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In recent years, a number of new products introduced to the global market combine

intelligent robotics, artificial intelligence and smart interfaces to provide powerful tools

to support professional decision making. However, while brain disease diagnosis from

the brain scan images is supported by imaging robotics, the data analysis to form a

medical diagnosis is performed solely by highly trained medical professionals. Recent

advances in medical imaging techniques, artificial intelligence, machine learning and

computer vision present new opportunities to build intelligent decision support tools

to aid the diagnostic process, increase the disease detection accuracy, reduce error,

automate the monitoring of patient’s recovery, and discover new knowledge about the

disease cause and its treatment. This article introduces the topic of medical diagnosis of

brain diseases from the MRI based images. We describe existing, multi-modal imaging

techniques of the brain’s soft tissue and describe in detail how are the resulting images

are analyzed by a radiologist to form a diagnosis. Several comparisons between the best

results of classifying natural scenes and medical image analysis illustrate the challenges

of applying existing image processing techniques to the medical image analysis domain.

The survey of medical image processingmethods also identified several knowledge gaps,

the need for automation of image processing analysis, and the identification of the brain

structures in the medical images that differentiate healthy tissue from a pathology. This

survey is grounded in the cases of brain tumor analysis and the traumatic brain injury

diagnoses, as these two case studies illustrate the vastly different approaches needed

to define, extract, and synthesize meaningful information frommultiple MRI image sets for

a diagnosis. Finally, the article summarizes artificial intelligence frameworks that are built

as multi-stage, hybrid, hierarchical information processing work-flows and the benefits

of applying these models for medical diagnosis to build intelligent physician’s aids with

knowledge transparency, expert knowledge embedding, and increased analytical quality.

Keywords: brain, MRI imaging, image processing, traumatic brain injury, tumor detection, machine learning,

artificial intelligence, decision support tool
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1. INTRODUCTION

Medical diagnosis aided by software systems that use a variety
of artificial intelligent and machine learning algorithms have
been available since early 1990s (Kononenko, 2001). These
medical diagnostic tools use a patient’s symptoms, diagnostic
measurements and lab results as inputs, and the system returns
a ranked list of diagnoses along with suggested treatments
(Kononenko, 1993; Soni et al., 2011). Although such tools exist
to diagnose a general illness, radiology does not yet have a
generalized tool which can assist in diagnosis.

Previous research failed to create a tool which would assist
in general analysis of radiology images for several reasons that
include the lack of (1) transparency of machine learning and
artificial intelligence algorithms to provide feedback on which
features were detected and used by the algorithm to make its
diagnostic decision, (2) large, diverse, annotated, longitudinal,
open-source data sets that are needed to build and train
the diagnostic algorithms, (3) the massive hardware support
necessary to process high fidelity 3D images and extract useful
information.

Recent advancements in the non-invasive, soft-tissue imaging
modalities is generating large volumes of high resolution data.
Radiologists use high resolution soft tissue images to diagnose
numerous medical conditions such as brain cancer, aneurysms,
traumatic brain injury, and viral infections. Soft tissue scans
are rich with feature information that helps the practitioner
differentiate healthy tissue from the pathological cases. A variety
of specialized imaging techniques is need for diagnosis of
a particular brain anomaly and no single imaging technique
is sufficient as a general diagnostic imaging (Berquist et al.,
1990). However, combining image sets from multiple imaging
techniques can create a unique signature for each soft tissue type
(Havaei et al., 2017), producing a large number of features for
post processing by a machine learning (ML) algorithm. Even a
radiology specialist needs several hours to analyse multiple soft-
tissue image sets, extract meaningful features, and integrate the
partial findings to create a feature composite used to formulate
a diagnosis for a single patient. The application of machine
learning algorithms in this domain is limited to image pre-
processing and analysis of structural brain changes through
segmentation. The opportunity to augment the imaging robotics
with intelligent image processing can produce a wide range of
decision support tools (DST) that will (1) reduce the time it
takes for a radiologist to analyse images to extract meaningful
features, (2) diagnose brain disease that cannot be detected from
the images using naked eye although the information exists in
the images and the machine learning algorithms can learn to
differentiate the normal cases from the pathology ones, and (3)
automate the monitoring of brain tissue recovery.

Radiology professionals are trained to detect the local,
regional, and global soft tissue anomalies that deviate from the
expected, normal variance in the soft tissue images. Figure 1
shows examples of features that can be categorically described
as discrete (A,C) or diffused (B,F) features. Recent studies have
shown the use of automated machine learning (ML) algorithms
to be successful in diagnosing and segmenting either brain or

lung tumors with error rates similar to the human practitioner’s
error (El-Dahshan et al., 2014; Menze et al., 2016; Shankar et al.,
2016; Alakwaa et al., 2017; Havaei et al., 2017). Although a
narrow application domain, the use of ML algorithms for feature
extraction and classification has significant benefits for the early
disease diagnosis that can be easily missed by a physician,
malignant tissue segmentation for surgical intervention, and
predicting patient’s survival rates after forming a preliminary
diagnosis.

2. DECISION SUPPORT TOOLS’
REQUIREMENTS FOR INTELLIGENT
ROBOTICS

Fusion of new imaging modalities and intelligent image post-
processing presents unique opportunities for building a new
generation of decision support tools (DST) for brain pathology
diagnosis. ML algorithms are well suited to assist in the
radiologist’s decision making process since they generalize
information from a large amount of available data to learn
the features and the relationships among the features that
differentiate the images in the set between normal and abnormal
(Kononenko, 2001). Even in this rudimentary form, ML tools
would provide a valuable insight for a physician to confirm
and validate the candidate diagnosis selection. However, the
transparency of the ML algorithms in making diagnostic
decisions is problematic because the exact reasoning used by the
algorithm to form the given diagnosis is abstracted during the
model construction.

Kononenko proposed general guidelines for a decision
support tool that uses ML algorithms for medical diagnostic
(Kononenko, 2001):

• Classification performance–a high accuracy of diagnosing the
true positive cases while the misdiagnoses are unacceptable (a
zero false negative error)

• Noise and variance–the algorithm’s ability to extract
meaningful information from images with high expected
variance or noise introduced during the imaging

• Explanation and transparency of diagnostic knowledge–the
ability to trace back the model’s decision making and
identification of the features it used in the reasoning process.

• Missing data–the ability to fill-in information when the
imaging robotics was configured for low image resolution or
wide distance between adjacent image layers

• Reduction of number of tests–a desire tominimize the number
of imaging sessions needed for a diagnosis.

