for each participant: one fixed capacity
(K), one lapse parameter (Z), and one guessing parameter
for each probability change condition. To build this model
in the WoMMBAT interface, highlight the main effect sub
(Fig. 7A) and click the “Add” button under the K parameter
(Fig. 7). Do the same for the Z parameter. This gives every

participant his or her own capacity and lapsing parameter.
To add a parameter to G for each participant by change
probability condition combination, we add the two-way
interaction sub by prch. The resulting model, with a main
effect of sub on K and Z, and the sub by prch interaction on
G, is a Bayesian hierarchical version of the five-parameter
model fit by Rouder et al. (2008). We add this model to the
list of models to be analyzed by labeling it with a
descriptive name (Model name, Fig. 7D) and clicking the
“Add new model” button in the lower right.

Our question of interest is whether the change
probability manipulation affected guessing bias. In the
model defined above, guessing bias G is free to vary. It is
possible to frame the question of interest in several ways.
First, we could compare the three guessing bias parameters
for each participant and see by how much they differ. With
69 total parameters, this would be a tedious process. A
second way of framing the question is whether a model
that does not include an effect of change probability fits
the data as well as one that does include an effect of
change probability. We defer the specifics of assessing
model fit until later; for now, we will discuss building a
model that does not include an effect of probability
change. We may then compare the first model, which

Fig. 7 The WoMMBAT model Il
building tab. a: All possible Fle Help |
main effects and interactions Start | Dotaset. Models | anaiysis | Diagnostics | Results | savefExport |
available for analysis. b: Models Avallable effects | I;' B 7 I ¥ olmsna@ St —
Effect Levels | |
: 2 - 2
on eagh parameter. ¢: st 17 e 4 Remove L s | 9§ Remove || |
Covarlance matrix models. = = Fefroct Tioves = Tiad [ 1 B
d: Prior parameters and model pech 3 I ab 23 = aub 23 I
name. e: The list of all defined = 2way 1 :
models subby preh 69 1 1
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+ &5 [ -y [ & O3 T 4 &3 ‘ Ly
M setlings — — Sl T -r models
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contains a change probability effect, with the second
model, which does not. If the model with an effect of
change probability fits better than the model without, we
conclude that a change probability effect is necessary to
explain the data and, thus, that change probability has an
effect on guessing biases.

We can build a model without change probability by
simply removing the two-way interaction on G (click the
“Remove” button under G, while the interaction is
highlighted; Fig. 7B) and adding a main effect of
particpant.” Under this model, each participant has his or
her own guessing bias parameter, but it is not affected by
the change probability manipulation. The final step in
defining the model is to name it, and click the “Add new
model” button.

After defining both models, the model tab should look
similar to Fig. 7. Both models should appear in the model
list (Fig. 7E). Double-clicking on a model in the model list
will copy the model specifications back into the model-
building interface, which is useful for modifying already-
specified models or for recalling the exact specification of a
model.

There are aspects of the model-building interface in
Fig. 7 not discussed above: covariance matrices (C) and
prior settings (D). The covariance matrix interface can be
used to model the covariance between two vectors of
parameters that are naturally paired with one another. For
instance, the sub main effect on K and the sub main effect
on Z form a natural pair, since they refer to different
parameters for the same participant. It might be interesting
to ask whether these parameters covary. That is, do
participants with low lapsing (high Z) also have high
capacity (K)? To answer this question, we might add both
parameters to the covariance modeling window. We would
use the buttons labeled with 3 below each parameter model
window. The +% button adds an effect to a new covariance
group, and the X button adds an effect to an existing,
highlighted covariance group. Covariances and correlations
will be modeled between all parameters in one group. Note
that a necessary condition for two parameter vectors to be
naturally paired is that they have the same number of
elements; WoMMBAT will not allow two wvectors of
parameters with different numbers of parameters to be
added to the same covariance group. Having the same
number of parameters, however, does not guarantee that the
pairing makes sense; parameter vectors may have the same
number of parameters by coincidence.

3 There is a third model of intermediate complexity between the two
models defined here. One could also add a main effect of sub and a
main effect of prch on G. Under this model, the effect of the change
probability manipulation is identical for all participants. This model
fits much worse than the two models defined here and, so, was
omitted for simplicity.

Figure 7 also shows the prior settings interface (E),
which allows users to change the prior settings used for
analysis of the model. Interested readers may see R. D.
Morey (2011) for more details about the priors and may
also change the default values to examine their effects on
model fits. For the present demonstration and for most
other analyses, the default values will serve.

Analysis tab

After defining all the models of interest, the next step is
obtaining parameter estimates. As was mentioned previ-
ously, in WoMMBAT parameter estimates are obtained
using Markov chain Monte Carlo (MCMC) techniques. The
analysis tab allows the specification of MCMC settings and
starting MCMC sampling for the models defined under the
models tab.

The MCMC techniques used by WoMMBAT draw
approximate samples from the joint posterior distribution
of all parameters. After each sample is drawn, the sample is
then used to draw a new sample, yielding a chain of values.
As the chain gets longer, the distribution of the samples
becomes a better approximation to the joint posterior.

The quality of the samples is controlled by several
factors. For the purposes of this demonstration analysis, we
will describe them only briefly; for more depth, there are
several introductions to Bayesian analysis with MCMC,
some written specifically for psychologists (Ntzoufras,
2009; Rouder & Lu, 2005; Wagenmakers et al. 2010). The
first factor controlling the quality of the samples, as has
already been mentioned, is the length of the chain. This is
controlled by the “Iterations” setting (Fig. 8B). The second
is the number of burn-in iterations. Burn-in refers to
throwing away a number of iterations at the beginning of
the chain, to make the chain less sensitive to the initial
conditions of the chain. For our demonstration analysis, the
default values for number of MCMC and burn-in iterations
will suffice. Although the 1,000-iteration default is not
enough to obtain precise estimates, they are enough for an
initial analysis. Increasing these values leads to more
precise (but slower) analyses.

