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Abstract
Motion tracking with finite time sampling causing an associated unknown residual motion between two motion measurements is
one of the factors contributing to resolution loss in small animal PET motion correction. The aim of this work is (i) to provide a
means to estimate the effect of the finite motion sampling on the spatial resolution of the motion correction reconstructions and
(ii) to correct for this residual motion thereby minimizing resolution loss. We calculate a tailored spatially variant deconvolution
kernel from the measuredmotion data which is then used to deconvolve the motion corrected image using a 3DRichardson-Lucy
algorithm. A simulation experiment of numerical phantoms as well as a microDerenzo phantom experiment wherein the phantom
was manually moved at different speeds was performed to assess the performance of our proposed method. In the motion
corrected images of the microDerenzo phantom there was an average rod FWHM differences between the slow and fast motion
cases of 9.7%. This difference was reduced to 5.8% after applying the residual motion deconvolution. In awake animal exper-
iments, the proposed method can serve to mitigate the finite sampling factor degrading the spatial resolution as well as the
resolution differences between fast-moving and slow-moving animals.

Keywords Positron emission tomography .Motion correction . Image deconvolution

1 Introduction

Small animal positron emission tomography (PET) is com-
monly used in preclinical in vivo research of neurological
disorders such as Parkinson’s disease, Alzheimer’s disease,
and Huntington’s disease [24] and psychiatric disorders such
as depression, schizophrenia, and obsessive-compulsive dis-
order [17, 21]. During PETscanning the animals are generally
immobilized using anesthesia to avoid image blurring that is
associatedwith animal motion. However, the use of anesthesia
can interfere with the neurological process under study and
can thus affect the PET results [9]. To avoid this undesired and
often unknown effect of anesthesia on the PET outcome,
methods to perform PET studies of awake unrestrained ani-
mals are being developed [1, 22, 26].

Particularly for PET neuroimaging, rigid body motion cor-
rection can be used to perform scans of awake unrestrained
animals. One of the methods to perform rigid body motion
correction in PET image reconstruction consists of measuring
the pose (position and orientation, 6 degrees of freedom) of
the animal head during the PET scan with an external tracking
device. Then, the motion information is used to spatially re-
position all the lines of response (LORs) with respect to a
single reference pose of the head [6, 15]. The repositioned
LORs can then be rebinned (LOR rebinning) into sinograms
or directly reconstructed with list-mode reconstruction [18].

Rigid motion correction has been successfully applied to
awake rat brain PET studies by Kyme et al. [12] on a
microPET Focus 220. However, the resolution in the final
motion corrected image is still lower compared to a motion-
free reference scan (see, e.g., Zhou et al. [28], Miranda et al.
[16]). Among the reported factors that affect the quality and
resolution of the motion corrected reconstructions are the fol-
lowing: the accuracy of the motion tracking device, the delay
in the time synchronization between the motion measuring
device and the PET scanner, the calibration error in the trans-
formation between the tracking device and PET scanner coor-
dinate system, the frame rate of the motion information (i.e.,
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the sampling rate of the motion tracking), as well as the speed
of the subject motion.

The loss of spatial resolution caused by the finite motion
sampling arises from the fact that a single pose is assigned to
all the LORs that fall within a single sampling interval, e.g.,
for a tracking frequency of 30 Hz all LORs within a time
interval of 33 ms are repositioned using a single transforma-
tion from the measured pose to the reference pose. Thus, there
exists a difference between the actual pose of the LOR and its
assigned measured pose. The associated error depends on the
speed of the subject motion and the tracking frame rate, with
larger errors arising from faster motion and/or slower tracking
frame rates. The resulting uncertainty in the positioning of the
LORs causes a motion dependent loss of spatial resolution in
the motion corrected reconstructions. In addition, the loss of
resolution can differ throughout the motion corrected recon-
struction due to spatially variant linear motion speed that is
associated with rotational motion. Interpolation of the mea-
sured poses has been used previously to reduce the effect of
the finite sampling interval. It was shown that this procedure
increases the contrast in the motion corrected reconstructions
[27].

The aim of this work is to provide a way to assess to what
extent the finite time sampling of the motion tracking de-
grades the spatial resolution of the motion corrected recon-
structions by estimating the residual motion kernel.
Secondly, a correction method for the estimated resolution
loss is proposed. Therefore, we develop a strategy to calculate
the resolution kernel that models the resolution loss in image
space that is caused by the LOR positioning uncertainty due to
the finite sampling. The shape of the kernel will depend on the
subject motion and tracking frame rate and can be calculated
from the measured motion. This Bresidual motion^ kernel can
be calculated in a single voxel to provide a fast assessment of
the resolution loss, e.g., in the center of the region of interest.
The kernel can also be calculated for each individual image
voxel. These kernels can then be used to perform Bresidual
motion deconvolution^ (RMD) after motion correction in or-
der to correct for the resolution loss caused by the finite mo-
tion sampling. Finally, the motion corrected reconstructions
deconvolved using this kernel will be compared with recon-
structions using interpolated poses [23].