Unfortunately, in the domain of general diagnosis the above
guidelines are interpreted as trade-offs and the resulting models
have either high performance but low transparency or high
transparency but low performance. For example, the class of
DSTs that use artificial neural network in general have good
classification performance, but poor knowledge transparency
when trained on a sufficiently large data sets. In contrast,
Assistant-R, R-QMR, ISABEL and other DSTs are top down
induction engines that use decision trees and expert knowledge
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FIGURE 1 | Illustration of features extracted and used by either a radiologist or a computer algorithm. The left images shows the original MRI image, with the

annotated features of interest on the right. A: tumor, B: hematoma, C: calcium deposit, D: the volume decrease in the images brain tissue, E: the volume increase with

respect to expected and F: a tissue inflammation. The green contour line associated with features D,E shows the expected (normal) shape of the imaged soft tissue

and the red contour shows the actual shape.

ontology with high transparency but the performance is often
not as high (Cestnik et al., 1987; Miller, 2016; Martinez-Franco
et al., 2018). Due to the high stake consequences of making
medical diagnostic decisions it is important that the proposed
DST solutions meet all proposed guidelines.

The quality of the machine learning algorithms for simple
tasks such as medical image segmentation or classification is
continuously improving. That said, few diagnostic synthesis tools
exits and even fewer are actually used by the radiologist (Shattuck
and Leahy, 2002; Wang et al., 2016). The adoption criteria for the
bio-medical imaging tools should include (1) what is the tool’s
knowledge transparency and the explanation ability, (2) low type
I and type II error, (3) how much new, previously unavailable
information the tool discovered and presented to a physician and
(4) how much integration overhead did the tool introduce or
how well does the tool integrate into the exiting image processing
stream.

Unlike many machine learning applications, the use of
computer vision algorithms as the diagnostic tools for processing
brain scan images have direct impact on the patient life and
well being. The type II errors of falsely inferring the absence
of anomaly in the brain tissue is unacceptable, while a low
false positive error (type I error) is allowed as the algorithm’s
purpose is to aid the diagnostic process and not to replace
the human radiologist. The desired efficacy of the DSTs is
to have high sensitivity and specificity scores to make the
error repeated on multiple trials on a single patient highly
improbable – a performance comparable to a human. Currently,
the segmentation of brain soft tissue using machine learning
algorithms simply does not have high enough sensitivity and

specificity scores to be accepted as a medical support tool
(Menze et al., 2015). Although generally DSTs still lag behind
physicians, Menze et al. compared the performance of a
radiologist against the latest machine learning algorithms on
the benchmark brain tumor image segmentation images to
conclude that the error between the human and the machine
for the brain tumor segmentation are comparable (Menze
et al., 2015). The expected sensitivity and specificity threshold
for the processing of the brain scan images is still to be
determined, but the application of the bio-medical diagnostic
tools in other fields of medicine commonly exceed 95%
sensitivity and specificity scores, and we expect a similar or
higher threshold to be applicable for any clinically relevant
DST.

The diagnostic process of a single case already requires
several hours by a highly trained and specialized radiologist,
so an introduction of a new tool has an associated cost-
benefit trade-off. If the balance between the increase of the
radiologist’s decision making complexity exceeds the amount of
the new information presented to a radiologist, the new tool
hinders the diagnostic process and could lower the physician’s
diagnostic accuracy. For example, Kononenko’s empirical studies
showed that the physicians prefer the diagnosis and explanations
by Bayesian classifiers and decision tree classifiers, such
as the Assistant-R and LFC, due to their high knowledge
transparency (Kononenko, 2001). In contrast, the top performing
ML algorithms analyzing problems such as the brain tumor
segmentation in the images (BraTS) or even a much easier
task of recognizing and localize ordinary objects in the natural
scenes using artificial neural network based algorithms have poor
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knowledge transparency and explanation ability (Kononenko,
2001; Krizhevsky et al., 2012; Menze et al., 2016).

The goal of AI based tools that support radiologist’s analysis
of brain soft tissue images is to reduce the diagnostic complexity
and error while providing additional analytic insight with
high knowledge transparency and explanation. The diagnostic
accuracy using the ML data analysis has to be verified and
compliant with the radiologist’s knowledge and practice. The
knowledge structure extracted from the images has to be
supported by clearly identified lower level features that consist
of the image artifacts already used by the radiologist, clearly
identified artifacts that were not used to synthesize the extracted
knowledge, or the new features not seen by the radiologists. The
relationships between the features define the structure of the
knowledge that can be argued by the radiologist in support of
the final diagnosis. How the model learned to select the relevant
features and the relationships among them does not have to
mimic how the radiologists learn to diagnose a pathology as the
AI’s goal is to learn the complex features and interactions missed
in the first place. That said, the newly discovered knowledge must
be verifiable by the radiologist.

Imaging tests are ordered for a variety of underlying clinical
complaints1to generate a differential diagnosis or to determine
the extent or localization of a known pathology. Radiologists
analyse the resulting scans with little knowledge of the patient’s
case other than some basic history, which helps prevent
diagnostic bias. For the same reasons, we will survey only the
methodologies that analyse brain scans without and do not
use additional patient information as the algorithm’s inputs. To
further limit the scope, we will discuss the diagnosis of brain
tumors and traumatic brain injury (TBI) as two brain pathologies
representative of different diagnostic mechanisms.

3. HUMAN PERFORMANCE

Extensively trained physicians remain the gold standard in
information extraction and diagnostic synthesis from the
radiology studies. Radiologists identify both discrete and
diffuse features from the soft-tissue images and differentiate
pathologies from imaging errors or other benign structural
anomalies such as calcium deposits (Figure 1). Detecting an
anomaly pattern in the soft tissue images of the brain
is nonetheless challenging even for a trained professional,
so specialized imaging modalities and image post-processing
techniques are developed to aid the diagnostic process. The
additional image sets and the output measurements from
different imaging techniques contrast different aspects of the
brain’s physiology such as tissue density, fluid flow, volumetric
measurements and electromagnetic properties. The radiologists
extract information and cross-reference multiple sets of images
for each patient to create a holistic picture of the information
extracted from the large volume of raw image data. The final

1Applications of medical diagnosis using MRI images beyond those studied in
this paper include alcoholism, dementia, Alzheimer’s disease, stroke, concussion,
bleeding, trauma, schizophrenia, bipolar disorder, progressive multifocal,
leukoencephalopathy, and multiple sclerosis.

diagnosis is then inferred from the collection of the imaging
findings.

Although radiologists are highly trained and have access to
advanced tools to aid diagnosis, studies have found that two
radiologists will disagree on a diagnosis between 5 and 20 percent
of the time (Berlin, 2001). The opportunity forML based decision
support tools are to reduce diagnostic error by differentiating
the competing diagnoses using newly discovered knowledge
or presenting a ranked list of alternative diagnosis for further
inspection, allowing the clinician to eliminate some diagnoses
using additional, non-imaging based information about the
patient’s case.