The quality of the samples is also affected by more specific
settings of the MCMC sampler (Fig. 8C). The default MCMC
method in WoMMBAT is called hybrid Monte Carlo (Liu,
2001); for a description of hybrid Monte Carlo, how these
settings affect the quality of the MCMC chain, and tips for
improving the quality of hybrid Monte Carlo chains, see
Appendix 3 to this article or the supplement for R. D. Morey
(2011). For the purposes of this demonstration analysis, the
default values will be sufficient.

Several less important settings are shown in Fig. 8A. The
“Start values optim iterations” settings determine how long
the algorithm searches for starting values for MCMC.
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Fig. 8 The WoMMBAT analysis
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WoMMBAT uses numerical optimization to search for the
posterior mode (the most-likely parameter values, given the
data), before performing any MCMC. If MCMC is started
from highly—likely parameter values, the MCMC algo-
rithm will produce higher quality chains. If the chains
appear to be of low quality initially, increasing this value
by a factor of 1.5 may help. The “Output predicted
probabilities” setting will yield the model’s posterior
predicted probability that a response on a given trial will
be “change.” These predictions can be compared with the
data themselves to compare the fit of the model. How
this may be done is beyond the scope of the present
article, but interested readers should consult Chap. 6 of
Gelman et al. (2004) or Gelman, Goegebeur, Tuerlinckx,
& van Mechelen, (2000).

Note that in the list of models to be analyzed, the first
column, “Analyze,” is checked for both models. Any model
with the “Analyze” column checked will be analyzed using
the settings at the top of the analyze tab when the “Start
analysis” button is clicked. Click the button to start the
analysis, and the progress bars at the bottom will show how
much of the analysis has been completed. The analysis may
take anywhere from a few seconds to a minute to complete,
depending on the speed of the computer on which the
analysis is run. Once the analysis is finished, note that the
“Analysis” column is unchecked for both models and the
“Results” column is checked for both models, indicating
that parameter estimates and model fit statistics are
available. Before checking the parameter estimates and fit

@ Springer

statistics, it is important to diagnose the quality of the
MCMC chains obtained from the analysis.

The first step in diagnosing the MCMC chains is to
check the sample acceptance rate, which is the fifth column
in the model list on the analysis tab. As was mentioned
previously, MCMC chains are created by using a sample
from the joint posterior to obtain a new sample. In MCMC
chains, it is important that the new samples be far enough
away from the last sample to ensure that the parameter
space is adequately explored, but not too far; samples that
are too far are likely to be unreasonable and, thus, rejected.
The acceptance rate statistic shows how often a new sample
was accepted. For hybrid Monte Carlo, good acceptance
rates are between 0.6 and 0.8. Acceptance rates within these
bounds are colored green. Acceptance rates inside these
bounds will not necessarily produce good chains (further
diagnostics will be discussed later), and chains with
acceptance rates outside these bounds may yield good
quality estimates if the chain is long enough; in general,
however, acceptance rates of between 0.6 and 0.8 yield
good estimates with fewer iterations. Figure 8 shows
acceptance rates of 0.67 and 0.69. Due to the random
nature of MCMC, your results will likely differ slightly
from these.

In the process of analyzing other data, it is possible
that the default values will not yield acceptance rates
between 0.6 and 0.8. In this case, the hybrid Monte
Carlo settings must be tweaked. Step-by-step instruc-
tions for obtaining quality samples are outlined in
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Appendix 3 of this article and in the supplement to R. D.
Morey (2011).

Diagnostics tab

Once MCMC chains have been obtained with good
acceptance rates, it is necessary to diagnose the MCMC
chains to determine whether they will yield good parameter
estimates. The diagnostics tab (Fig. 9) allows the analyst to
check the quality of the MCMC chains. The goal of
MCMC analysis is to produce a long enough MCMC chain
that the chain can be said to have converged—that is, that
the samples can be treated as if they were true samples from
the desired posterior distribution. MCMC methods are
guaranteed to produce chains that converge, given an
infinitely long chain; in practice, however, analysts must
settle for finitely—long chains. Since MCMC chains are
random, there is no foolproof method for assessing
convergence, but there are a number of methods that, when
applied to MCMC chains, can give the analyst confidence
in the results of the MCMC analysis.

There are two primary methods for assessing conver-
gence: graphical and quantitative. Graphical methods are
easy to use with only a little training and provide most of
the information that quantitative methods provide in a
fraction of the time and computational effort. However,
they are subjective; the analyst must make an informed
decision about the convergence without the aid of a number

Fig. 9 The WoMMBAT analysis

on which to base the decision. In contrast, quantitative
methods use numbers that provide an objective (although
not complete) assessment of convergence. The disadvan-
tages of quantitative methods are that there are many such
statistics to choose from; they are computationally inten-
sive, do not reveal the reason for the lack of convergence,
and offer much of the same information as would be
contained in a plot. For simplicity, WoMMBAT offers only
graphical methods of convergence. Appendix 2 to this
article discusses the computation of quantitative measures
of convergence outside the WoMMBAT interface, using R.

Convergence for each parameter within each model is
assessed individually. Although this may seem tedious,
since models sometimes have hundreds of parameters, the
WoMMBAT interface offers a fast method for assessing
chain convergence, one after another. The first step is
selecting the model whose chains will be assessed for
convergence in the model list (Fig. 9A). Upon selecting a
model, three plots will appear below the model list
(Fig. 9C-E), each of which isa separate diagnostic plot for
the named parameter (Fig. 9B). The first parameter chosen
is always the grand mean capacity, 1. These three plots
are the MCMC chain for the parameter plotted as a function
of MCMC iteration (C), the kernel density estimate of the
marginal posterior distribution for the parameter (D), and
the autocorrelation function (ACF) of the MCMC chain (E).

The MCMC chain plot in Fig. 9 (C) is the plot that is
perhaps most diagnostic of convergence. The chain plot is a
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plot of the samples obtained from the MCMC analysis as a
function of iteration. The ideal MCMC chain looks like
random noise; no trends should be evident from either the
chains or the lowess line. However, chains will differ in
quality from analysis to analysis. There are four horizontal
lines: The solid blue line is the mean of the chain; the red
line is a lowess nonparameteric regression line (Cleveland,
1981), which reveals trends in the chain; the two dashed
blue lines show the limits of the 95% credible interval.
The left column of Fig. 10 shows 1,000 iterations of four
MCMC chains that differ in quality. Chain (A) looks
square, because it contains long runs of iterations where a
new sample was not accepted. This resulted in a low
acceptance rate (18%) and a slowly converging chain.