Image deconvolution methods have been previously used
to perform motion correction in PET. In the method proposed
by Faber et al. [4], the image motion blurring kernel of each
voxel is calculated from the externally tracked motion data.
The kernel thus models the blurring caused by the measured
motion and the PET image is corrected using the Lucy-
Richardson deconvolution using these kernels. Similarly,
Rahmim et al. [19] use the same image motion blurring ker-
nels and introduced them as part of the system matrix used in
the maximum likelihood reconstruction. These methods are
suitable when there is slight subject motion, as in the case of

some human brain scans. However, for the case of small an-
imal imaging, where the extent of the motion can be signifi-
cantly higher, the use of motion blurring kernels would be
impractical. Instead, here we performed first an event-by-
event motion correction to compensate the measured compo-
nent of the motion and then performed the residual motion
deconvolution that models uncertainty in the measured mo-
tion due to the finite motion sampling.

2 Methods

2.1 PET scanning, motion tracking, LOR rebinning,
and reconstruction

In this study, we used the Siemens InveonmicroPET (Siemens
Medical Solutions, Inc., Knokville, USA) scanner. The scan-
ner consists of 80 rings (16 cm diameter) of 320 lutetium
oxyorthosilicate (LSO) scintillation crystals with a size of
1.5 × 1.5 × 1.0-mm3 with a reconstructed image resolution of
1.5 mm [3, 25]. The scanner’s bore diameter is 12 cm.

For motion tracking during the PET imaging, a commer-
cially available stereo optical tracking device (MicronTracker
Sx60, Claron Technology Inc., Toronto, Canada) was used.
The MicronTracker measures the pose of specially designed
checkerboardmarkers in a reference frame relative to the cam-
era position. Four markers of 2.4 × 2.4 mm2 and four of 1.2 ×
1.2 mm2 were pasted on the scanner bore to be used as refer-
ence ([12]; Fig. 1). The motion of the subject marker was
measured relative to these reference markers. The maximum
tracking frame rate is 48 Hz, and the reported tracking accu-
racy by the manufacturer is 0.25 mm root mean square.

The spatial calibration between the MicronTracker and the
PET scanner coordinate system is established by measuring
the spatial location of a radioactive point source, attached to
the center of a checkerboard marker in PET space, and the
corresponding pose of the checkerboard marker in camera
space for 20 different positions [13]. The transformation ma-
trix between both coordinate systems is then determined using
least squares regression. The same transformation matrix was
used for all the experiments.

The time synchronization between the MicronTracker and
the PET scanner is established using an Arduino Uno
(Arduino SA) microcontroller to generate a regular square
wave signal that triggers the MicronTracker, which in turn
sends a signal to the microPET gating input. A few seconds
before the end of the scan, the frequency of the gating signal
changes with a predetermined pattern. This pattern is then
used to relate each gate tag with its corresponding pose. The
frequency of the square wave signal can be adjusted by the
user to change the tracking frame rate. The tracking frame rate
was set to 31.2 Hz in all experiments. Although a maximum
tracking frame rate of 48 Hz is possible, 31.2 Hz was chosen
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due to the fact that at increased frame rate the camera exposure
time reduces, increasing the noise in the images and therefore
reducing the tracking accuracy [8].

For the motion corrected reconstructions, we have imple-
mented the subsetized list-mode expectation maximization
(OSEM) algorithm [18] with calculation of the sensitivity im-
age by interpolation in the image space. The bore size of the
Siemens Inveon microPET is substantially smaller than in
previous implementations of awake small animal brain PET
(12 cm compared to 22 cm for the microPET Focus 220 [12]).
This poses challenges on the motion tracking; however, it
does not impact the motion correction method as such.
Briefly, in this method, each measured pose Xk (k = 1, …, K
poses) is assigned to the group of LORs that are within the
sampling interval centered around the time tk, the time that the
pose was measured (Fig. 2a). These LORs, i.e., the lines
connecting two coincidence events, are then moved to a ref-
erence pose Xref by applying the transformation

M ¼ X refX −1
k . The LORs in the reference pose are finally

reconstructed using the OSEM algorithm without attenuation,
scatters, or random correction. Resolution modeling was im-
plemented in the image space [20] with a 1.2-mm Gaussian
point spread function. These motion corrected images will
then be deconvolved using our proposed residual motion ker-
nel (see Section 2.2).

We compared our proposed deconvolution procedure to
motion correction using pose interpolation of the motion
tracking data [27]. The interpolated poses are calculated from
the measured poses to assign a single position to each LOR
(within the scanner time resolution of 0.2 ms), thus reducing
the finite sampling interval. The interpolation of the pose po-
sition was obtained from cubic interpolation, while the pose
orientation was calculated from cubic interpolation of the
Euler angles [23].

2.2 Residual motion kernel estimation
and deconvolution

To calculate the residual motion kernel, the range of the resid-
ual motion that exists within each of the sampling intervals is

estimated in image space. Each reference voxel location is
transformed to the current measured position. The position
uncertainty is then estimated by considering a position uncer-
tainty distribution spanning from the voxel position that lie
halfway between the measured voxel position in the current
frame and previous frame and between the current and next
frames respectively. To discretize the uncertainty distribution,
a number of points are distributed over the uncertainty posi-
tions span. Finally, these points are transformed back to the
reference orientation. Once this has been done for all frames, a
kernel is fitted to the resulting point cloud. The detailed pro-
cedure is presented in the next paragraph.

For eachmeasured poseXk (k = 2,…,K − 1), the intermediate
pose X −

k halfway between Xk and Xk − 1, and the intermediate
pose Xþ

k between Xk and Xk+ 1, are calculated (Fig. 2b). The
location (x, y, z) of the intermediate pose is calculated using linear
interpolation while for the orientation the mean rotation matrix is
obtained through the singular value decomposition of the sum of
the rotation matrices corresponding to the neighboring poses [7].