Traumatic brain injury and tumor segmentation are two
diagnoses that use brain scan images to diagnose pathology,
monitor disease progression or recovery, or localize the damaged
tissue for surgical intervention. More importantly, the selected
pathologies represent two very different mechanisms of diagnosis
that are representative of many brain imaging based diagnostic
processes. Brain tumors are well defined regions in the brain
that are identified from the images by the intensity indicating
the tissue density and fluid content difference, the location is
constrained to the main volume of the brain, and the smooth,
’globular’ shape of the tissue. In other words, a discrete well
defined feature(s) with well defined boundaries. Traumatic brain
injury on the other hand, does not have a single tell-tale
feature that identifies the pathology. A radiologist diagnoses
this complex injury from a collection of partial anomalies.
It is worth noting that any one of the anomalies occurring
independently might not be a pathology, but instead may be a
natural variation of the individual’s brain structures. The third
type of information extracted from the brain scans are diffuse
features. For example, inflammation of brain tissue is localized,
but does not have clearly defined boundaries like a tumor would.
In brain scans, inflammation is identified as a region of higher
intensity than the surrounding tissue. Although diffuse brain
imaging features can be categorized on their own, there are no
automated diagnostic tools yet. We will discuss them loosely
in both contexts of tumor segmentation and traumatic brain
injury.

Tumor detection is a common radiology analysis task that
is diagnosed even in scans ordered for a tumor unrelated
diagnosis. Tumor diagnosis can be confirmed from imaging
tests using Computed Tomography (CT), Positron Emission
Tomography (PET), or Magnetic Resonance Imaging (MRI). As
radiotherapy and surgery are the most effective treatments to
remove brain tumors, the accurate localization of the diseased
tissue is critical. If all cancer cells are not removed the tumor
can relapse. If normal tissue in addition to the tumor is
removed, the brain’s normal functionality can be disrupted.
In addition to guiding surgical interventions, brain imaging
is used to monitor a tumor’s response to the treatment. A
tumor can have four imaging features: edema (swelling near the
tumor), contrast enhancement (related to “leaky” blood vessels
and tumoral angiogenesis), necrotic tissue, and non-enhancing
tumor. Accurate identification of each tumor tissue type is
necessary as not all tumor affected tissue has to be removed
or targeted for radiotherapy. Physician segmentation of tumor
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regions has significant variability between practitioners with the
Dice score of 74–85% to accurately identify tumor vs. healthy
tissue (Njeh, 2008; Menze et al., 2015).

Traumatic brain injury (TBI) is a global public health problem
with 57 million annual hospitalizations with one or more TBI
incidents per patient of which over 10 million result in death
(Langlois et al., 2006). TBI can result from a moderate-to-
severe head injury or long-term, repetitive, low-force impacts.
TBI is common among athletes participating in contact sports,
armed forces combat veterans, or general head trauma from
accidents. TBI intensity is classified as mild, moderate or severe,
and each requires different treatment plan. With decreasing
severity of TBI injury, TBI becomes increasingly difficult to
diagnose by a radiologist using brain imaging (Ghajar, 2000).
Rapid TBI diagnosis is desired to ensure the patient’s recovery
and prevent further damage and consequent TBI progression.
Currently, mild TBI is diagnosed from clinical evaluation using
the Glasgow Coma Score (GCS) and symptoms involving the
injury as no consistent, distinct imaging features are detectable
by a radiologist to make the diagnosis (Williams et al., 1990).
Although the sensitivity of the current imaging instrumentation
is insufficient to definitively diagnose mild TBI, a combination of
post-processing image processing algorithms, advanced imaging
techniques, and improvement of the imaging resolution will be
used in the future to aid in the diagnosis of mild TBI. The
vast majority of patients with mild TBI make a full neurological
recovery, however accurate diagnosis allows patients to recover
more quickly and to avoid the risk of a second TBI event
while they are recovering. Moderate TBI cases can be diagnosed
from brain imaging by a radiology specialist trained in TBI
diagnosis. In moderate TBI cases, the brain structures are
altered from patient’s normal which is difficult to quantify
as patients normally do not have pre-injury brain scan of
their healthy brains. The radiologist has to differentiate the
injury from the expected variance to the brain structures.
Patients with severe TBI have MRI scans with clearly visible
changes to the brain structures; these patients are frequently
comatose and unable to follow simple instructions (Ghajar,
2000). Severe TBI is generally diagnosable by any radiologist on
MRI.

To formulate a TBI diagnosis, a radiologist cross-references
multiple image sets to extract structural brain anomalies from
normal expected variance. There are changes to the brain tissue
which are visible on Diffuse Tensor Imaging (DTI), a technique
that reveals the location, orientation, and directional anisotropy
of water molecules within the brain. The resulting changes to the
brain are visible as the asymmetric pattern of the brain’s fluid
movement and the loss of the brain’s volume due to damage to
the underlying white matter. As the brain volume decreases at
the injury site, there is an increase in the amount of cerebrospinal
fluid to fill this space.

4. SOFT TISSUE IMAGING TECHNIQUES

Several different techniques can be used for imaging of brain’s
soft tissue: radiography, magnetic resonance imaging (MRI),

nuclear medicine, ultrasound, and infrared imaging. MRIs are
most often used to train ML algorithms for brain anomaly
identification. This is partially because the MRI imaging is
used by physicians who provided the image annotations needed
for model construction using supervised machine learning
algorithms. Most available data-sets are annotated MRI images.
Although MRI is the most common diagnostic imaging tool,
we will briefly describe other imaging techniques for the
completeness and the transference of image analysis methods
between different imaging modalities. In other words, the AI and
ML algorithms developed to identify structures and anomalies
in one image type, can be used to analyse other image types by
simply swapping the image sets.

Radiography uses a wide x-ray beam for imaging both bone
and soft tissue. Radiography is widely used due to its low cost
and high resolution of resulting images. The use of x-ray has its
drawbacks: it is harmful in the case of frequent or high intensity
exposures, imaging sensitive tissues, and for at risk patients
such as pregnant women. Radiography is also limited due to
its planar acquisition technique with overlapping structures
projecting onto a single image. This severely limits evaluation
of underlying structures with visualization of individual organs,
especially brain, made impossible by the overlying dense bony
calvarium.

Nuclear medical imaging is an effective technique to assess the
structure and function of an organ, tissue, bone, or the entire
system. This technique uses chemical contrast agents injected
into the body that react with proteins or sugars to be recorded by
the imaging detectors. The required use of radionuclide markers
have to meet strict guidelines to be safe for repeated application.
Although nuclear medical imaging can visualize a limited range
of brain functions, it produces relatively low resolution images.
These factors limit its use to localize active sections of the brain
during or immediately after seizures for surgical intervention, to
diagnose early onset of Alzheimer’s or Parkinson’s disease, or for
brain tumor activity in the assessment of radiation necrosis vs. an
actively growing tumor.

Ultrasound is an imaging technique used to examine brain
tissue and the blood flow to the brain. As a non-invasive
procedure, it is effective in diagnosing a relatively wide range of
conditions including the narrowing or enlarging of intracranial
vessels, congenital brain anomalies, monitoring the dynamics of
cerebral fluid, assessment of damage to the brain’s white matter,
tumor site localization, intracerebral hemorrhage, assessment
of stroke risk in adults and vascular disease related to sickle
cell disease. Although the ultrasound based imaging techniques
do not produce high resolution images in comparison to
conventional x-ray or MRI, dynamic cine images and Doppler
flow measurements can produce real-time visualization of blood
and cerebrospinal fluid dynamics. In addition to brain tissue
imaging, ultrasound is commonly used for imaging other organs
such as the heart and lung.