Chain (C) has quite the opposite problem as chain (A); new
values were accepted too often, because they were too
similar to the old sample. This leads to a slowly wandering
chain and bad convergence. Chains (A) and (C) can be
improved by tweaking the hybrid Monte Carlo parameters
in the analysis tab. Chain (E) looks, at first glance, like a
low-quality chain, with moderate autocorrelation. Upon
close examination, however, it is obvious that the chain has
two states, a high state and a low state, and that the chain
oscillates between them (see the effect of participant 19 on
K for the "With prch effect” model using the diagnostics tab
for an example of this type of chain). The reason for
oscillation in this case is that the participants’ performance
is so low that there are two explanations of their bad

Fig. 10 MCMC chains of A B
varying quality (left), and their ¥
respective autocorrelation plots ©
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performance: low attention and low capacity. The Bayesian
model makes a compromise, sometimes choosing one
solution and sometimes choosing another. This will result
in a bimodal posterior distribution for this parameter. Since
the bimodality is an effect of the model, there is no way to
tweak the hybrid Monte Carlo parameters to improve the
chain. However, running a very long MCMC chain will
ensure that the chain spends enough time in both states that
accurate estimates of the posterior distribution can be
obtained. Chain (G) is a good chain; there appear to be no
systematic trends. Chains similar to chain (G) are ideal for
analysis.

Figure 9 (D) shows the kernel density estimate, a kind of
smoothed histogram, of the marginal posterior distribution
for the selected parameter. The vertical solid line represents
the posterior mean estimated from the MCMC chain; the
left and right vertical dashed lines represent the upper and
lower bounds of the posterior credible interval. The kernel
density plot is perhaps the least useful as a chain diagnostic,
but it does allow one to see the marginal posterior density
for the given parameter, which is the target of MCMC
analysis.

The final graphical diagnostic is the ACF plot, shown in
Fig. 9 (E). The ACF plot shows the amount to which one
iteration in the chain is correlated with the following
iterations. Ideally, iterations would be independent from
one another, since independent samples provide more
information per sample. However, in MCMC, indepen-
dence is almost never achieved. In quality chains, depen-
dence from one sample to the next is minimized but never
eliminated. Along the x-axis in the ACF plot is the lag,
which is the distance from any given sample at which the
dependence is to be assessed. The lag between a sample
and the next is 1, and so forth. The y-axis shows the
average correlation. The horizontal dashed lines show the
95% limits on the expected correlation, given that indepen-
dence holds. For highly dependent chains, which are bad-
quality chains, the correlation will drop off slowly as a
function of lag; for less dependent, higher-quality chains,
the ACF will drop off faster. For the ideal independent
chain, the correlation will be 0 for all lags. The ACF plot
shown in Fig. 9(E) shows a well-behaved chain, where the
autocorrelation drops to zero quickly and stays within the
95% bounds thereafter.

When combined with the total number of iterations, the
ACEF plot can give the analyst a rough idea of the effective
sample size from the posterior. Consider the lag iterations
needed for the correlation between two samples to be
effectively 0; suppose, for the sake of demonstration, that
10 iterations are needed for the correlation to be essentially
0. If the MCMC chain were thinned by removing all
intervening iterations, each sample would essentially be
independent. This thinning strategy would keep everyl0th

iteration. If we sampled 1,000 total MCMC iterations, our
effective sample size would be 100 samples from the
posterior distribution. This estimate is rough and conserva-
tive, since the removed iterations provided some informa-
tion about the posterior distribution, even though they were
correlated with one another. However, the rough estimate
demonstrates how the information in the ACF plot might be
used to determine the reliability of MCMC analyses.

Together, the three plots in the diagnostic tab give a
view of how well the MCMC chains are likely to
approximate the true posterior distribution for a given
parameter. But not all parameters converge at the same
rate; it is important to look through all the parameters, to
assess the quality of the estimates. The WoMMBAT chain
diagnostic interface makes examining the chains for
many parameters easy; the scrollbar below the three
plots, when dragged from left to right, will change the
parameter being examined in the plots. If the interface is
slow, due to the number of iterations being plotted being
high, the analyst may reduce the number of iterations
shown in the chain plot (C) by selecting a smaller
number of iterations in the drop-down box under (C).
The resulting effect is like a flip-book; many parameters
can be diagnosed quickly, and any parameter that catches
the eye as being problematic can be examined more
closely by stopping on that parameter.

If the analyst is unhappy with the convergence of
any parameters, there are two main options available.
First, the user can return to the analysis tab and rerun
the analysis after tweaking the hybrid Monte Carlo
parameters according to the instructions in Appendix 3.
If better hybrid Monte Carlo parameters can be found, the
convergence of all parameters will improve, sometimes
markedly. Alternatively, the analyst may simply choose to
rerun the analysis with more iterations. Since conver-
gence is ensured as the number of iterations increases,
increasing the number of iterations will be more likely to
yield convergent chains. However, for the purposes of
exploring a dataset, a low to moderate number (1,000-5,000)
of iterations is usually sufficient to get an idea of which
models fit and which do not, if the MCMC chains are
wellbehaved. For finer-grained analyses sufficient for publi-
cation, longer chains (relative to the amount of autocorrela-
tion) are recommended.