Then, to estimate the corresponding blurring in image
space that the range of residual motion within the sampling
interval causes, the intermediate poses X −

k and Xþ
k from the

previous step are used to move the centers of the image voxels
as follows:

1) All image voxels vj (j = 1,…, J) are moved from their
reference pose Xref, i.e., the pose of the motion
corrected reconstruction (defined as the average from
all measured poses), to the intermediate pose X −

k .
Then, all the image voxels are moved back towards
the reference position according to the pose Xk. In this
way, the new voxel center coordinates akj are obtained,
with slightly different position from the original coor-
dinates due to the difference between the poses Xk and

X −
k , according to akj ¼ X kð Þ−1X −

k X refð Þ−1v j.
2) Step 1 is repeated for all voxels using Xþ

k instead of X −
k

ob ta in ing voxe l cen te r coord ina te s bkj , i . e . ,

bkj ¼ X kð Þ−1Xþ
k X refð Þ−1v j.

3) The line connecting the points vj and akj is then cal-
culated. At intervals with length dm (average of the

Fig. 1 Setup for the awake rat
scan, showing the MicronTracker,
the Arduino microcontroller, the
reference markers around the
scanner bore, and the illumination
for tracking of the subject
(right panel)
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voxel length in the x, y and z direction) from the point
vj, a point is calculated obtaining the points vkj;a1, v

k
j;a2,

…, with the number of point dependent on the length
of the line. Likewise for the line connecting points vj
and bkj , at intervals with length dm from the point vj a

point is calculated obtaining the points vkj;b1 and vkj;b2.
4) Depending on the predefined size N of the deconvolution

kernel that is calculated, the central voxel vkj is repeated

⌈N/2⌉ times, voxels vkj;a1 and v
k
j;b1 ⌈N/2⌉ − 1 times and so

on. This procedure is made in order to assign more weight
to the points closer to the voxel center.

5) Steps 1 to 4 are repeated for all the poses k = 2, …, K
− 1, and for each voxel vj, we obtain an associated
point cloud with the coordinates vkj , v

k
j;a, and vkj;b, with

each point repeated the corresponding number of
times (step 4).

6) The deconvolution kernel KN, j for each voxel vj of size
N is calculated from the point cloud vkj , v

k
j;a and vkj;b

(k = 2,…, K − 1) by computing the 3D histogram of the
points with bins equal to the neighbor voxels of vkj .

7) The 3D residual motion kernel KN, j is finally normalized
so that ∑x, y, zKN, j(x, y, z) = 1.

Fig. 2 Algorithm diagram for the calculation of the residual motion kernels from the motion tracking data. Panels on the right side are explained in the
algorithm diagram (left side). Symbols are defined in the text
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The use of points to represent the motion path of the voxel
due to the residual motion was preferred over a ray intersec-
tion with the image voxels to reduce calculation time.

The deconvolution kernel KN, j of size N is truncated and
normalized if the residual motion is wider. Therefore, to eval-
uate the impact of the kernel size, three types of kernels, with
kernel sizeN = 3, 5, and 7, were calculated. These kernels will
be referred to as K3, K5, and K7, respectively.

The kernel can be calculated in a single voxel of interest for
a fast assessment of the resolution loss in a particular position.
If the kernels are however calculated for each voxel in the
region of interest, they can be used in a 3D Richardson-
Lucy (RL) deconvolution algorithm [14] to deconvolve the
motion corrected reconstructions:

W j;rþ1 ¼ W j;r ∑
l

K j;lU l

∑mKm;lWm;r

where Wj, r is the image value of the jth voxel in the
deconvolved image at the rth iteration, Kj, l is the contribution
of the kernel in the jth position to the lth voxel, andUl is the lth
voxel value of the motion corrected reconstruction before
deconvolution. In the RL deconvolution, a Poisson noise
model is assumed. We will refer to the deconvolution with
the residual motion kernel as residual motion deconvolution
(RMD).

In our experiments, the kernel calculation and
deconvolution were performed only on the region of interest
that contained the object. The kernel calculation and the
deconvolution were implemented in MATLAB Release
2012b (The Mathworks, Inc., Natick, USA).

2.2.1 Spatially variant resolution and residual motion kernel
shape validation

To illustrate the spatially variant resolution loss after motion
correction and the corresponding spatially variant residual
kernel, a 48.9-mm long rod (1 voxel wide) with uniform ac-
tivity was simulated. The rod was placed along the y axis with
one of its end points in the center of the coordinate system
(i.e., center of the scanner field of view, CFOV). The rod was
then rotated about the x axis considering a sinusoidal signal
with frequency of 0.5 Hz and amplitude of 25.5°. Back-to-
back photons escaping from the moving phantom were simu-
lated. For this simulation, the motion was sampled with a
timing resolution of 1 ms. The simulated data was thenmotion
corrected with a motion sampling interval of 32 ms. The
FWHM of the static and the motion corrected reconstructions
was measured along the z axis, and its difference was calcu-
lated in function of the distance along the y axis. In addition,
the kernel K5 was calculated at several voxel positions along
the rod and the kernel FWHM along the z axis was measured
from a Gaussian fit to the kernel profile.