Magnetic Resonance Imaging (MRI) is a highly available, non-
invasive imaging technique that uses powerful magnets to make
detailed tomographic images (Figure 2). Since there is no known
negative long-term effect from exposure to strong magnetic
fields, a physician can use repeated testing to monitor brain
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Tissue T2-weighted T1-weighted FLAIR

CSF Light Gray Dark Gray Dark Gray

White Matter Dark Gray Light Dark Gray

Cortex Light Gray Gray Light Gray

Fat (with bone marrow) Light Bright Light

Inflammation Bright Dark Bright

FIGURE 2 | Examples of different MRI imaging techniques. Left: T2 image. Middle: T1 image. Right: FLAIR image. Table shows the brightness of the tissue using the

three most common MRI imaging technique from dark to bright (Preston, 2006).

tissue recovery or narrow a differential diagnosis. MRI scanning
is limited in patients with implanted medical devices or those
patients with metallic fragments which are ferromagnetic and in
dangerous locations. MR imaging equipment cost is relatively
high, but one might argue that the limiting factor in the MRI
application is the lack of radiology specialists to analyse the
images and synthesize the information to form a diagnosis. MRI
has several specific sequences utilized which are discussed in
detail in the next section.

The image analysis of brain’s soft tissue can be categorized
into three scopes: local, regional, and global. The local features
visible in the brain MRI images can range from a few millimeters
to several centimeters. A feature to be classified as an anomaly
is either an unexpected mass that does not belong at the given
location or a significant variation of the expected brain structure
from the normal shape and size.

Discrete anomalies localized with well-defined edges include
tumors, foreign bodies, hemorrhage, and swelling. Tissue
infection or inflammation on the other hand are usually more
diffuse anomalies in the imaged brain tissue, only visible on the
regional or global scale.

Detection of regional anomalies requires identification of
structural shape asymmetry, signal intensity variation between
local brain structures and the surrounding tissue, color
asymmetry variation that identifies the difference in the fluid
flows, or unexpected volumetric differences in the tissue. The
global scale analysis provides the context for the features detected
on the local and regional levels to decide if they are indicative of
a pathology or an expected variation.

The global analysis by a radiologist is challenging as
a single local scope feature may be classified as a minor
difference in healthy tissue but the presentation of several

such features as a group could indicate an illness. The
detection and classification of discrete, structural brain anomalies
can be easily recognized by an appropriately trained health
professional, especially if the anomaly is large and a well-
defined discrete mass. However, a diagnosis of a moderate TBI
that is manifested by regional or global relationships between
features is only possible by highly-trained specialists with years
of experience. Additionally, the in-depth knowledge of different
imaging techniques is necessary to cross-reference to verify the
consistency of the candidate features across multiple image sets.
The ability to reason about the detected features in multiple
image sets on different scope achieves the desired transparency
in formulation of the medical diagnosis and the course of
treatment.

Radiologists commonly diagnose patient’s brain pathology
using MRI based imaging that mostly replaced computed
tomography (CT) as the imaging technique of choice. Image
analysis is not only used for the initial diagnosis, but also for the
preoperative staging, assessing the effectiveness of the treatment
plan and other aspects of medical care (Berquist et al., 1990).
MRI image processing offers visualization of the brain anatomy
in multiple planes (axial, sagittal, coronal, oblique, and others
depending on the gradient coils orientation) and reveals details
about the brain’s (static) structures as well as information about
fluid movement and underlying tissue integrity (Preston, 2006).

4.1. MRI Imaging and Processing
Techniques (T1, T2, FLAIR, and DTI)
MRIs of the brain produce two-dimensional views of the soft
tissue, where each image represents one horizontal cross-section
(axial anatomical plane slice) with two consecutive images
separated from each other along the vertical axis (spinal axis)
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between 0.2 and 6.0mm. Based on the distance between the
vertical slices, the resulting image sets have between 170 and
1, 500 images depending on how much of the brain imaging is
desired and how many different imaging instruments were used.

Although the imaging machine can be configured and focused
using multiple anatomical templates or Brodmann Maps, the
common MRI imaging for the initial diagnostic image the entire
brain cross-section with 1mm spacing between vertical slices
(Tzourio-Mazoyer et al., 2002). BTATS is a publicly available data
set that was constructed with the above described configuration
and is commonly used as a benchmark for the training and
validation of the brain tumor segmentation algorithms (Menze
et al., 2015, 2016).

4.2. MRI Image Pre-processing and
Baseline Measurements
The artifacts introduced into the raw images by the imaging
hardware used must be first removed before the diagnostic level
algorithms are used to process the MRI sets. Many mature, open
source algorithms exist to perform these low level tasks, but the
demand for higher accuracy correction algorithms remains as
the imaging resolution increases (see section 6.1 for details). The
most common correction tasks include: topological correction,
axial correction, non-uniformity correction, skull-stripping, and
tissue classification. The healthy imaged tissue should be a closed
contour or surface (after 3D reconstruction). The topological
correction algorithms will repair any holes and protrusions
introduced into the images during imaging or initial processing
(Shattuck and Leahy, 2001). Many of the brain’s functions are
studied by a radiologist as a symmetric pattern between the
brain’s hemispheres. The multi-axial correlation will adjust the
orientation of the 2D slices to be perpendicular to the vertical
axis so the brain structures visible on each slice show the
matching brain structures rather then the parts of the brain
from a horizontally misaligned part of a brain. The intensity
of the imaging beam used by the MRI device will attenuate
when imaging tissue that is farther away from the beam’s
source. The intensity non-uniformity adjustment will remove
the color gradient difference caused by the attenuation in the
2D slices as the raw images are lighter closer to the beam’s
source (Belaroussi et al., 2006; Mingsheng Chen, 2017). The low
level MRI retrospective image algorithms can be grouped into
grayscale level based and transform based categories and include
additional corrections that include surface fitting, spatial filtering
and image enhancements tasks (Belaroussi et al., 2006).

The skull stripping and tissue classification could be
considered higher order image processing tasks depending on
the desired classification and localization accuracy (Bakas et al.,
2017a,b). Several simple algorithm successfully implement a
crude version of the skull-stripping that will extract only the
brain’s soft tissue structures from the MRI images and mask off
the surrounding tissues of the skin, bone, cartilage etc. (Hahn and
Peitgen, 2000; Lee et al., 2003; Ségonne et al., 2004; Zhuang et al.,
2006). The tissue type classification in the most simple form will
differentiate the brain’s white from gray matter, but advancedML
algorithms for tissue type classification can be used for the tumor

localization or identification of de-myelinated tissue (Cocosco
et al., 2003; Ferreira da Silva, 2007; Li et al., 2009; Basser and
Pierpaoli, 2011).