Results tab

After the analyst is comfortable with the quality of the
MCMC chains, model fit statistics and parameter estimates
can be examined. The results tab (Fig. 11) offers an
interface for comparing the model fit of all models
simultaneously (A), examining parameter estimates (B),
and making pairwise comparisons between parameters.
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Fig. 11 The WoMMBAT results
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selected parameter
Parameter estimates
parameter | Effact Level Post. mean| Post. Mean MCMC Error|Post. 50 |Type |j
k  igrandmean | | 3.243823 | 0.012393 0.247895 |
2 grandmean : 2592853 0.022088 0.256778 5
g igrandmean | - | 0.631218 | 0.005224 0.105139 | .
k0 osb 0 lozss7el | 0017195 0351364 | Random Effect
k sub 1 0501999 0.015582 : Random Effect
B k sub 10 olo7aeze 0.020305 Random Effect
K b 1 1086963 0026247 Random Effect
k sub 12 0707183 0.016438 Random Effect
k sub 13 0472733 0017168 Random Effect
k sub 14 1159728 0.029037 Random Effect.
| sub 16 -ao707s7 | o2 Random Effect -
Done. -

Bayesian hypothesis testing can be viewed in terms of
model selection. In order to explore the question of whether
the change probability manipulation affected guessing
biases, we constructed two models. In the first model,
change probability is included in a two-way interaction
affecting the G parameter. In the second model, change
probability does not appear. Answering our question of
interest amounts to selecting which of these two models
best accounts for the data. In order to assess the models’
ability to account for the data, WoMMBAT computes a
statistic called the deviance information criterion (DIC;
Spiegelhalter, Best, Carlin, & van der Linde, 2002). DIC
weighs the fit of a model against the complexity of a model
in a manner similar to the Akaike information criterion
(AIC; Akaike, 1974). The basic idea is that the quality of fit
of the model is penalized by the complexity of the model.
In AIC, the flexibility of the model is quantified by the
number of parameters. In hierarchical models, however, the

complexity of a model cannot be directly assessed by the
counting parameters, because the fact that parameters come
from parent distributions adds additional constraint to
hierarchical models that is difficult to quantify. The DIC
thus relies on an estimate of the number of parameters
(called Pp), which is used as a measure of model
complexity or flexibility. Models with lower DICs are
preferred over those with higher DICs, after weighing both
model fit and model flexibility.

The results tab’s model selection list (Fig. 11A)
displays every model defined, along with the DIC and
Pp computed for each. Clicking on the “DIC” label in the
DIC column will sort the models by DIC and will allow
the analyst to easily assess the relative fit of all models at
once. In the case of the two models we have defined, the
model including an effect of change probability on
guessing bias (9,641) is preferred by about 300 DIC
points to the model without (9,947). Because the DIC

Table 2 Description of the

parameter estimate columns in Column

Description

the WoMMBAT results interface
Parameter

Effect

Level

Post. mean

Post. mean MCMC error
Post. SD

Type

Which working memory model parameter the effect is on

Which factor the parameter is a level of

The level of the factor of which the effect is an estimate

Posterior mean of the effect (the point estimate)

An estimate of the uncertainty in the posterior mean, due to MCMC error
Posterior standard deviation; represents uncertainty in the parameter estimate

Parameter type; either slope or random effect
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statistic is computed from the MCMC chains, it is
random, and thus your DIC will differ slightly from
these. However, given the size of this difference, your
result will not differ substantially. To put this difference in
perspective, DIC is computed on a log scale; thus, the
difference of 300 points can also be thought of as a ratio
of 3% ~ 2 x 10'3%. The amount of support in favor of the
model including an effect of change probability on
guessing bias is overwhelming.

A second way to assess the question of whether
guessing bias is affected by the change probability
manipulation is to look at the posterior mean estimates
of the guessing parameters. These parameters are shown
in the lower half of the results tab (Fig. 11B). Select the
model including the two-way interaction of participant
with change probability on G in the model list. All
parameter estimates will appear in the parameter list
below. Each row represents a parameter; the columns
contain information about the parameter and its estimate
(see Table 2 for a brief description of each column). The
parameters of interest, the interaction effects on guessing,
may be found by scrolling down in the list of parameters.
By adding the grand mean guessing bias parameter (the
parameter in row 3) to each of the interaction effects, we
obtain the guessing bias estimates for each change
probability condition, for each participant, a total of 3 x
23 = 69 parameters.

Figure 12 shows the posterior mean of the guessing
parameter for each participant by change probability
condition, with each line representing a participant. To
create this plot, the grand mean g parameter (1(¢); third row
in the parameter list), was added to each interaction effect,
which may be found by scrolling down in the parameter
list* As Fig. 12 shows, participants’ guessing biases
increase as the change probability increases. This increase
can be seen in all participants, although the size of the
effect differs. The conclusions reached by way of the
parameter estimates are highly consistent with the large
DIC difference.

Another useful feature of the results tab is the ability
to perform Bayesian multiple comparison analyses. For
the purpose of demonstration, suppose that we were
interested in the difference between the levels of the sub
by prch interaction on guessing bias for the first
participant, participant “0.” If we highlight the row in the
parameter list corresponding to the interaction effect for
level 0.x.0.847297860387203 and then double-click,

“ Highlighting the rows corresponding to the interaction effects will
copy them into the operating system clipboard. From the clipboard,
they may be pasted into another program, like Microsoft Excel, for
easy plotting. For users familiar with R, the estimates may be
extracted and plotted within R. See Appendix 1 for details.

—0.88

—0.73

Guessing bias (log odds)
Probability of 'change' guess (G)

— 0.5

0.3 0.5 0.8
Probability of Stimulus Change

Fig. 12 Posterior mean guessing bias parameters as a function of true
change probability. Each line represents a participant

the multiple-comparisons interface will open (Fig. 13 and
Table 3). The multiple comparison window allows the
comparison of all other factor levels to the selected factor.
In order to perform multiple comparisons, WoMMBAT
computes the posterior probability (and odds) that the
selected factor level’s parameter (A) is greater than each of
the other factor levels’ parameters (B). Both high and low
posterior probabilities yield evidence that the parameters
are different. For instance, the posterior probability that
the guessing parameter for participant “0” in the change
probability 0.7 condition is greater than the one in the
change probability 0.3 condition is about 0.98. The results
from your own analysis may differ, due to the randomness
of MCMC methods, but with longer chains the probability
will converge to its true value. The multiple comparison
analysis is consistent with Fig. 12; the guessing biases are
highest in the condition where the probability of a stimulus
change was highest.