2.3 Numerical mouse brain phantom simulation

In order to asses to which degree the residual motion blurring
affects the regional brain quantification in two animal condi-
tions with different levels of locomotion, a numerical mouse
brain phantom experiment was performed.Motion data from a
head motion tracking experiment in naïve and memantine
treated mice placed inside the PET scanner was used to calcu-
late the residual motion kernels. Memantine administration
has been shown to significantly increase mouse locomotion
in comparison with a naïve condition [5]. Then, to estimate the
effect of the residual motion in the two conditions on brain
quantification, the kernels were used to blur a mouse brain
numerical phantom. The numerical mouse brain phantom
was based on a template in Waxholm space [11]. Increased
striatal uptake was simulated with a 1.65 to 1 ratio (striatum
versus rest of the brain). To quantify the effect, average re-
gional striatal uptake after blurring with the residual motion
kernel was calculated in the reference image as well as in both
animal conditions blurred images.

2.4 Simulation experiment

A simulated dataset was generated by combining list mode
data of a static (i.e., motion-free) PET scan of a
microDerenzo phantom and previously measured motion data
of a manually moved microDerenzo phantom. The LORs in
the list mode data were then moved according to this motion
to generate simulated PET data that was affected by subject
motion. The microDerenzo phantom (diameter 30 mm, height
13 mm) had six rod sections with an inner diameter of 1.25,
1.5, 2, 2.5, and 3 mm respectively. The scan time was 10 min,
and the activity was 12.9MBq of [18F]-FDG. The motion data
was previously measured using the MicronTracker in a phan-
tom experiment where the phantomwas movedmanually. The
motion was sampled every 32 ms, and the average measured
motion speed was 74 mm/s. The list mode data has a temporal
resolution of 0.2 ms, and to simulate continuous motion, the
original motion was interpolated (using cubic interpolation) to
obtain 1 ms sampling intervals. The list mode data of the
motion-free scan was moved according to the interpolated
motion, i.e., with 1 ms sampling intervals. Then, these
displaced LORs were corrected for motion according to the
original measured motion, i.e., with bin intervals of 32 ms.
Thus, all the LORs in the 32 ms interval that have beenmoved
with different poses (every 1 ms) are being corrected using a
single pose corresponding to the central pose of the interval. A
second simulated dataset was generated by considering sam-
pling intervals of 64 ms for the motion correction. This would
equally correspond to the situation where the motion speed
doubles.

The errors present in this motion corrected simulation is
caused uniquely by the difference between the actual pose of
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the LOR and the central pose of the corresponding interval
that is used for the motion correction. All the other factors that
can affect the spatial resolution in the motion correction tech-
nique (e.g., calibration error, tracking accuracy, synchroniza-
tion delay) are not simulated.

To assess the different kernel sizes, the kernels KN (N = 3,
5, 7) were calculated for the 32 ms sampling interval data. The
different kernels were then used in the residual motion
deconvolution of the motion corrected reconstruction. The
average FWHM, taken in tangential direction, and the average
peak-to-valley ratio (PVR) of all the rods of 2, 2.5, and 3 mm
were measured in the deconvolved images for eight iterations
of the residual motion deconvolution. The FWHMwas calcu-
lated from a Gaussian fit to the profiles through the individual
rods of the same size and was then averaged to obtain the
average FWHM. The FWHM and PVR values were then
compared to the average FWHM and PVR of the rods in the
reference reconstruction of the motion-free scan. The data for
the 64ms sampling interval simulation was analyzed similarly
as aforementioned.

2.5 MicroDerenzo phantom experiment

To further evaluate the performance of the deconvolution on
real measured data, two microDerenzo phantom experiments
whereby the phantom was moved manually at two different
speeds were considered. The same phantom as described in
Section 2.3 was used. The phantom was filled with 12.9 MBq
of [18F]-FDG, and scan duration was 10 min. During the first
scan, the phantom was moved more slowly while during the
second scan, the phantom was moved with a faster speed. The
motion was measured with the MicronTracker device at a
frame rate of 31.2 Hz (32 ms bins) with a checkerboard mark-
er of 36 × 30 mm2. At the end of the two motion experiments,
a third reference static scan, i.e., without any motion, was
made for evaluation purposes.

The reconstructions after motion correction were
deconvolved for residual motion using kernel K5 with eight
RMD iterations. The average FWHM and PVR values for the
2, 2.5, and 3 mm rods were determined and compared to the
values of the motion-free scan.

In addition, a motion correction of the slow and fast motion
scan was performed using interpolated poses as detailed in
Section 2.1.

The region of interest where the deconvolution was per-
formed contained 45 × 43 × 24 voxels, resulting in 46,440
kernels.

2.6 Resolution loss quantification

We quantify the loss of spatial resolution due to the residual
motion blurring through the FWHM and PVR of the

microDerenzo phantom rods, with the values of the motion-
free case as the reference values.

In addition, to quantify the loss of spatial resolution of the
motion corrected reconstructions in comparison with the
motion-free reconstructions, a scale parameter [2] was calcu-
lated as follows. A mask covering the region where the loss of
spatial resolution is to be assessed is defined by using an
activity threshold in both motion corrected and motion-free
images. Then, the motion-free image is filteredwith a spatially
invariant Gaussian filter with a scale parameter (σ2) ranging
from 0 to 2.88 mm2. The image correlation between the fil-
tered motion-free and motion corrected images is calculated.
Finally, the scale parameter value of the filtered motion-free
image with maximum correlation with the motion corrected
image is selected as the corresponding scale parameter for that
motion corrected image. Although the loss of spatial resolu-
tion can vary over the image, the scale parameter serves as a
metric of the average loss of spatial resolution.