The second class of the image analysis challenges is
related to the high variation of human brain physiology
visible in the healthy soft-tissue images. Studies of fMRIs of
left-handed and right-handed individuals show that leftward
asymmetry in language-related gray and white matter areas
of the brain to be proposed as a structural correlate of left-
sided functional hemispheric language lateralization, but that
the neuroanatomical basis of the reported volumetric white
matter asymmetry is not fully understood (Vernooij et al.,
2007). Highley et al. studied the differences in the female and
male fiber composition in the corpus callosum and found dis-
proportionally higher fiber density in the female brains (Highley
et al., 1999). The fiber density is only one of many tissue
differences that are clearly visible in theMRI. Thus far, there is no
automation in differentiating the normal variance of the brain’s
physiology from the anomalies that indicate certain illness,
instead radiologist’s expert knowledge is needed to distinguish
the allowed tissue variations from pathological anomalies by
integrating the knowledge extracted from different data-sets and
the features identified anywhere in the MRI images.

4.3. MRI Imaging Techniques
Specialized MRI techniques were developed to image different
structures and bio-mechanics of the brain. Figure 2 shows
the most common MRI imaging techniques T1-weighted, T2-
weighted, and fluid attenuated inversion recovery (FLAIR)
images. All techniques use a radio frequency pulse and changes
in the magnetic field that allow for measurement of phase
and frequency changes within the tissue. Tissue with short T1-
relaxation time appear brighter in a T1-weighted image, tissue
with long T2 relaxation time appear brighter in a T2-weighted
image, and a FLAIR image is similar to a T2-weighted image
except that the cerebrospinal fluid (CSF) tissue is suppressed
(Weishaupt et al., 2008). For example, the fatty tissue quickly
returns its longitudinal magnetization, so it appears bright in
T1-weighted images, but the cerebrospinal fluid on the other
hand has less magnetization after being exposed to the gradient.
The fluid will appear dark due to its low signal. Figure 2 shows
brightness of the tissue with the differing imaging techniques.

MRI is particularly useful to reveal different characteristics
of the specific tissue. Cross-referencing the multiple image
sets created by T1, T2, and FLAIR MRI techniques, specific
characteristics of a tissue structure will become apparent. For
example, just by looking at the reference table in Figure 2, the
areas of tissue with inflammation appear dark in a T1-weighted
scan and bright in a T2-weighted scan.

The reference table is simplified to only 4 different tissue
types and 3 different imaging techniques, whereas in practice, a
radiologist can identify several 100 different tissue characteristics
and using other imaging techniques to confirm or disqualify
differential diagnosis. The identification of large structural
changes such as a large tumor or a severe TBI can be diagnosed
using T1, T2, and FLAIR MRI, but the heuristics to identify
smaller injuries and tumors are more difficult to define. For
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FIGURE 3 | Left: an illustration of a diffusion tensor imaging 3D reconstruction. Right: the tractology image created by post-processing of the 3D DTI reconstruction

from the DWI sources. The tractology image shows 3D view of individual fiber tracts and the color indicating the fluid flow direction within the tract.

example, the inability to diagnose mild TBI is because there
is no single clearly defined feature that identifies the injury,
instead it is a combination of several signs at different areas
of the MRI images that determine a diagnosis. That said,
Weishaupt et al.’s studies recommend that even the straight
forward diagnosis of the large structural changes such as
tumors can benefit from cross-referencing the image sets from
all available imaging techniques to reveal all different tumor
sub-components, surrounding inflammation, fluid accumulation
etc., as no imaging technique alone shows all tumor aspects
(Weishaupt et al., 2008). This is an opportunity to build
intelligent machine learning algorithms in tandem with medical
imaging for cross image-set integrative tissue type classification
to augment human intelligence of tissue characterization.

Figure 3 shows Diffusion Tensor MRI (DT-MRI), a result
of post-processing technique applied to the Diffusion Weighted
Imaging (DWI) modality, as a MRI based imaging technique
that allows for highly detailed images of soft tissue that allows
for new way of examining the connectivity of the brain’s tissue
(Basser and Jones, 2002; Jones and Leemans, 2011; Soares
et al., 2013). Unlike conventional anatomic MRI, diffusion
tensor imaging (DTI) produces values of each voxel calculated
from six or more diffusion measurements and from different
orientations of the diffusion sensing gradients. DTI measures
local diffusion characteristics of water molecule displacement
averaged over a voxel. The resulting images show voxel level,
multi-slice or three dimensional composites of the tissues and
organs. Unlike other MR images, DT-MRI provides eigenvalues
of the diffusion tensor, its trace measures of the degree of
diffusion anisotropy and organization that can be used to
estimate the fluid movement directions, flow volumes and the
fiber densities (Basser and Jones, 2002). DTI’s use in mapping

the fibers’ connectivity to reveal regions with restricted profusion
or disconnectedness that is essential for stroke or moderate TBI
diagnoses. Note that the information of the local flow dynamics
is not available in the conventional MR images that produce
a static, low-resolution snapshot of the tissue (Gonzalez et al.,
1999).

DTI imaging provides significant opportunities for machine
learning community as the DT-MRI based image sets contain
additional information that is missing in T1, T2, or FLAIR MRI
modalities. DTI images have much higher resolution needed for
extracting the tissue features, the voxel-level raw measurements
are unused by a physician and only used as an average (lossy)
value for visualization, and the color information provides
additional dimensions to extract the flow dynamics from the
images. The nature of MRI as a 3D imaging technique has its
benefit, namely the images are construction as 3D measurements
which captures all information needed to build 3D views without
requiring additional image post-processing. The resulting 3D
composites have less imaging error that was introduced by the
imaging robotics or the post-processing of the output images.
That said, there are no studies that use 3D DTI composites
for processing as the basis for medical diagnosis. This rises a
questions about the trade-off of using the 3D composites that
require additional computational resources and the ability to
produce additional knowledge from the data needed for feature
extraction and subsequent diagnosis. Havaei et al. compared
the performance of a machine learning algorithm using the
3D MRI composites with the 2D image version and concluded
that the algorithm that used 3D composite did not improve
the localization accuracy for the tumor segmentation task, but
performed slower then training on 2D images (Havaei et al.,
2017).
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Machine learning algorithms were successfully used to
understand the correlation between the genetic micro-deletions
and the cognitive brain functions from the DTI images (Tylee
et al., 2017), decrease the MRI scan acquisition time by twelve-
fold using deep neural networks (Golkov et al., 2016), extract
discriminant features from DTI images to build a simple support
vector machine (SVM) as well as more sophisticated classifiers
to diagnose the Alzheimer disease (Haller et al., 2010; Graña
et al., 2011; Beheshti et al., 2017a,b; Altaf et al., 2018), process
the fiber tract-based spatial statistics to train a model to diagnose
the Parkinson’s disease (Haller et al., 2012).