Save/Export tab

Because analysis of models using MCMC takes time, it is
useful to save the results of an analysis so that an analyst
can return to the analysis later without redefining the
models or rerunning the analyses. The save tab allows
analysts to save their analyses in two ways: first, as an R
data file that can be reloaded via the data set tab, and
second, as text files that can be loaded into other statistical
software. Because MCMC creates a lot of numbers, the text
files can be quite large and take time to save; it is
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Fig. 13 The WoMMBAT
multiple comparisons window.
a: The effect, and level of the
effect, selected for multiple
comparisons. In this case, it is
the interaction effect of B
participant 0 when the log-odds
of a stimulus change was 0.85
(probability of 0.7). b: Two
factor levels are selected: the
interaction effect for participant
0 when the log-odds of a change
are —0.85 and 0, respectively
(probabilities of 0.3 and 0.5).
The posterior odds that guessing
is higher in the comparison
condition (a) than in the selected
conditions (b) are 46:1 and
3.6:1, respectively

i~ Multiple comparisons

Level name

0
10.x.-0.847297860387204
10.x.0

10.x.0.847 297860387203
11.%,-0.847297860387204
11.x.0

11.x.0.847 297660367203
12,%,-0.847 297860387204
12.x.0

12.x.0.847 297860387203
13.x.-0.847297860387204
13.x.0

13.%.0.847 297860367203

j.x.-D.Bﬂ 7297860387204
1

=181 x]
iﬁeﬁ‘m?fﬁr?nc?s?a?p??m?«}
L evel nﬁ ?‘éf;czggz;a%ae7m 1
1.054167
0.400111
0.570259 0.439984 0.900000
0.333630 0443816 0.782500 3.597701
0.349363 0.470490 0.228750 0.296596
1.198346 0.421982 1.000000 L.2INFOD
0.240264 0426840 0.707500 2.418803
0625358 0.432392 0,077500 0.084011
0.75573%5 0.489463 0.911250 10.267606
0.560948 0490459 0.860000 6.142857
0.093311 0.536691 0.401250 0.670146
0.535715 0447688 0.880000 7.333333
0.092602 0.512808 0.556250 1.253521
-0.622200 0.493987 0.110000 0.123596
1.265319 0.466715 1.000000 LL#INFOD |

recommended that saving to text files be done only when
necessary.

Discussion: Building and testing many models

In the demonstration above, we entertained two models,
with the purpose of performing a single test. By
comparing the DIC statistics for the two models, we
were able to clearly reject one of the models, leading to
an answer to our question of interest: The change
probability manipulation had an effect on guessing
biases. In practice, however, most researchers have a
more complicated design than the design in the Rouder
et al. (2008) experiment, with many more factors. An
experiment with five factors would not be unusual. In this
case, there is 1 five-way interaction, 5 four-way inter-
actions, 10 three-way interactions, 10 two-way interac-
tions, and five main effects. It is obvious that the number
of possible models is quite large, especially considering
that we can put different models on X, Z, and G. ANOVA
methods offer the convenience of testing all effects

simultaneously; unfortunately, this is not possible when
using Bayesian hierarchical models. The process of model
building and testing in WoMMBAT is analogous to
stepwise regression (Hocking, 1976). In stepwise regres-
sion, a set of regression predictors is sought that best
explains the data. However, in stepwise regression, as in
the hierarchical model outlined above, there are often too
many predictors to test every combination. We have found
the stepwise regression technique of backward selection to
be of use in finding models that fit the data well.

In backward selection, we begin with a complicated,
flexible model and fit progressively simpler models.
Eventually simplification yields progressively worse fits,
as measured by DIC. The simplification process works
by starting with interactions and breaking those inter-
actions into smaller interactions and main effects. If
eliminating a factor increases the DIC, the factor is
necessary to explain the data. If eliminating a factor
decreases the DIC, it is not.

One possible issue with starting with complex models
is the sheer size of the analyses it produces. Consider a
2 x 2 x 4 x 5 design, with 20 participants. The full five-

Table 3 Description of the

columns in the WoMMBAT Column

Description

multiple comparisons interface
Level name

Posterior mean difference
Posterior SD difference
Posterior prob. difference >0

Posterior odds difference >0

Name of the factor level being compared to

Mean of the posterior difference between the two parameters

Standard deviation of the posterior difference between the two parameters
The posterior probability that the difference is greater than 0; equivalently,

the posterior probability that the selected factor level is greater than this
row’s factor level

The posterior odds that the difference is greater than 0; equivalently, the

posterior odds that the selected factor level is greater than this row’s
factor level
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way interaction (with participant) has 1,600 parameters.
Assume that we are not concerned with the Z parameter,
but we place the full five-way interaction on K and G.
This yields a total of 3,200 parameters, which is quite an
unwieldy analysis.’

There are, however, a number of ways to reduce the
number of parameters to be fit.

* Avoid complicated models on G. Typically, guessing
bias is not of interest to the researcher, and most
experiments do not attempt to manipulate it. In our
experience, a simple model including only the partici-
pant factor on G fits best, since factors intended to
manipulate capacity do not typically manipulate guess-
ing bias. Putting a simple model on K and then
performing backward selection on G will almost surely
lead you to a simple model on G, allowing you to
concentrate on K.

* Only model Z if you are both able and interested.
Modeling the Z parameter requires multiple set sizes—
at minimum, one set size that is below capacity and one
set size above capacity. If this requirement is not met,
turn off the modeling of the Z parameter. If your design
allows modeling of the Z parameter but you have no
hypotheses regarding lapsing, use a simple model on Z
that includes only the main effect of participant.

» Use participant as a main effect on K. By using
participant as a main effect on K, and not in any
interactions, you explicitly require the pattern of
results to be the same for all participants. This will
reduce the number of possible models by eliminating
the interactions with the participant factor. If specific
hypotheses regarding differences between participants
are of interest, it is possible to test interactions with
participants; however, for most analyses, participant as
a main effect will be a useful simplifying assumption.
Because a repeated measures ANOVA disallows the
testing of interactions with participants, restricting
participants to be a main effect is not any more
constraining than traditional analyses.