To investigate the shape of the estimated deconvolution
kernel K5, the principal axes of the average kernel were cal-
culated for all experiments as follows. The deconvolution ker-
nels for all voxels in the region of interest of each experiment
were summed. Then, the central image moments [10] of the

summed kernels K5 were calculated to create the image co-
variance matrix:

cov K5

h i
¼

μ
0
2;0;0 μ

0
1;1;0 μ

0
1;0;1

μ
0
1;1;0 μ

0
0;2;0 μ

0
0;1;1

μ
0
1;0;1 μ

0
0;1;1 μ

0
0;0;2

2
64

3
75

where μ′ is the image central moment where the subindex
indicates the order of the moment in the x, y, and z direction
respectively. Finally, from the covariance matrix, the eigen-
values and eigenvectors were calculated to obtain the magni-
tude (standard deviation) and direction of the kernel principal
axes.

3 Results

3.1 Spatially variant resolution and residual motion
kernel shape validation

The reconstruction of the motion-free and motion corrected
rod together with the FWHM measured along the z axis is
shown in Fig. 3. The measured FWHM in the motion
corrected reconstruction increases as a function of the distance
from the origin. At a distance of 3.11, 21.0, and 41.1 mm from
the origin, the FWHM error with respect to the motion-free
scan is 0, 0.84, and 1.24 mm respectively. The FWHM of the
estimated deconvolution kernel K5 follows the measured
FWHM of the motion corrected reconstruction. At the origin
of the coordinate system, the shape of the deconvolution
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kernel is an impulse, as there is no residual motion to correct
for in that location (zero tangential speed). As we move away
from the origin along the y axis direction, the tangential speed
in the z axis direction increases and the shape of the kernels
becomes wider in that direction. Along the x and y directions,
the shape of the kernel is an impulse, as the tangential speed is
approximately zero in the y direction and equals zero in the x
direction.

3.2 Numerical mouse brain phantom simulation

The measured average speed of the mouse in the naïve condi-
tion was 1.55 cm/s, while for the memantine challenge condi-
tion, it was 4.57 cm/s. Figure 4 shows the numerical mouse
brain phantom images after blurring by the residual motion
kernels in all conditions.

The average striatum activity in the reference image is 1.65.
After residual motion blurring, the average striatum activity
reduces to 1.64 and 1.52 for the naïve and memantine chal-
lenge conditions respectively, i.e., a difference of − 0.61% and
− 7.9% with respect to the reference. The difference between
naïve and challenge conditions is 7.3%.

3.3 Simulation experiment

In Fig. 5, the reconstruction of the reference motion-free scan
is shown together with the reconstructions of the uncorrected
simulated data and the reconstruction after motion correction
using both motion sampling intervals. The motion corrected
reconstructions show degradation of the spatial resolution and
contrast compared to the motion-free reconstruction. As can
be seen from the profiles, there is a higher degradation for the
64 ms sampling interval case compared to the 32 ms case, as
was expected. The average peak-to-valley ratio of the 2.5 mm
diameter rods in the motion-free scan is 5.75, in comparison

with 4.61 and 3.74 for the corrected reconstructions with 32
and 64 ms sampling intervals respectively. As the simulation
with the 64 ms bin intervals also corresponds to a sampling at
32 ms but with the motion speed doubled, this shows that the
performance of the motion correction without additional re-
sidual motion deconvolution is motion dependent.

Figure 6a shows the FWHM measured for the 2, 2.5, and
3 mm rod sizes for the case of the 32 ms sampling interval as a
function of the RMD iteration number. For all kernels, the
FWHM converges after eight iterations for all three rod sizes.
Depending on the kernel size, the deconvolution overcompen-
sates or undercompensates the resolution loss. After eight it-
erations, for the 2.5 mm rods, the difference with the motion-
free reference scan FWHM is 3.53%, 2.35%, and 7.84% for
kernels K3, K5, and K7 respectively. For the 2, 2.5, and 3 mm
rods, kernel K5 results in a FWHM that most closely resem-
bles the FWHM in the reference scan with a 2.5%, 2.35%, and
0.66% difference respectively. For all rod sizes, K7 results in
the most severe overestimation.

Figure 6b shows the comparison of the average FWHM of
the rods after RMD with kernels K3, K5, and K7 for the 64 ms
sampling intervals. Kernel K7 results in the FWHM value that
is closest to the FWHM of the motion-free reconstruction for
the 2 and 3 mm rod sizes. For the 2.5 mm rods, the optimal
kernel is K5. The difference with the motion-free reference
scan was 1.7%, 2.39%, and 0.77% for the 2, 2.5, and 3 mm
rod sizes using the optimal kernel in each case. For all three
rod sizes, kernel K3 underestimates the FWHM by more than
5% for the 64 ms sampling interval case.

As was the case for the FWHM, the PVR values con-
verged after eight iterations. Table 1 summarizes the av-
erage PVR for the 2, 2.5, and 3 mm rod sizes for the
motion correction simulation deconvolutions with sam-
pling intervals of 32 ms at iteration 8. For the 2 and
2.5 mm rods, kernel K3 results in the PVR that was

Fig. 3 a Reconstruction of the simulated motion-free and motion corrected rod phantom. b FWHM along the z axis of the motion-free and motion
corrected rod phantom reconstructions and the FWHM of the estimated kernel K5
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closest to the value in the motion-free case, while for the
3 mm rods, kernels K5 result in a PVR that is closest to
the reference motion-free value.

