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OBJECTIVES: Unexpected ICU readmission is associated with longer 
length of stay and increased mortality. To prevent ICU readmission and death 
after ICU discharge, our team of intensivists and data scientists aimed to use 
AmsterdamUMCdb to develop an explainable machine learning–based real-time 
bedside decision support tool.

DERIVATION COHORT: Data from patients admitted to a mixed surgical-medi-
cal academic medical center ICU from 2004 to 2016.

VALIDATION COHORT: Data from 2016 to 2019 from the same center.

PREDICTION MODEL: Patient characteristics, clinical observations, physiologic 
measurements, laboratory studies, and treatment data were considered as model 
features. Different supervised learning algorithms were trained to predict ICU re-
admission and/or death, both within 7 days from ICU discharge, using 10-fold 
cross-validation. Feature importance was determined using SHapley Additive 
exPlanations, and readmission probability-time curves were constructed to iden-
tify subgroups. Explainability was established by presenting individualized risk 
trends and feature importance.

RESULTS: Our final derivation dataset included 14,105 admissions. The combined 
readmission/mortality rate within 7 days of ICU discharge was 5.3%. Using Gradient 
Boosting, the model achieved an area under the receiver operating characteristic curve 
of 0.78 (95% CI, 0.75–0.81) and an area under the precision-recall curve of 0.19 on 
the validation cohort (n = 3,929). The most predictive features included common phys-
iologic parameters but also less apparent variables like nutritional support. At a 6% risk 
threshold, the model showed a sensitivity (recall) of 0.72, specificity of 0.70, and a pos-
itive predictive value (precision) of 0.15. Impact analysis using probability-time curves 
and the 6% risk threshold identified specific patient groups at risk and the potential of 
a change in discharge management to reduce relative risk by 14%.

CONCLUSIONS: We developed an explainable machine learning model that 
may aid in identifying patients at high risk for readmission and mortality after 
ICU discharge using the first freely available European critical care database, 
AmsterdamUMCdb. Impact analysis showed that a relative risk reduction of 14% 
could be achievable, which might have significant impact on patients and society. 
ICU data sharing facilitates collaboration between intensivists and data scientists 
to accelerate model development.
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Real-time bedside computerized decision support tools leveraging the 
power of machine learning models and the vast amount of routinely col-
lected data in the ICU hold great promise to improve patient outcomes. 
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However, large-scale implementation is currently 
hampered by model performance and lack of general-
izability across centers and countries (1–14).

A significant hurdle is lack of access to additional 
training and validation data, preferably from other 
hospitals. Due to technical, legal, ethical, and privacy 
concerns, ICU data are currently not shared on a large 
scale. However, the Joint Data Science Task Force of 
the Society of Critical Care Medicine (SCCM) and the 
European Society of Intensive Care Medicine (ESICM) 
recently launched their Data Sharing initiative to ame-
liorate this situation (15). AmsterdamUMCdb is the 
first freely accessible European critical care database 
released under this initiative (16).

To demonstrate the usefulness of its release for bring-
ing data science closer to the bedside, we set out to use 
AmsterdamUMCdb to develop a model to prevent ICU 
readmission or death after discharge from the ICU. The 
transition of care to a less monitored environment may 
lead to preventable errors and adverse events. In addi-
tion, unexpected ICU readmission is associated with 
longer length of stay and an increase in mortality (17, 18).  
However, unnecessarily prolonging ICU stays is waste-
ful especially considering limited ICU capacity and 
may be detrimental to the patient (19, 20).

In view of clinical acceptability and compliance, we 
aimed to develop a model that will present trends for 
its predictions and insight in those predictions. To fa-
cilitate implementability at the bedside, we sought to 
only use clinically relevant features that are readily 
available through interfaces with existing electronic 
health records. Given these considerations, we united 
a team of experienced intensivists and data scientists.

MATERIALS AND METHODS

AmsterdamUMCdb contains data from a 32-bed 
mixed surgical-medical academic ICU and a 12-bed 
high-dependency unit (Medium Care Unit [MCU]). 
Pseudonymized data were extracted from its main 
source (MetaVision, iMDsoft, Tel Aviv, Israel). Data 
from patients older than 18 years and admitted to the 
ICU between 2004 and March 2016 were included in 
the analysis. ICU admissions longer than 30 days were 
excluded, as these patients typically follow a discharge 
workflow closely coordinated with the receiving ward. 
The local Medical Ethics Committee reviewed the 
study protocol and considered it to be outside the 

scope of the Law on Scientific Research on Humans. 
In addition, they approved a waiver for the need for 
written informed consent for the use of pseudony-
mized data based on the very large number of in-
cluded patients in accordance with the General Data 
Protection Regulation.