The latest MRI modalities applied on tumor diagnosis include
Dynamic Contrast Enhanced (DCE) imaging (Lin et al., 2017),
Diffusion Kurtosis Imaging (DKI) (Alexander et al., 2017),
Magnetic Resonance Spectroscopy (MRS) (Alexander et al.,
2017), Chemical Exchange Saturation Transfer (CEST) (Van Zijl
and Yadav, 2011) as well as the associated image processing
derivatives Arterial Spin Labeling (ASL) (Telischak et al., 2015),
Dynamic Susceptibility-Weighted Contrast (DSC) (Soni et al.,
2017), Intravoxel Incoherent Motion (IVM) (Lin et al., 2015)
to name a few. Please see Alexander et al. (2017) for a
comprehensive review of the latest imaging modalities and their
derivatives. To the best of our knowledge, the above methods
were used in clinical settings and not by a machine learning
algorithm to build tumor detection models. With time and
clinical use, these techniques will produce datasets that will
provide significant opportunities to automate the analysis of the
brain’s soft tissue. On contrary, De Visschere et al. observed that
some of the new techniques might not increase the classification
accuracy when used by a physician (De Visschere et al., 2017).
Whether or not this observation will hold true in the future, when
automated machine learning algorithms are used to analyse the
image sets from the new imaging modalities, remains to be seen.

4.4. 2D Analysis vs. 3D Reconstructions
Due to limited application of ML using DTI images, basic studies
are needed to understand how to build better ML algorithms
using 3D DTI composites for diagnostic purposes that utilize
the color information, encode the 3D topologies of the fiber
structures, and correlate the features extracted from the DTI
composites with the features extracted from other imaging
techniques. For example, moderate TBI diagnosis is based on
the DTI images as a lack of anisotropic diffusion at the primary
injury site that is significantly different from the diffusion in the
same region in the opposite brain hemisphere, AND the primary
injury region has smaller volumetric measurements in the 3D
MRI composites in comparison to the healthy tissue, AND there
exists a brain region that has increased volume caused due to the
displaced cerebral fluid from the primary injury site.

Although 3D brain reconstructions are currently available to
the radiologists for both MRI and DTI image sets, radiologists
examine and collate features primarily from 2D images. The 3D
spatial distribution of the tissue features is crucial for accurate
diagnosis and treatment planning. The radiologists do not use
any additional tools to construct the 3D relationships among
the detected features, so the integration is constructed as the
radiologist’s abstract or mental picture. Engineering of a ML

algorithm as a higher order DST has to accurately encode these
relationships by either (1) explicitly recording the 3D coordinates
of the feature’s location, orientation, shape properties extracted
from multiple 2D slices as the features commonly span more
then one slice or (2) use the 3D composite that retains all
these quantities, but is computationally much more expensive
to process. Creating the 3D MRI composite is done by stacking
of the 2D pre-processed slices using registration points on each
slice for the mutual slice alignments. The 3D reconstruction is
possible for many of the imaging modalities such as tomography
and functional magnetic resonance (T1, T2, FLAIR, etc.) or fiber-
tracking derivative of the DTI. Very few MRI or non-MRI, open
data sets are available for the 3D reconstruction, and even fewer
have radiologist’s reads with associated labels (annotations) that
are needed to train and evaluate a ML model.

The ML algorithms that use the 3D composites to explicitly
represent the MRI scan for processing have to be supported by
massively parallel hardware architecture. The feature extraction
requires large portions of the 3D data-structures to be memory
resident for the algorithm to extract the tissue features at spatially
explicit local and relate these to the detected features at other
locations. To address this challenge, alternative data-structures
are needed for efficient and lossless data representation along
with the algorithms for fast manipulation of the data-structures.
For example the fiber 3D reconstruction from DTI images is only
concerned with the location, volume and flow information of the
fibers with the rest of the imaged brain volume being irrelevant
and does not have to be represented in the 3D data-structure.
This alternative DTI projection is called tractography and even
though it only shows the fluid carrying in the fiber tracks the data-
structures used to represent the 3D composite is in a 3D pixel
space, or “voxel.” An alternative vector space or as continuous
fields in geo-spatial computation could be used to represent only
the regions on interest (Mostafavi et al., 2010; Beni et al., 2011).

The alternative approach is to use 3D images to segment
a region of interest first then perform the object classification
on a much smaller 3D voxel structure which will decreases the
hardware requirements needed and the computing time.Multiple
studies showed that the results accuracy increases if the region
of interest (ROI) is extracted first with the subsequent object
classification (El-Dahshan et al., 2014; Shankar et al., 2016; Yu
and Yang, 2017).

Finally, 3D composites can be used for clinical diagnosis
only if the software is Food and Drug Administration (FDA)
approved. A majority of the mature, well supported, open-source
software packages (such as 3D Slicer2) are not FDA approved and
are mainly used for biomedical academic research (Fedorov et al.,
2012).

5. THE AI AND MACHINE LEARNING FOR
BRAIN PATHOLOGY DIAGNOSIS

Machine learning is a field of computer science that builds
mathematical models to recognize patterns in data to help

2https://www.slicer.org
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humans make better decisions (Alpaydin, 2014). Computer
vision is a sub-field of machine learning that trains computers
models to extract and analyse information from images (Shirai,
2012). Several computer vision algorithms applied on the object
recognition problems achieved classification accuracy results
better than the best human performance (Krizhevsky et al.,
2012; Russakovsky et al., 2015). Despite the success of these
algorithms on a narrow problem domain of object detection
and localization tasks, analyzing images for content analysis
regardless of the domain remains to be difficult and open
problem (Pal and Pal, 1993; Xiao et al., 2010). The application
of machine learning and computer vision algorithms to analyse
brain scan images is mostly unexplored (with exception of the
brain tumor segmentation challenge; Menze et al., 20163).

The training and evaluating of computer vision models
often relies on very large data-sets, clearly and accurately
annotated ground-truths in the images, and a powerful hardware
architecture to support the computational requirements of the
proposed algorithms. The task of scene and object recognition
is similar for the scene image processing and the MRI image
analysis. In particular they both contain many object (scene)
or structure (MRI) classes, the information in the images is
unstructured with a significant amount of noise, the models have
to extract, analyse, and synthesize features on multiple scopes.

That said, the transference of the existing methodologies to
the MRI analysis has several challenges. The best performing
computer vision algorithms on the multi-class scene recognition
task had an average accuracy of 81.1−100%when trained on 1.3−
80.0 million images. The model complexity has to be sufficient to
generalize and extract the features from a large data sets which
results in the models with millions of parameters and thousands
of logic units (Torralba et al., 2008; Krizhevsky et al., 2012).
Finally model construction and validation has to be supported
by a massively parallel hardware architecture. The analysis of
MRI images is unlikely to use data collected from more than
several 100 patients, the models have to be equally efficient and
accurate in extracting features and relationships and provide a
new knowledge to a radiologist, and the hardware has to support
the processing of the high resolution 3D image composites.