In the 64 ms case, RMD using kernel K5 results in the PVR
value that most closely resembles the PVR of the motion-free
reference reconstruction for the 2 and 2.5 mm rod sizes and
kernel K7 for the 3 mm rods. The highest difference occurs in
the 2.5 mm rods (11.9%) and the lowest in the 2 mm rods
(1.3%).

Although the optimal kernel to correct for the residual mo-
tion loss of spatial resolution depends on the structure size (rod
diameter) and the sampling interval, for the sampling interval
used in the following experiments (32 ms), RMD using the
kernel K5 results in reconstructions that most closely resemble
the motion-free reconstruction. For this reason we have select-
ed this kernel for the phantom and the in vivo experiments.

3.4 MicroDerenzo phantom experiment

The translational speed (including displacement caused by ro-
tational motion) at the center of the phantom throughout the
scan of the microDerenzo phantom is shown in Fig. 7 for the
slow and fast motion cases respectively. For the slow motion
scan, the average displacement speed was 20 mm/s (0.66 mm
per 32 ms bin) with a maximum of 420 mm/s. For the fast
motion scan, the average displacement speed was 74 mm/s
(2.44 mm per 32 ms bin) with a maximum of 904 mm/s.

For a volume of 45 × 43 × 24 voxels, the calculation of the
kernel took approximately 20 min on an Intel Core i7 2.5 GHz
processor. Eight iterations of the RMD took approximately
1 min using the 5 × 5 × 5 voxel kernel.

In Fig. 8, the reconstructions of the slow and fast motion
scans after motion correction and after eight iterations of the

Fig. 5 (a) Reconstruction of the motion-free scan. (b) The uncorrected motion scan. Motion corrected reconstructions for the simulations with a motion
sampling interval of (c) 32 ms and (d) 64 ms. (e) Profiles through the 2.5 mm rods taken through the white dotted lines

Fig. 4 Transverse slices of the
numerical mouse brain phantom
with activity in the striatum,
delineated in purple. Numerical
phantom (a) reference
(unblurred), (b) naïve mouse
motion blurred, (c) memantine
challenge motion blurred, and (d)
MRI for anatomical reference
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RMD with kernel K5 are shown. The profiles through the 2.5
and 3 mm rods along the white lines in Fig. 8 are shown in
Fig. 9. It can be seen that the loss of spatial resolution and
contrast is more severe for the case of the fast motion scan in
comparison with the slow motion scan.

The average FWHM of the 2, 2.5, and 3 mm rods for the
different reconstructions is shown in Table 2. Compared to the
motion-free reconstruction, the FWHM of the motion
corrected reconstruction of the slow motion case is increased
by 6.25% and 3.14% for the 2 and 2.5 mm rods respectively.
For the 3 mm rods, there is no increase in FWHM. After
RMD, the FWHM was increased with respect to the motion-

free case by only 4.60% and 1.57% for the 2 and 2.5 mm rods
respectively. For the fast motion case, the FWHM of the 2,
2.5, and 3 mm rods is increased by 18.7%, 15.3%, and 6.29%
respectively for the motion corrected compared to the motion-
free reconstruction. After RMD, the FWHM was increased
with respect to the motion-free case by only 12.1%, 8.24%,
and 2.45%. The difference between the FWHM of the fast and
slow motion cases of the motion corrected reconstructions
before RMD is 11.1%, 11.1%, and 6.8% for the 2, 2.5, and
3 mm rods respectively. After RMD, these differences are
reduced to 6.15%, 6.36%, and 4.18% respectively.

Finally, the FWHM values for the three rod sizes of the
motion corrected reconstructions using interpolated poses
were similar (within the standard deviation) to the rods
FWHM obtained using RMD.

The average PVR for the 2, 2.5, and 3 mm rods is summa-
rized in Table 3. As could be expected, the PVR values after
motion correction for the fast motion case are lower compared
to the slow motion case. However, after deconvolution, the
PVR values are closer to the PVR values of the motion-free
reconstruction. In addition, the PVR values for the slow and
fast motion are closer to each other after the deconvolution.
Similar to what was found using the FWHMmetric, the PVR

Fig. 6 Average FWHM for the 2,
2.5, and 3mm rod sizes after eight
iterations of the RMD algorithm
using the different deconvolution
kernels in the motion correction
simulation. Column a for
sampling intervals of 32 ms and b
for 64 ms.

Table 1 Average peak-to-valley ratio (± 1 standard deviation) of the 2,
2.5, and 3 mm rods of the motion correction simulation with sampling
interval of 32 ms at iteration 8

Rod radius (mm) 2 2.5 3

Motion-free 3.76 ± 0.57 6.31 ± 0.19 8.51 ± 0.47

K3 3.27 ± 0.55 5.72 ± 0.24 7.83 ± 0.37

K5 4.68 ± 0.79 7.10 ± 0.34 8.62 ± 0.42

K7 5.83 ± 1.00 9.07 ± 0.47 9.43 ± 0.47
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of the motion corrected reconstructions using interpolated
poses was similar (within the standard deviation) to the PVR
obtained using RMD.