End Points

The primary outcome was ICU readmission and/or 
death, both within 7 days of ICU discharge. Both are 
likely to influence decisions on ICU discharge and 
represent competing risks. ICU readmission was de-
fined as a transfer from the ICU to the general ward 
and back to the ICU or MCU during the same hospital 
stay. Palliative care patients and patients with do-not-
resuscitate or do-not-intubate orders were excluded 
from the analysis. Patients transferred to other hospi-
tals were also excluded.

Feature Engineering

Patient demographics (e.g., age and sex), clinical 
observations (e.g., nursing scores and Glasgow Coma 
Scale score), automated physiologic measurements 
from devices (e.g., patient monitor, ventilator, and 
continuous renal replacement therapy), laboratory 
studies, medication (e.g., sedatives and vasopressors), 
and other support (e.g., enteral feeding and intermit-
tent hemodialysis) were considered as input for the 
model. Extensive discussions in expert sessions with 
intensivists and visual analysis using heat maps on all 
available variables in the dataset were used to deter-
mine potential features. Demographics and charac-
teristics of the admission (e.g., length of stay or time 
spent at the hospital before the ICU admission) were 
directly used as features. For variables that were meas-
ured or documented multiple times during the admis-
sion, extensive preprocessing was performed in order 
to extract informative features (7, 12, 13) (see Feature 
Engineering section, Tables S1 and S2, Supplemental 
Digital Content 1, http://links.lww.com/CCX/A783).

Model Development

After feature engineering, the total number of features 
was initially 5,466 per patient. Model development and 
analysis were performed using scikit-learn on Python 
(21). Using scikit-learn Pipelines, feature selection and 
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model training were performed sequentially with strat-
ified 10-fold cross-validation. In addition, the output 
of automatic feature selection was manually reviewed 
to remove features that have no biological plausibility 
or were expected to generalize poorly (e.g., the number 
of laboratory measurements per day). To prevent in-
formation leakage, feature selection was done exclu-
sively on the training set of each fold.

The frequency of our combined endpoint was rela-
tively low compared with an uneventful (good) outcome 
(5.3% vs 94.7%), also known as an imbalanced dataset. 
We applied both logistic regression and more advanced 
machine learning algorithms to study which method 
would lead to the best performance for this type of pre-
diction problem. Algorithms were trained to predict the 
outcome using grid search to optimize hyperparam-
eters (see the sections Model Training, Hyperparameter 
Tuning, and Tables S3 and S4, Supplemental Digital 
Content 1, http://links.lww.com/CCX/A783).

Performance

Model performance was validated on data from 
patients admitted to the same ICU between March 
2016 and 2019. Data were extracted from the hospi-
talwide electronic health records (EpicCare Inpatient, 
Epic Systems, Verona, WI) that replaced the previous 
system on the ICU. Since the primary outcome was 
imbalanced, we constructed both the receiver oper-
ating characteristic (ROC) curve as well as the preci-
sion-recall curve (PRC), and calculated the areas under 
these curves (area under the receiver operating char-
acteristic curve [AUROC] and area under the preci-
sion-recall curve [AUPRC], respectively) (22–24) (for 
definitions, see Fig. S1, Supplemental Digital Content 
1, http://links.lww.com/CCX/A783). Calibration of the 
model was evaluated by constructing the probability 
calibration curve. In addition, we evaluated the effect 
of feature engineering on model performance.

Feature Importance

To determine feature importance, we used SHapley 
Additive exPlanations (SHAP) (25, 26). SHAP deter-
mines for each patient individually the contribution 
of all features to that patient’s prediction and thus 
can be used to interpret the model’s prediction for 
an individual patient for complex machine learning 
algorithms.

Sensitivity Analysis

A number of critical care societies, including SCCM 
and ESICM, advocate using ICU readmission within 2 
days of discharge as a quality indicator (27). To evaluate 
the robustness of our model, we retrained the model 
on the composite outcome after 2 days and compared 
performance with the model developed for 7 days.