One way of addressing these challenges is not to rely
on the computer vision algorithms to fully automate the
feature extraction from the images, instead use the radiologist’s
process based heuristics and engineer the low level feature
extractors, measure the difference of the detected structures
from their expected size, compute the reflection similarity of
the corresponding brain centers, and build custom hardware
to support the computation. The methodology of building the
radiologist’s decision support tools should trade the the deep,
automatic models for hierarchically constructed ensemble of
models with high knowledge transparency.

The hierarchical stacked models implement the work flow
needed to process raw images and produce actionable knowledge
for a radiologist. Figure 4 shows a hierarchical organization of
models where each image processing task is implemented as a
standalone model. The right arrows show the processing stages

3http://braintumorsegmentation.org/

of the image analysis and information extraction. The left arrow
show the knowledge transparency for a radiologist to back track
the heuristics used by the model ensemble to form the final
diagnosis.

Figure 4 shows the pre-processing models, described in the
previous section as tasks p-, to regularize the images by resizing,
rotating, and removing the unwanted artifacts from the image.
The soft-tissue of the brain is extracted as a region of interest
(ROI) by removing all other structures from the images (Bakas
et al., 2017a,b). The low level feature extraction models, labeled
f-, generate a feature space used for the structural measurements
and the learning process. The higher order features are extracted
from the 3D composites or measured from the 2D images.

The ability to identify and compare the higher order features
requires registration of brain structures – a task where the
anatomical regions of the brain are detected and labeled which
allows for a measurement of structural similarities across brain
structures. The similarity measures use a variety of comparative
morphometry and group analysis algorithms (Klein et al.,
2009). An accurate registration allows for the anatomical region
segmentation and subsequent comparison of the region’s volume
against the expected (Greitz et al., 1991; Ardekani et al., 2005).
The volumetric analysis of the MRI based regional segmentation
was successfully used to diagnose Autism (McAlonan et al.,
2004). Finally, the visualization and 3D reconstruction are
not feature extractor models, non-less they are used in
parallel with the feature extractor models to verify the model’s
results.

The last prediction in the hierarchically stacked models is
the synthesis of the diagnosis that uses the input vector of the
local, regional, and global feature measurements to predicts the
diagnosis. This high level reasoning model can be implemented
using many different methods including probabilistic models
(Szolovits and Pauker, 1978), decision-theoretic expert systems
(Horvitz et al., 1988), fuzzy set theory (Adlassnig, 1986), neural
networks (Amato et al., 2013) and ontological based reasoning
(García-Crespo et al., 2010; Bertaud-Gounot et al., 2012). The
essential quality of these high level reasoning engines is its
transparency and the ability to trace back the diagnostic decision
through the ensemble of models used to support the diagnosis.
Figure 4 shows the knowledge transparency as the gray arrows
that identify the key measurements, that are traced to the high
level features and weights, supported by the structures in the 3D
composites, that lead all the way to the low level features and
image artifacts.

It is worth noting that the image processing work-flow should
be flexible and configurable to select the alternate processing
models to diagnose different pathologies. For example the pre-
processing may or many not include image normalization,
orientation, or image resizing. Feature extraction can be minimal
using the pixel intensity values alone to create the feature set, or
use complex spatial statistics to define the features of interest,
or a combination of both. The diagnosis prediction should be
agnostic of the input vector size or its composition. Creation of a
transparent machine learning model aims to help practitioners
find the image patterns that go unnoticed, and become a tool
for an early stage disease diagnosis, a treatment monitoring, an
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FIGURE 4 | An illustration of the information flow through a data processing framework needed to analyse brain MRI scans to produce a diagnosis. The raw image

sets are first pre-processed (tasks labeled p-), the structural features are extracted (tasks labeled f-), higher order features and measurements calculated from 2D and

3D composites (tasks labeled r- and f-r- respectively), and the final diagnosis model synthesizing the measurement vector of local, regional and global features. The

back arrows show the flow of information while the gray arrows show the trace-back feedback needed for a transparent decision support tool used by a radiologist.

analysis of brain’s structures, tissue or brain center segmentation,
and diagnostic prediction.

5.1. Model and Diagnostic Performance
The goal of the AI and ML based applications in the medical
community is to build medical decision support tools for
reducing the complexity of the practitioner’s work, not replacing
it. Current benchmarks for machine learning applications
generally look to achieve results similar to inter-practitioner
error rates (Krizhevsky et al., 2012; Menze et al., 2016), but
achieving these standards does not necessarily mean that the
ML architecture will be usable in the medical practice (Menze
et al., 2016). Although no qualitative research is available to
explain why medical practitioners fail do adopt these tools,

Kononeko et al. argue that the perceived cost of adding new
tool and the increase in the decision making complexity for a
diagnostician is likely a significant contributor to slow adoption
(Kononenko, 2001). However, he also suggests that the usage
of AI and ML based tools in the medical field is inevitable
as the diagnostic accuracy is continuously improving. Menze
et al.’s bibliometric analysis supports this proposition with the
observation that the number of publications in the field of
automated brain tumor segmentation has grown exponentially
in the last few decades (Menze et al., 2015). Results in both fields
of the automated brain tumor segmentation (BraTS challenge)
(Menze et al., 2015, 2016) and the more general scene image
analysis show continuous improvement (Krizhevsky et al., 2012)
which attests to the interest in the problem, broader societal
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impact and the resulting financial support and the synthesis of
new findings.

The renascence of machine learning and computer vision in
recent years has produced a number of new brainMRI processing
architectures (Menze et al., 2015, 2016; Havaei et al., 2017).
The highest accuracy results for the medical image segmentation
and image classification were achieved using Neural Networks.
Convolution Neural Networks (CNN), a type of neural network,
are especially popular and achieve high classification accuracy
due to the algorithm’s ability to learn complex hierarchy
of features from generic inputs (Havaei et al., 2017). CNNs
have been applied for segmentation of brain tumors in the
BRATS challenge dataset and for microscopic cell segmentation
(Ronneberger et al., 2015; Havaei et al., 2017). Top results on the
BRATS challenge dataset, ImageNet dataset, and the Keggle Data
Science Bowl all use a form of CNN architecture.

There are currently twomain applications of ML on soft tissue
images: soft tissue segmentation and diagnosis classification (El-
Dahshan et al., 2014; Menze et al., 2016; Shankar et al., 2016;
Alakwaa et al., 2017; Havaei et al., 2017). Tissue segmentation
requires the AI implementation to identify and correctly label the
different types of tissue within an image. Diagnosis classification
requires the AI implementation to classify which diagnosis a
particular image would be associated with (e.g., cancer or no
cancer, tumor or no tumor). Both problems have found the usage
of multiple soft-tissue imaging techniques as input to the ML
to provide increased accuracy results (El-Dahshan et al., 2014;
Menze et al., 2016; Alakwaa et al., 2017).