3.5 Resolution loss quantification

Table 4 shows the scale parameter and magnitude and direc-

tion of the average kernel K5 principal axes for all experi-
ments. For the microDerenzo phantom experiments, the loss
of spatial resolution is greater for the 64 ms motion sampling
and the fast motion cases in comparison with 32 ms sampling
and slow motion case respectively. For the real data experi-
ments, factors other than the finite motion sampling error fur-
ther degrade the spatial resolution.

For the kernel principal axesmagnitude, the value is greater
for the 64 ms motion sampling and fast motion cases in com-
parison with the 32 ms and slow motion cases respectively.

The shape of the kernel is highly asymmetric for the rod
simulation phantom experiment, where the magnitude of the
principal axis is a lot higher in the z direction, the direction in

which the applied motion was maximum, in comparison with
the other two axes. For all other experiments, some asymme-
try is present but in a lower degree.

4 Discussion

In PET rigid motion correction, the image resolution depends
on the frame rate of the tracking device and on the subject
motion speed. This effect was quantified and demonstrated in
simulation and phantom experiments. In a simulation of a
numerical mouse brain phantom, using real mouse motion
data, activity in the striatumwas 7.3% lower in the memantine
challenge (more and faster head motion during scanning) than
in the naïve condition. This difference was only attributed to
the residual motion effect. Therefore, this would represent a
spurious change in the underlying biological response in
striatal uptake between both animal conditions. By correcting
for the residual motion blurring, the spurious change would
not be observed.

Fig. 8 Transverse and coronal
slices through the motion
corrected reconstruction of the
microDerenzo phantom scan for
the slow motion case (a) without
and (b) with RMD, and motion
corrected reconstruction of the
fast motion case (c) without and
(d) with RMD.

Fig. 7 Translational speed of the a slow and b fast motion microDerenzo phantom scans
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In simulation experiments, the motion corrected reconstruc-
tions with a motion sampling interval of 64 ms shows greater
loss of spatial resolution compared to the motion corrected
reconstructions with a motion sampling interval of 32 ms as
could be anticipated. The slower sampling rate is equivalent to
a faster motion speed of the subject. Similarly, in the phantom
experiments, the motion corrected reconstructions for the fast
motion case show increased resolution loss compared to the
slowmotion case. These results are in agreement with findings
in Kyme et al. [12]. The scan-dependent image resolution in
the motion corrected images is an undesirable effect. To coun-
teract this effect, we have proposed to apply an additional
deconvolution after image reconstruction, the residual motion
deconvolution, using a motion dependent and spatially variant
resolution kernel. The kernel models the residual motion that is
present between the samples of the motion measurements. Our
simulation and phantom experiments have shown that the
RMD successfully compensates for some of the resolution loss
due to the finite sampling error of the motion measurements
and, importantly, the final resolution as measured by the
FWHM and PVR is less dependent on the tracking frame rate
or motion speed after applying the RMD.

In the motion simulation experiments, for the 32 ms sam-
pling interval, the optimal kernel was determined to be K5

(5 × 5 × 5 voxels) through the measurement of the FWHM

and PVR of a resolution phantom. The level of residual mo-
tion compensation can be inferred by the shape and size of the
RMD kernel. Wider kernels result in increased compensation
than narrower kernels. The 3 × 3 × 3 kernel K3 is too small to
capture the wide residual motion blurring in both the 32 and
64 ms sampling cases. For the 32 ms case, the 7 × 7 × 7 kernel
K7 resulted in overcompensation of the spatial resolution loss
compared to kernel K5. When the motion that is needed to
compensate for is present in a smaller region than the 5 ×
5 × 5 voxel neighborhood, the 7 × 7 × 7 voxel kernel is not
necessary. However, when the motion to compensate for is
present in a wider region, the 5 voxel kernels will truncate
the motion compensation and it will undercompensate the
motion. For these cases, the 7 voxel kernels are more suitable.
For the 64ms case, for the 2 and 3mm rods, kernelK7 resulted
in the closest FWHM to the motion-free case.

Another aspect that is of critical importance in an iterative
deconvolution strategy is the iteration number. In our simula-
tions, for all analyzed rod sizes and for the two simulated
motion sampling intervals, the reference FWHM (i.e., as mea-
sured in the motion-free reconstruction) was reached in less
than eight iterations using kernel K5. As an alternative to the
RMD, the residual motion kernel could also be directly incor-
porated in the iterative reconstruction by including it as an
image space resolution model in the system matrix [20].

Fig. 9 Profiles through the (a) 2.5 and (b) 3 mm rods of the microDerenzo phantom for the motion-free, slow and fast motion case after motion
correction, without and with RMD

Table 2 Average FWHM (mm, ± 1 standard deviation) of the 2, 2.5, and 3 mm rods of the motion-free recontruction and of the motion corrected
images for the slow and fast motion cases without and with (w/) RMD. The results for the motion correction using interpolated poses are also shown

Rod size 2 2.5 3

Motion-free 2.40 ± 0.18 2.55 ± 0.08 2.86 ± 0.10

Slow motion Fast motion Slow motion Fast motion Slow motion Fast motion

MC 2.55 ± 0.05 2.85 ± 0.10 2.63 ± 0.08 2.94 ± 0.11 2.84 ± 0.07 3.04 ± 0.03

MC w/ RMD 2.51 ± 0.05 2.69 ± 0.07 2.59 ± 0.07 2.76 ± 0.09 2.81 ± 0.07 2.93 ± 0.03

MC w/ interp. poses 2.52 ± 0.06 2.68 ± 0.09 2.60 ± 0.08 2.78 ± 0.06 2.82 ± 0.08 2.95 ± 0.07
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We found that using pose estimates interpolated from the
tracking device pose measurements at a time resolution of
0.2 ms (list-mode data time resolution) show similar spatial
resolution improvement to the RMD. Similarly, Zhou et al.
[27] found that pose interpolation slightly increased the con-
trast in the motion corrected reconstructions. The difference of
the resolution phantom rods FWHM using RMD and interpo-
lated poses was less than 0.03 mm. The implementation of
RMD requires greater effort than interpolation of the pose
measurements. However, RMD can give additional informa-
tion that can serve to define the most appropriate motion track-
ing sampling interval.