Clinical Relevance and Impact

We used decision curve analysis to quantify the useful-
ness of our model based on the net benefit, defined as 
the difference between the true positives (actual read-
missions/deaths) and the false positives (incorrectly 
identified patients that could have been discharged), 
corrected by a factor determined by a threshold the cli-
nician chooses to accept: the readmission probability 
(Fig. S4, Supplemental Digital Content 1, http://links.
lww.com/CCX/A783) (28, 29).

To explore potential clinical impact on the valida-
tion cohort, we first divided patients into: 1) short-
stay patients (ICU stay < 2 days, 65%) and 2) long-stay 
patients (≥ 2 days, 35%). Using decision curve analysis, 
a clinically reasonable risk threshold of 6% was chosen 
to further divide the “short-stay” patients into “high-
risk” and “low-risk” patients. For “long-stay” patients, 
we assessed potential clinical impact based on analysis 
of readmission probability-time curves. These were 
obtained by using our prediction model to calculate the 
probability of the primary outcome for each day of ICU 
stay, thus describing its trend throughout the admission. 
After expert panel sessions with intensivists together 
with user interface software designers, a prototype of the 
software displaying the readmission probability-time 
curve and feature importance was developed. Finally, 
we explored the impact of our model on readmission 
rates and length of stay using two scenarios. In the first 
scenario, we assume the readmission rates of the groups 
that will be kept in the ICU longer to drop by 15% and 
in the second scenario to drop by 30%.

RESULTS

After excluding patients that did not survive their first 
ICU admission and ICU admissions longer than 30 
days, our training data set included 14,105 admissions 
(Table 1). Most patients were ventilated and received 
vasoactive drugs during their admission: 86.3% and 
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68.2%, respectively. The combined readmission/mor-
tality rate within 7 days of ICU discharge was 5.3%, 
with readmission and mortality rates of 4.3% and 
1.2%, respectively. As expected, patients that were 
readmitted or died within 7 days of ICU discharge 
were more often emergency patients (65% vs 43%) 
and had a longer initial length of stay (6.4 vs 5.1 d). 
In addition, patients that died within 7 days of ICU 
discharge were older (71.5 vs 63.2 yr). The validation 
cohort contained 3,929 patients that suffered from 
a slightly higher combined outcome of 6.7% (Table 
S5, Supplemental Digital Content 1, http://links.lww.
com/CCX/A783).

Figure 1 shows both model discrimination and 
calibration performance on the validation cohort. 
Figure S1, Supplemental Digital Content 1 (http://
links.lww.com/CCX/A783) displays the constructed 
ROC curve and PRC for all tested algorithms. All 

algorithms showed similar good discrimination 
(AUROC range, 0.78–0.79; AUPRC range, 0.19–
0.20), with nonsignificant differences in performance  
(Table S6, Supplemental Digital Content 1, http://links.
lww.com/CCX/A783). Please note that, for a random, 
noninformative, model, the baseline value for AUROC 
is always to 0.5, whereas the baseline value for AUPRC 
corresponds to the proportion of “positive” cases, in 
our case the combined readmission or mortality rate 
within 7 days (0.067). Based on cross-validation per-
formance (Table S7, Supplemental Digital Content 1, 
http://links.lww.com/CCX/A783) and prior experi-
ence with the Gradient Boosting (XGBoost) algorithm 
as the current state-of-the-art classification algorithm, 
this model was selected to be included in further 
model analysis and development (32). Discrimination 
did not improve significantly by combining the predic-
tion of separate models for readmission and mortality  

TABLE 1. 
Derivation Cohort

Characteristic Total No Events
Readmission 
and/or Death

Readmission 
Only

Death 
 Only

ICU admissions, n (%) 14,105 (100) 13,354 (94.7) 751 (5.3) 610 (4.3) 173 (1.2)

Demographics

  Age, yr, mean (sd) 63.3 (15.3) 63.2 (15.3) 65.0 (15.5) 63.5 (15.4) 71.5 (13.5)

  Female, n (%) 4,439 (32.1) 4,180 (32.0) 259 (34.9) 206 (34.2) 71 (41.5)

  Body mass index, kg/m2, mean (sd) 26.3 (4.9) 26.4 (4.9) 25.1 (4.8) 25.1 (4.8) 24.7 (4.9)