»  Use graphical methods to guide model building. In backward
model selection, the analyst starts with the largest interaction
and attempts to make the model simpler. Beginning with the
largest interaction has an added benefit: The parameter
estimates can easily be used to make plots. By plotting the
effects of every factor level in the interaction (i.e., all the
combinations of the factor levels; see Fig. 12), it will be

> Incidentally, because each sample of each parameter uses 8 bytes of
memory, 10,000 iterations of analysis for the model will be 256
megabytes. This is a sizable proportion of a modern computer’s
memory.

clearer which factors are needed and which are not. Model
building and testing can be focused on models that are
suggested by the plots, whereas models highly inconsistent
with the plots can be ruled out by shorter MCMC runs,
because these models will likely have DICs that are
substantially higher than models suggested by the plots.

Model selection in WoMMBAT is not an automatic process,
but the guidelines above should enable analysts to restrict the
number of models being tested to a reasonable number. Also,
because analyses may be easily saved in WoMMBAT,
questions about model fit that may arise after the initial
analyses can be easily answered by loading the analysis,
defining a new model, and testing it. The ability to save and
send WoMMBAT analyses to other researchers makes the
entire process transparent and open to replication.

Summary and conclusion

In this article, we introduced the WoMMBAT software for
estimating working memory capacity from change—detection
data. In the demonstration above, we showed how WoMMBAT
can be used to fit R. D. Morey’s (2011) hierarchical model to
data, obtain parameter estimates, and perform statistical
inference. Researchers wishing to analyze their own data
need only change the details of the analysis; the essential
elements of an analysis within WoMMBAT are all contained in
this demonstration analysis.

Because R. D. Morey’s (2011) hierarchical model has
significant advantages over the traditional method of
analyzing change detection data, the adoption of WoMMBAT
as a standard data analysis tool would be a methodological
advance in working memory research. The software is freely
available and released under the Gnu Public License v2.0.
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Appendix 1
Extracting model information within R

For researchers familiar with R, or who are interested in
learning to use R, it may be useful to be able to access
WoMMBAT model analyses from the R console interface.
This will be necessary for computing MCMC convergence
statistics in the next section of this appendix, but it is also
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useful for researchers who want to access the MCMC
chains to, for example, create plots.

The WMCapacity package includes a function for
extracting all model information from WoMMBAT from
the R console. This function, womExtractModel (),
requires the name or number of a model to extract:

# Extract the model with the sub by prch
# interaction and save in a variable

# called “winningModel”

winningModel = womExtractModel (' With
prch effect’)

# Or this (same thing)

winningModel = womExtractModel (1)

# Check to see that we got the

# correct model
winningModelSmodelName

# Should return:

#[ 1] “With prch effect”

This works because we called the winning model “With
prch effect”; replace this name with whatever you called
this model. Alternatively, we can use the number of the
model in the model tab list.

After assigning the model analysis to the winningModel
variable (or whatever other variable name we choose), we
may access any aspect of the model analysis by accessing a
particular element in winningModel. Table 4 shows a
subset of the more interesting elements of an extracted model,
along with a description of what the elements contain.

Appendix 2
Computing convergence statistics within R

It is possible to use the extracted model analysis to compute
convergence statistics within R. The WMCapacity package
uses another package, coda (Plummer, Best, Cowles, &
Vines, 2006), which contains functions to compute conver-
gence statistics. The coda package offers several conver-
gence statistics, including Geweke (1992), Brooks and
Gelman (1997), Heidelberger and Welch (1983), and Raftery
and Lewis (1995) diagnostics. The specifics of these
convergence statistics are beyond the scope of this appendix;
for details, see the manual for the coda package. Below, we
demonstrate how to compute the Geweke diagnostic statistic,
using the extracted model information:

# Extract model

winningModel = womExtractModel (" With
prch effect’ )

# Save chains to another variable, for
convenience

# chains =
winningModel$results$SeffectChains

The code above saves the effect chains to the variable
chains. WoMMBAT saves chains in a format that is suitable
for passing to the MCMC diagnostic functions in coda:

# Compute the Geweke (1992) statistic for
# each parameter’ s MCMC chain
geweke.diag (chains)

Table 4 Description of some of

the important elements in an Element

Description

extracted WoMMBAT analysis
$modelName

$model
$model$newDat2Cat
$model$newDat2Cont
$model$namedDat2
$modelSallEffects

Spriors

$settings

$results
Sresults$effectChains
$results$covChains
$results$corChains
$results$meanChains

$results$pointEst

$results$DIC

The name of the extracted model

Information used by WoMMBAT to build the analysis

Simplified data set used for analysis; categorical part

Simplified data set used for analysis; continuous part

Simplified data set used for analysis; factor names

Matrix showing all the effects, and how the model was built from these effects
Prior settings

MCMC settings used for the analysis

All results, including MCMC chains

MCMC chains for all effects, excluding covariance matrix and slope means
MCMC chains for all covariance matrices

MCMC chains for all covariance matrices, converted to correlations
MCMC chains for all slope means

Point estimates (posterior means) for all effects excluding covariances and slope
means

Deviance information criterion
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The logic behind Geweke’s diagnostic is to assume that
the chain has converged. The posterior mean based on an
initial segment of the chain is compared with the posterior
mean based on the end of the chain. How big the segments
are depends on the function settings; the defaults are 10%
and 50%, respectively. If the chain has converged, these
estimates should be similar. Geweke’s statistic is a z score
and has a standard normal distribution assuming the chain
has converged. Thus, extreme z scores (|z|] > 2.5 or so)
indicate possible convergence problems. It is likely that
diagnostic statistics for the demonstration analysis contains
some parameters that did not converge; as was mentioned
previously, the demonstration analyses’ 1,000 iterations is
not particularly long, and convergence will probably require
a longer MCMC run.

It is useful to compare the statistic yielded by
geweke.diag () with the diagnostic plots provided by
WoMMBAT to see whether the reasons for inadequate
convergence can be ascertained. In addition, plotting the
Geweke diagnostic statistics against the theoretical quantiles of
the standard normal distribution (function ggnorm () in R)
will aid in assessing the convergence of all parameters
simultaneously.