The RMD can be of particular relevance for animal studies
where animals in a particular condition group show increased
motion speed compared to the other condition groups, e.g.,
animals with motor disabilities or with abnormal motion be-
havior as in the case of epilepsy models. This scenario was
shown in the numerical mouse brain phantom simulation.

While the RMD results in improved resolution, there is still
some loss of resolution compared to the motion-free recon-
struction. In our experiments, the resolution loss was higher in
the phantom experiments than in the simulation experiments.
This can be attributed to factors degrading the spatial resolu-
tion that were not simulated in the simulation experiments
such as the tracking error, spatial calibration error, and the
time synchronization delay. In the case of higher motion
speed, in addition to the greater finite motion sampling error,
higher tracking error can arise due to an increase in the camera
image blurring. It is conceivable that also for these factors one

could calculate a deconvolution kernel in a similar fashion as
we have calculated the residual motion kernel.

Finally, the residual motion kernel can serve to assess the
loss of spatial resolution in a single voxel, e.g., at the center of
the region of interest. In cases where the motion sampling
interval can be adjusted, the optimal tracking frame rate can
be selected by choosing the motion sampling interval for
which the deconvolution kernel principal axis magnitude is
low in the central voxel of the region of interest. It should be
noted that a trade-off has to be made. Indeed, increasing the
motion sampling rate will reduce the resolution loss due to
finite motion sampling in the noise free case. However, in
practice, the short time frames will also degrade the quality
of the motion estimates in individual frames due to noise. In
our experiments, loss of spatial resolution due to finite motion
sampling was observed for deconvolution kernels with prin-
cipal axis average magnitude of about 0.4 mm (phantom
32 ms simulation experiment). Therefore, to avoid the effect
of the finite motion sampling on the spatial resolution, it is
recommended to reduce the sampling interval until the kernel
principal axis magnitude is lower than 0.4 mm.

5 Conclusions

The loss of spatial resolution in the motion corrected recon-
structions caused by the residual motion depends on the sub-
ject motion and the tracking frame rate and is thus study de-
pendent. This unwanted effect was demonstrated and was

Table 4 Scale parameter (mm2) and principal axis magnitude (mm) and corresponding direction of the average RMD kernel K5 for all experiments

Experiment Scale parameter
(σ2)

Principal axis
magnitude

Principal axis direction

Rod simulation 0.146 0, 0.040, 0.611 (1, 0, 0), (0, − 1, 0), (0, 0, 1)
microDerenzo simulation

32 ms
0.146 0.338, 0.466, 0.481 (− 0.151, − 0.975, 0.165), (0.963, − 0.107, 0.246), (0.222, − 0.196,

− 0.955)
microDerenzo simulation

64 ms
0.199 0.374, 0.520, 0.531 (− 0.152, − 0.976, 0.152), (0.661, 0.014, 0.750), (− 0.735, 0.215, 0.643)

microDerenzo slow motion 0.260 0.149, 0.180, 0.338 (0.254, 0.953, − 0.162), (− 0.939, 0.283, 0.194), (0.231, 0.103, 0.967)
microDerenzo fast motion 0.379 0.308, 0.375, 0.531 (0.144, − 0.988, 0.037), (0.963, 0.132, − 0.235), (0.228, 0.069, 0.971)

Table 3 Average peak-to-valley ratio (± 1 standard deviation) of the 2, 2.5, and 3 mm rods of the motion-free and the motion corrected reconstructions
for the slow and fast motion case without and with (w/) RMD. The results for the motion correction using interpolated poses is also shown

Rod size 2 2.5 3

Motion-free 3.76 ± 0.57 6.31 ± 0.19 8.51 ± 0.47

Slow motion Fast motion Slow motion Fast motion Slow motion Fast motion

MC 3.17 ± 0.32 2.10 ± 0.23 5.37 ± 0.13 3.59 ± 0.22 7.67 ± 0.41 5.60 ± 0.22

MC w/ RMD 3.29 ± 0.33 2.38 ± 0.28 5.68 ± 0.15 4.42 ± 0.28 8.01 ± 0.43 6.33 ± 0.27

MC w/ interp. poses 3.28 ± 0.34 2.41 ± 0.30 5.60 ± 0.15 4.41 ± 0.29 7.85 ± 0.47 6.08 ± 0.30
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addressed by the residual motion deconvolution algorithm.
This RMD algorithm uses a study dependent and spatially
variant residual motion deconvolution kernel to reduce the
motion dependent resolution loss caused by the residual mo-
tion. In resolution phantom experiments, the RMD method
improved the motion corrected reconstructions spatial resolu-
tion. For awake unconstrained animal studies where the mo-
tion can be considerably different between subjects, the pro-
posed method can obtain results that are less affected by the
particular type of motion of the study or the tracking frame
rate.
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