Admission type

  Surgical, n (%) 3,691 (66.7) 3,529 (67.9) 162 (48.5) 150 (53.8) 22 (29.7)

  Emergency admission, n (%) 6,247 (44.3) 5,761 (43.1) 486 (64.7) 368 (60.3) 139 (80.3)

  Length of stay, d, mean (sd) 3.5 (5.2) 3.3 (5.1) 5.5 (6.4) 5.0 (6.1) 6.8 (7.1)

Supportive care

  Received mechanical ventilation, n (%) 12,172 (86.3) 11,592 (86.8) 580 (77.2) 474 (77.7) 130 (75.1)

  Received vasopressors/inotropes, n (%) 9,623 (68.2) 9,082 (68.0) 541 (72.0) 440 (72.1) 122 (70.5)

Risk scores

  Sequential Organ Failure Assessment  
  maximum, during admission, mean (sd)

4.4 (4.2) 4.3 (4.1) 5.7 (4.7) 5.6 (4.6) 6.2 (5.0)

  Modified Early Warning Score at  
  admission, mean (sd)

3.0 (1.9) 3.0 (1.9) 3.6 (2.1) 3.5 (2.1) 4.0 (2.2)

  Stability and Workload Index for Transfer  
  score at discharge, mean (sd)

6.4 (5.0) 6.4 (4.9) 5.9 (5.9) 5.9 (5.9) 5.6 (6.1)

Patients are grouped by outcome events after ICU discharge: readmission and/or death within 7 d of discharge. Sequential Organ 
Failure Assessment score ranges from 0 to 24; higher ranges indicate greater severity of illness. Modified Early Warning Score ranges 
from 0 to 14; higher ranges indicate more abnormal physiologic variables (30). Stability and Workload Index for Transfer score ranges 
from 0 to 64; higher ranges indicate higher readmission risk (31). Note: classification in Surgical/Medical admissions was only available 
for patients admitted in 2010 and later.
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(Table S6, Supplemental Digital Content 1, http://links.
lww.com/CCX/A783). The model was capable of separat-
ing readmission and/or mortality versus good outcome, 
but overlap remains in the low probability range (Fig. S3, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A783). The value of additional feature engineering, 
such as squaring the features, was nonsignificant  
(logistic regression, AUROC without squared features: 
0.78 vs with squared features: 0.78; XGBoost without 
squared features: 0.78 vs with squared features: 0.78).

As a typical real-world model, it did not show perfect 
discrimination but showed good calibration with pre-
dicted probabilities very similar to the true outcomes  
(Fig. 1B). For the chosen 6% threshold, the model has 
a less-than ideal sensitivity (recall) of 0.72, specificity 
of 0.70, and a positive predictive value (PPV) of 0.15  
(Fig. S2, Supplemental Digital Content 1, http://links.
lww.com/CCX/A783). Though a PPV of 0.15 may 
appear relatively low, this does suggest that the model 
identifies those patients with a two-to-three time 

Figure 1. Discrimination and calibration model performance on the validation set. A, Discrimination by different algorithms using area under the 
receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC) as metrics. B, Probability calibration curve for 
the Gradient Boosting model. The predicted probabilities are very similar to the true outcome of patients in the validation cohort. Please note that the 
calibration curve does not extend beyond ~0.2 model since the model rarely outputs values greater than 0.3. GBM = gradient boosting machine.
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higher than baseline risk (0.067), which ultimately is 
the goal of an adverse outcome prediction model (24).

The features used as input for the XGBoost model 
after feature selection are shown in Table 2. The distri-
bution of SHAP values of the most predictive features 
is given in Figure 2. Most features are common clinical 
parameters, such as type of patient (elective surgery) 
and physiologic variables (respiratory rate, mean arte-
rial pressure, urine output, and oxygen requirements), 
but also less-apparent features such as the need for 

tube feeding have a significant effect on the predicted 
risk. The most predictive features take into consider-
ation the severity of illness at admission (e.g., cardiac 
output and urine output in the first 24 hr) as well as 
the condition of the patient before discharge (Pco2 and 
respiratory rate of the last 24 hr).