Appendix 3

Adjusting hybrid Monte Carlo parameters for efficient
parameter estimation

A critical part of using WoMMBAT is tweaking the hybrid
Monte Carlo parameters in the analysis tab to improve the
quality of MCMC chains (Fig. 8C). Efficient chains lead to
faster, more reliable parameter estimates. Understanding the
Hybrid Monte Carlo algorithm helps when tweaking the
parameters. A technical explanation of hybrid Monte Carlo
may be found in Liu (2001). A less formal explanation is
found in the supplement to R. D. Morey (2011). Here, we offer
a brief, informal explanation, along with a step-by-step to
guide to improving the quality of hybrid Monte Carlo chains.

The goal of all MCMC methods is to sample from a
statistical distribution—in the case of WoMMBAT, to
sample from the joint posterior distribution of all parame-
ters. The joint posterior distribution of all parameters in R.
D. Morey’s (2011) model is not a familiar distribution, like
a multivariate normal; it is more complicated and difficult
to sample from than other, familiar distributions. We must
therefore enlist methods like MCMC to approximate
samples from the joint posterior distribution.

All MCMC methods, including the hybrid Monte Carlo
algorithm used by WoMMBAT, work in a similar way. Assume
that we have a sample from the joint posterior distribution; it
could be our starting value or an MCMC iteration. MCMC is a

set of rules that enable us to obtain a candidate sample,
comparing the candidate sample with the current sample and
deciding whether to keep the candidate sample or the old
sample. If we keep the candidate sample, it becomes our current
sample. The algorithm is specified in such a way that if we
follow the same steps over and over, our samples will
approximate the distribution from which we want to sample.

In order to understand how hybrid Monte Carlo obtains
candidate samples from current samples, imagine a curved
surface, on which a ball has been placed. The ball will naturally
roll into pits in the surface, due to gravity. This surface is an
analog to a statistical distribution; high-likelihood areas in the
parameter space correspond to low areas on the surface.
“Sampling” from the statistical distribution is done by pushing
the ball at random, waiting a certain amount of time, and then
determining where the ball is after the time is elapsed. If we do
this repeatedly, the list of ball locations will be samples from our
statistical distribution.

We cannot, however, simulate this exactly on a digital
computer, because digital computers cannot divide time and
space to arbitrary precision. Instead, we must do a rough
simulation. Hybrid Monte Carlo is the rough simulation. In
hybrid Monte Carlo, there are two parameters: € and N
(epsilon and number of “leapfrog” steps). The ¢ parameter
refers to how finely we approximate time, and Ny represents
the number of time simulation steps we perform. WoMMBAT
actually has two € parameters: a lower € and an upper €. For
each sample, a different ¢ is sampled uniformly, to improve the
quality of the chain (Mackenzie, 1989). A very high quality, but
extremely slow, simulation will result from setting a small € and
a large number of leapfrog steps. Our goal is to find smaller
values that lead to good quality chains, without taking an
inordinate amount of time. If the default WoMMBAT values fail
to work for your model, we recommend following these steps,
based on our own experimentation:

1. First, start with a simple model. Choose initial values of e
and Ny from a previous, similar data set. If you do not
have a previous analysis, use a lower € of about 0.01, an
upper € of about 0.015, and an Ny value of about 10.
Sample from 500 to 1,000 MCMC iterations and
compare the chain with the chains in Fig. 10, left column.

2. Ifthe chain looks like Fig. 10c and your acceptance rate is
very high, try doubling Nr. If this does not affect the
chain or the acceptance rate, increase both ¢ parameters
and repeat these steps.

3. If the chain looks like Fig. 10a, decrease both ¢
parameters and repeat the previous steps.

4. Once you obtain a chain that looks like Fig. 10g, with
an acceptance rate of between 60% and 90%, you have
found a good combination. Start running longer chains
and building more complicated models, slightly tweak-
ing € and Ny as needed.

@ Springer



1064

Behav Res (2011) 43:1044-1065

References

Akaike, H. (1974). A new look at the statistical model identification.
IEEE Transactions on Automatic Control, 19, 716-723.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-
term memory is set both by visual information load and by
number of objects. Psychological Science, 15, 106—111.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory
represents a fixed regardless of complexity. Psychological Science,
18, 622-628.

Bays, P.M., & Husain, M. (2009). Response to comment on “Dynamic
shifts of limited working memory resources in human vision.”
Science, 323, 877. Available at http://www.sciencemag.org/cgi/
content/abstract/323/5916/877d

Brooks, S., & Gelman, A. (1997). General methods for monitoring
convergence of iterative simulations. Journal of Computational
and Graphical Statistics, 7, 434-455.

Cleveland, W. S. (1981). Lowess: A program for smoothing
scatterplots by robust locally weighted regression. American
Statistician, 35, 54.

Cowan, N. (2001). The magic number 4 in short-term memory: A
reconsideration of mental storage capacity. Behavioral and Brain
Sciences, 24, 87-114.

Cowan, N., Elliott, E. M., Saults, J. S., Morey, CC., Mattox, S.,
Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of
attention: Its estimation and its role in working memory and
cognitive aptitudes. Cognitive Psychology, 51, 42—100.

Cowan, N., & Rouder, J. N. (2009). Comment on “Dynamic shifts of
limited working memory resources in human vision.” Science,
323, 877. Available at http://www.sciencemag.org/cgi/content/
abstract/323/5916/877¢

Fougnie, D., & Marois, R. (2009). Dual-task interference in visual
working memory: A limitation in storage capacity but not in
encoding or retrieval. Attention, Perception, & Psychophysics,
71, 1831-1841.

Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004).
Bayesian data analysis (2nd ed.). London: Chapman and Hall.

Gelman, A., Goegebeur, Y., Tuerlinckx, F., & van Mechelen, 1. (2000).
Diagnostic checks for discrete data regression models using posterior
predictive simulations. Journal of the Royal Statistical SocietyC, 49,
247-268. Available at http://www.jstor.org/stable/2680852

Geweke, J. (1992). Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments. In J. M.
Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.),
Proceedings of the Fourth Valencia International Meeting on
Bayesian Statistics(pp. 169-194). Oxford: Oxford University
Press, Clarendon Press.

Gold, J. M., Fuller, R. L., Robinson, B. M., McMahon, R. P., Braun,
E. L., & Luck, S. J. (2006). Intact attentional control of working
memory encoding in schizophrenia. Journal of Abnormal
Psychology, 115, 658-673.

Heidelberger, P., & Welch, P. (1983). Simulation run length control in
the presence of an initial transient. Operations Research, 31,
1109-1144. Available at http://www.jstor.org/stable/170841

Hocking, R. R. (1976). The analysis and selection of variables in
linear regression. Biometrics, 32, 1-49. Available at http://www.
jstor.org/stable/2529336

Kumar, A., & Jiang, Y. (2005). Visual short-term memory for
sequential arrays. Memory & Cognition, 33, 488—498.

Liu, J. S. (2001). Monte Carlo strategies in scientific computing. New
York: Springer.

Logie, R. H. (1995). Visuo-spatial working memory. Hillsdale, NJ:
Psychology Press.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working
memory for features and conjunctions. Nature, 390, 279-281.

@ Springer

Mackenzie, P. B. (1989). An improved hybrid Monte Carlo method.
Physics Letters B, 226, 369-371.

McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd
ed.). London: Chapman & Hall.

Morey, C. C., Cowan, N., Morey, R. D., & Rouder, J. N. (2011).
Flexible attention allocation to visual and auditory working
memory tasks: Manipulating reward induces a trade-off. Atten-
tion, Perception, & Psychophysics, 73, 458—472.

Morey, R. D. (2011). A hierarchical Bayesian model for the
measurement of working memory capacity. Journal of Mathe-
matical Psychology, 55, 8-24.

Morey, R. D., Rouder, J. N., & Speckman, P. L. (2009). A truncated-
probit item response model for estimating psychophysical thresh-
olds. Psychometrika, 74, 603—618.

Ntzoufras, 1. (2009). Bayesian modeling using WinBUGS. Hoboken,
NIJ: Wiley.

Olsson, H., & Poom, L. (2005). Visual memory needs categories.
Proceedings of the National Academy of Sciences, 102, 8776—
8780.

Paivio, A. (1990). Mental representations: A dual coding approach.
New York: Oxford University Press.

Parra, M. A., Della Sala, S., Logie, R. H., & Abrahams, S. (2009).
Selective impairment in visual short-term memory binding.
Cognitive Neuropsychology, 26, 583—605.

Pashler, H. (1988). Familiarity and visual change detection. Perception
& Psychophysics, 44, 369-378.

Phillips, W. A. (1974). On the distinction between sensory storage
and short-term visual memory. Perception & Psychophysics,
16, 283-290.

Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CCODA:
Convergence diagnosis and output analysis for MCMC. R News,
6, 7-11.

R Development Core Team. (2009). R: A language and environment
for statistical computing [Computer software manual]. Vienna,
Austria: R Foundation for Statistical Computing. Available at
http://www.R-project.org

Raftery, A., & Lewis, S. (1995). The number of iterations,
convergence diagnostics and generic metropolis algorithms.
In W. Gilks, D. Spiegelhalter, & S. Richardson (Eds.),
Practical Markov chain Monte Carlo(pp. 116—130).London:
Chapman and Hall.

Repovs, G., & Baddeley, A. (2006). The multi-component model of
working memory: explorations in experimental cognitive psy-
chology. Neuroscience, 139, 5-21.

Rouder, JN. & Lu, J. 2005. An introduction to Bayesian hierarchical
models with an application in the theory of signal detection.
Psychonomic Bulletin and Review, 12, 573-604.

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C.,
& Pratte, M. S. (2008). An assessment of fixed-capacity models
of visual working memory. Proceedings of the National Academy
of Sciences, 105, 5976-5979.

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How
to measure working-memory capacity in the change-detection
paradigm. Psychonomic Bulletin & Review.

Rouder, J. N., Morey, R. D., Speckman, P. L., & Pratte, M. S.
(2007). Detecting chance: A solution to the null sensitivity
problem in subliminal priming. Psychonomic Bulletin &
Review, 14, 597—-605.

Rubin, D. C., & Kontis, T. C. (1983). A schema for common cents.
Memory & Cognition, 11, 335-341.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde,
A. (2002). Bayesian measures of model complexity and fit
(with discussion). Journal of the Royal Statistical SocietyB,
64, 583-639.

Treisman, A., & Zhang, W. (2006). Location and binding in visual
working memory. Memory & Cognition, 34, 1704-1719.


http://www.sciencemag.org/cgi/content/abstract/323/5916/877d
http://www.sciencemag.org/cgi/content/abstract/323/5916/877d
http://www.sciencemag.org/cgi/content/abstract/323/5916/877c
http://www.sciencemag.org/cgi/content/abstract/323/5916/877c
http://www.jstor.org/stable/2680852
http://www.jstor.org/stable/170841
http://www.jstor.org/stable/2529336
http://www.jstor.org/stable/2529336
http://www.R-project.org

Behav Res (2011) 43:1044-1065 1065

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural Wilken, P., & Ma, W. J. (2004). A detection theory account of change

measures reveal individual differences in controlling access to detection. Journal of Vision, 4, 1120-1135.

working memory. Nature, 438, 500-503. Woodman, G. F., & Vogel, E. K. (2005). Fractionating working
Wagenmakers, E.-J., Lodewyckx, T., Kuriyal, H., & Grasman, R. (2010). memory: Consolidation and maintenance are independent pro-

Bayesian hypothesis testing for psychologists: A tutorial on the cesses. Psychological Science, 16, 106—113.

Savage-Dickey method. Cognitive Psychology, 60, 158—189. Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms
Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual supporting visual short-term memory for objects. Nature, 440,

memory. Journal of Experimental Psychology: General, 131, 48—64. 91-95.

@ Springer



	WoMMBAT: A user interface for hierarchical Bayesian estimation of working memory capacity
	Abstract
	Change detection and working memory capacity
	Morey’s hierarchical model

	Analysis of Rouder et al. (2008)
	Installing and running the necessary software
	Data set tab
	Models tab
	Analysis tab
	Diagnostics tab
	Results tab
	Save/Export tab

	Discussion: Building and testing many models
	Summary and conclusion
	Appendix 1
	Extracting model information within R

	Appendix 2
	Computing convergence statistics within R

	Appendix 3
	Adjusting hybrid Monte Carlo parameters for efficient parameter estimation

	References