Mortality has been shown to be more easily predict-
able than readmission (7). By retraining the model to 
predict ICU readmission and/or mortality within the 
first 2 days, performance decreased (AUROC, 0.73), 

TABLE 2. 
Features Used as Input for the Final Gradient Boosting Model

Feature Category Feature Name
Number of  
Features

General information

  Patient characteristics Age, gender, and weight at admission 3

  Admission information Origin department 3

Laboratory results

  Blood gas analysis pH, Paco2, Pao2, actual bicarbonate, base excess, and arterial  
oxygen saturation

15

  Hematology Hemoglobin, WBC count, platelet count, activated partial thrombo-
plastin time, and prothrombin time

16

  Routine chemistry Sodium, potassium, creatinine, ureum, creatinine/ureum ratio,  
chloride, ionized calcium, magnesium, phosphate, lactate  
dehydrogenase, glucose, lactate, C-reactive protein, and albumin

43

  Cardiac enzymes Creatinine kinase and troponin-T 5

  Liver and pancreas tests Bilirubin, alanine aminotransferase, aspartate aminotransferase,  
alkaline phosphatase, Gamma-glutamyltransferase, and amylase

11

Vital signs and device data

  Circulation Heart rate, arterial blood pressure (systolic/diastolic/mean), noninvasive 
blood pressure (systolic/diastolic), cardiac output, temperature, and 
central venous pressure

34

  Respiration Fio2, positive end-expiratory pressure, tidal volume, respiratory rate,  
peripheral oxygen saturation, and rapid shallow breathing index

18

Clinical observations and scores

  Neurology Glasgow Coma Scale score, Richmond Agitation-Sedation Scale,  
pupil response, and pupil diameter

9

  Respiration Bronchial suctioning, coughing reflex, and Pao2/Fio2 10

  Nephrology Urine output 2

Diagnostics and therapeutics

  Lines, drains and tubes Endotracheal tube and urine catheter 3

  Interventions Supplemental oxygen, continuous renal replacement therapy,  
and tube feeding

8

Total  180

After manual selection, logistic regression with an L1 penalty, and training using 10-fold cross-validation, these features were used as 
input for the final Gradient Boosting model. The number of features includes aggregations of primary features.
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which is expected since our 7-day model postdischarge 
included relatively more patients that died (2-d mor-
tality is 0.3% vs 1.8% readmission and 7-d mortality 
1.2% vs 4.3% readmission).

Decision curve analysis identifies the net benefit of 
using the model for a range of thresholds. These are 
determined by the importance assigned by intensiv-
ists to untimely discharging patients (false negatives) 
compared with unnecessarily keeping patients in the 
ICU (false positives). For example, using a threshold of 

5%, we consider an untimely discharge 19 times more 
important than an unnecessarily prolonged stay. For 
clinically relevant thresholds (~3 to ~30%), net benefit 
using our model is higher than the default strategies 
(Fig. S5, Supplement Digital Content 1, http://links.
lww.com/CCX/A783).

For “long-stay” patients, on average, predicted read-
mission probability decreased as patients get closer to 
ICU discharge. However, there was large variation be-
tween the patients allowing us to identify five subgroups. 
Figure 3 shows readmission probabilities for those 
subgroups at different time points of ICU admission. 
Table S8 and the Impact Analysis section (Supplemental 
Digital Content 1, http://links.lww.com/CCX/A783) 
give detailed definitions for these groups, but in short, 
“improving” represents patients that have a high risk 
but were improving by at least 2% points, “not improv-
ing” have a high risk but were improving by less than 
2%, “already low risk” are low-risk patients that already 
had a low risk the day before, “optimal” patients recently 
improved toward a low risk, and “worsening” are patients 
that showed a high risk that increased by more than 2%.

In our impact analysis, we suggest discharge strate-
gies based on these groups: postponing discharge, dis-
charging as planned, or discharging a day earlier (Table 
S9, Supplemental Digital Content 1, http://links.lww.
com/CCX/A783). Using two possible scenarios, we 
show that integrating the readmission probability-time 
curve in a discharge workflow and changing manage-
ment for high-risk short-stay patients and long-stay 
groups “not improving,” “already low risk,” and “wors-
ening” could lead to a decrease of up to 14% in readmis-
sion rate with an increase of only about 1.6% in average 
length of stay (Table S10 and Impact Analysis section, 
Supplemental Digital Content 1, http://links.lww.com/
CCX/A783). A preproduction software version of 
the user interface, demonstrating an overview of the 
admitted patients and individual prediction trends and 
features, is shown in Figure S6, Supplemental Digital 
Content 1 (http://links.lww.com/CCX/A783).

DISCUSSION

For the first time, we describe the development of an 
explainable machine learning model for clinical deci-
sion support to optimize timing of ICU discharge using 
AmsterdamUMCdb, the first freely available European 
critical care database. The model demonstrated good 

Figure 2. Feature importance. For the Gradient Boosting model, 
feature performance is plotted for the first 40 features using 
SHapley Additive explanations (SHAP). For each feature, each red 
or blue dot represents the impact of that feature on the prediction 
for that patient. Red dots represent patients with a high value for 
the specific feature, whereas blue dots represent patients with a 
low value for the specific feature. Red dots on to the right side 
of the distribution indicate that high values of the feature are 
associated with a high risk of readmission or mortality. Conversely, 
blue dots on the right side of the distribution indicate that low 
values of the feature are associated with a high risk.
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performance on a dataset from more recent patients, 
and by using feature importance techniques and dis-
playing risk prediction for readmission and mortality 
throughout the admission, application of our model as 
a bedside decision support tool seems feasible.

Several attempts to develop prediction models to 
prevent ICU readmission and/or death after discharge 
from the ICU for general adult critical care patients 
have been made previously (3, 5–8, 10–14, 33, 34). 
Earlier models have used logistic regression for pre-
diction focusing on very few parameters, whereas the 
newer models use more advanced machine learning 
algorithms (Table S11, Supplemental Digital Content 1,  
http://links.lww.com/CCX/A783). Our XGBoost ma-
chine learning model represents an improvement 
over the models reported in the literature in terms of 
AUROC. However, the improvement in performance is 
modest, and by choosing a time window of 7-day post-
discharge, more patients have been included that died 
after discharge, which is a more predictable task (7). 
Nevertheless, given the large and increasing number 
of ICU admissions worldwide, this modest reduction 
may have significant impact for patients and society.

Our article has several strengths. First, compared 
with the current literature, we performed more 

extensive feature engineering. Unsurprisingly, this 
allowed the logistic regression model to achieve a 
comparable performance to more advanced machine 
learning algorithms.

Second, our model reduces the wide gap between 
model development and bedside implementation (35). 
From the start, we developed our model, pipeline, and 
software design with clinical implementation in mind, 
based on our previous experience implementing bed-
side decision support (36, 37). This required close col-
laboration between intensivists and data scientists for 
feature engineering with a focus on features that are 
available in real time, innovative approaches with re-
spect to interpretability, actionable insights, and fea-
ture importance, as well as performance evaluations 
and impact analyses.

Finally, we chose to report both discrimination and 
calibration, with both ROC curve and PRC, and prob-
ability calibration curves, respectively. Predicting rela-
tively uncommon occurrences like adverse events after 
ICU discharge is still a major challenge. Evaluation of 
predictive performance requires more than analysis 
using ROC curves that tend to give an overly opti-
mistic view of model performance in imbalanced data-
sets (22–24). Though the AUPRC of 0.189 (Fig. 1C) is 
significantly higher than the baseline of the combined 
outcome of 6.7% (0.067) in the validation cohort, there 
is still room for improvement, even for the complex 
models we describe.

Our article also has several limitations. First, al-
though model performance was measured using a sep-
arate validation dataset, our study is still a single-center 
study. Unfortunately, validating the model on data of 
other hospitals is a relatively slow process, both due to 
legal issues and the required harmonization (mapping) 
of the data between different hospitals.

Second, in our Dutch setting where ICU capacity 
is strained, we specifically chose to target readmis-
sions and mortality until 7 days after ICU discharge 
to include patients that might suffer from complica-
tions that typically occur later, for example, respira-
tory failure or sepsis and not the quality indicator of 
ICU readmission after 2 days. Data suggest that the 
majority of ICU admissions within 48 hours after ICU 
discharge are not preventable (38). In addition, an 
analysis of early (< 72 hr) versus late (> 72 hr) IC read-
missions showed that patients with late ICU readmis-
sions were more often discharged “after hours,” had 

Figure 3. Mean predicted readmission probability at different 
moments of ICU admission. The colored lines are the average 
(with 95% CI) for five groups of patients that differ in the way 
the predicted risk changes toward the moment of discharge. See 
the Impact Analysis section (Supplemental Digital Content 1, 
http://links.lww.com/CCX/A783) for the definition of these groups.

http://links.lww.com/CCX/A783
http://links.lww.com/CCX/A783
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developed acute renal failure, and showed a trend to-
ward more severe comorbidities, suggestion a group 
of patients that are not captured when limiting the 
scope to 2 days. In a prospective study validating an 
algorithm predicting death or readmission within 14 
days after ICU discharge, the median time to readmis-
sion was 4 days (interquartile range [IQR], 2–9 d) and 
7 days (IQR, 3–19 d) for death on the ward after ICU 
discharge, suggesting that limiting predictions to only 
the first 2 days may be too restrictive (12). However, 
since the performance of our retrained model for the 
outcome after 2 days dropped significantly, this does 
show that predicting early readmissions is a more dif-
ficult task, which is in line with the literature where 
models (mainly) predicting mortality after ICU dis-
charge typically have higher AUROCs (Table S11, 
Supplemental Digital Content 1, http://links.lww.
com/CCX/A783).

Third, predicting and possibly preventing readmis-
sions may not influence outcomes in some healthcare 
systems. In fact, even unexpected ICU readmissions 
may not unequivocally lead to an increase in hospital 
mortality as some authors have shown in a prospec-
tive study (39).

Furthermore, since the model was trained on fea-
tures of discharged patients, a low predicted proba-
bility in a readmission probability-time curve does not 
necessarily imply that a patient is ready for discharge, 
since other conditions, such as the need for mechan-
ical ventilation or vasoactive drugs, may prevent this. 
In fact, these counterfactual predictions (i.e., estimat-
ing outcome probability assuming the patient had 
been discharged) may possibly lead to incorrect con-
clusions. However, this is an inherent problem when 
implementing predictive models, because using the 
model may expedite the timing of decision-making, 
thus leading to less available data for the model to 
base its predictions on. To mitigate incorrect conclu-
sions by using the software, the predicted outcomes are 
accompanied by symbols denoting possible situations 
preventing discharge, such as need for mechanical 
ventilation, amount of supplemental oxygen, and vaso-
active drugs (Figure S6, Supplemental Digital Content 
1, http://links.lww.com/CCX/A783). In addition, end-
user training with these limitations in mind will be 
part of the implementation strategy.

Finally, it should be realized that ICU discharge and 
readmission decisions captured in AmsterdamUMCdb 

are subject to the preferences and biases of the intensiv-
ists practicing at our center and that the model learns 
this human subjectivity (40).

Clinical model adoption depends on ease of use 
and the trade-off between the cost associated with a 
readmission (mortality and length of stay) and the 
cost of an unnecessary prolonged stay (length of stay, 
canceled elective surgery, or denied admissions). Our 
explorative readmission probability-time curves sug-
gest that it is feasible to prevent readmissions and 
deaths from premature ICU discharge with only a 
small increase in total length of stay. Furthermore, if 
patients that do not improve over the last days of ad-
mission (“not improving” group in Fig. 3) would be 
discharged earlier as suggested by the model, not only 
readmission rate but also total length of stay might be 
reduced. By using the predicted readmission risk and 
the change in risk compared with the previous day, 
together with clinical intuition, we hope intensivists 
can make better informed decisions. These promising 
results have prompted us to proceed with multicenter 
validation and clinical implementation at the bedside 
in Amsterdam UMC.

CONCLUSIONS
Our findings showed that the vast amount of data 
stored in AmsterdamUMCdb, the first freely avail-
able European critical care database, can be used to 
develop an explainable model that may aid in iden-
tifying patients with high risk of readmission and 
mortality after ICU discharge. By using readmission 
probability-time curves, our analysis showed that the 
model may decrease the readmission rate with a rela-
tive risk reduction of up to 14% while only minimally 
increasing the average length of stay. Model perfor-
mance can and should be further improved with data 
from other hospitals following the SCCM/ESICM 
Joint Data Sharing initiative and similarly releasing 
their critical care patient data responsibly. In addi-
tion, by joining forces with data scientists, intensiv-
ists can advance the process from clinical model to 
bedside decision support tool.
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