The complexity of medical image analysis can be illustrated on
the segmentation task using MRI is the BraTS research (Menze
et al., 2015). The goal of the BRATS research is to correctly
identify the active tumor regions and its extensions within the
brain and label the tumor’s different regions accordingly (Havaei
et al., 2017). A healthy brain has 3 types of tissues: white matter,
gray matter, and the cerebrospinal fluid. Using several different
image sets of the brain: T1 (spin-lattice relaxation), T2 (spin-
spin relaxation), diffusion MRI, and fluid attenuation inversion
recovery (FLAIR) pulse sequences. Segmenting the tumorous
regions in the brain involve finding four distinct tumor regions:
edema (swelling near the tumor), enhanced tumor (active
tumorous tissue), necrotic tissue, and non-enhanced tumor.
Accuracy on segmenting complete (all four tumor structures),
core (all tumor structures except edema), and enhancing (region
of only the enhanced tumor) is calculated using dice, sensitivity,
and specificity (Menze et al., 2010) as follows:

Dice(P,T) =
|P1 ∧ T1|

(|P1| + |T1|)/2
(1)

Sensitivity(P,T) =
|P1 ∧ T1|

|T1|
(2)

Specificity(P,T) =
|P0 ∧ T0|

|T0|
(3)

where P is the model prediction, T are the ground truth labels,
and T1 and T0 are the positives and negatives for the tumor

region in question. Similarly for P1 and P0. There is considerable
disagreement between inter-practitioner segmentation (Dice
scores in the range 74 − 85%) of low grade and high grade
tumors (Menze et al., 2015). NotablyMenze et al. shows that Dice
score distribution is quite high with standard deviation of 10%
and more with the most difficult tasks (tumor core in low-grade
patients, active core in high-grade patients) (Menze et al., 2015).
Multiple algorithms were tested on the BraTS data set, but no
single method performed best for all tumor regions considered.
However, the errors of the best algorithms for each individual
region fell within human inter-rater variability (Menze et al.,
2015).

The images from the BraTS data set contain only four soft
tissue imaging techniques: T1, T1-weighted, T2-weighted, and
FLAIR. The diffusion tensor MRI is not available for the BraTS
data set and therefore it is not known how effective the ML
algorithms are using this additional imaging modality on the
tumor segmentation. The BRATS data set is pre-processed to
the same anatomical template (axial orientation), interpolated
to the same resolution (1mm3), and skull stripped (removal
of any non brain tissue structures such as the skull, eyes, jaw
etc.) (Menze et al., 2015; Bakas et al., 2017b). The annotation
of the training and validation sets was done and approved by
experienced neuro-radiologists. The annotation labels identify
the four tumor substructures of (1) edema, (2) non-enhancing
solid core, (3) necrotic or fluid-filled core, and (4) non-enhancing
core. Menze et al. propose subsequent evaluation ranking that is
based on Menze et al. (2015):

1. the “whole” tumor region including all four tumor
substructures

2. the tumor “core” region including all tumor structures except
the edema

3. the “active” tumor region only containing the enhancing core
structures that are unique to high-grade cases

Many of the top ranking algorithms on the 2013 BraTS challenge
produced their own low-level features as a first step and
applied a discriminate classifier in the second step, transforming
local features into class probabilities (Menze et al., 2015).
The discriminant classifier algorithm was implemented using a
random forest approach. On the 2016 BraTS challenge the top
performing algorithms used a CNN for its segmentation process.
In 2017, the research methodology proposed (Havaei et al., 2017)
implementing a CNN on the 2013 BraTS data set to learn the low
level features and produced the highest DICE scores. Accuracy
continues to improve and the 2017 BraTS challenge included an
additional challenge to predict patient survival associated with
each image (Bakas et al., 2017b)4.

A variety of algorithms can be used as a discriminant classifier
making the final medical diagnosis. To illustrate a broader
range of the medical diagnosis algorithms, we will temporarily
expand the discussion’s scope to include the not only the
brain tumor but also the lung cancer classifications. For brain
tumor segmentation El-dashan et al. were able to produce the

4The final results of 2017 competition were not available at the time of this
publication.
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classification accuracy of 99% using a Feedback Pulse-Coupled
Neural Network (FPCNN), a type of CNN architecture, for ROI
segmentation and a feed forward ANN for image classification
(El-Dahshan et al., 2014). Shankar et al. achieved an accuracy of
95.67% using the Gustafson-Kessel fuzzy clustering algorithm for
classification (Shankar et al., 2016; Yu and Yang, 2017). Alakwaa
et al.’s implementation used a CNN inspired architecture called
U-Net to extract the ROI and the subsequent 3D CNN to classify
the abnormal vs. normal tissue in the lung images (Ronneberger
et al., 2015). Their resulting classification accuracy on the test
set was 86.6% (Alakwaa et al., 2017). Alakwaa et al.’s CNN
architecture used the 3D ROI composite of the lung which favors
the use of 3D composites over the 2D image slices to extract
the features and the relationships among the features. Alakwaa
et al.’s implementation outperformed all available computer-
aided diagnosis systems (Alakwaa et al., 2017). Classification
accuracy generally uses the statistical measures of a binary
classification test [true positive (TP), false positive (FP), true
negative (TN), false negative (FP)]. The resulting classification
accuracy is calculated using:

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

5.2. Convolution Neural Networks
A convolution neural network (CNN) is an artificial neural
network inspired architecture that extracts image features with
increasing complexity or structure by alternating the convolution
and pooling filters on the input implemented as respective neural
network layers. The convolution filers can be randomly sampled
from the inputs (imprinted), engineered by a human, or set at
random and pruned by reinforcement during the model training.
The output of the CNN architecture is either the final vector of
detected features or the architecture will include the processing
of the feature vector and produce the final classification through
a fully connected layer (Fukushima andMiyake, 1982; Poggio and
Girosi, 1990; Lo et al., 1995).

ML architectures for image classification have improved
significantly following the work of Krizhevsky et al. on the
ImageNet visual recognition database in 2012 using a CNN
(Krizhevsky et al., 2012). In 2015, the best results on the ImageNet
database were achieved using the CNN and to this day no other
type of architecture produced better scene classification results
(Russakovsky et al., 2015; Havaei et al., 2017; Hornak, 2017).
This improvement to ML architectures translated to the image
segmentation and classification for the medical image processing.
In 2016, half of the submitted solutions for the BraTS image
segmentation problem used a CNN as a feature extractor sub-
model within the overall ML architecture, and many of these
were among the top performing algorithm implementations
(Menze et al., 2016; Havaei et al., 2017). Other medical image
classification problems such as lung cancer classification and
brain tumor classification also commonly use the CNN as
a feature extractor from 2D images and 3D composites (El-
Dahshan et al., 2014; Shankar et al., 2016).

Many recent publications report the variations of the baseline
CNN and decoupling the feature detector (CNN) from the

classification models to improve the classification results on
the problem domain. In particular, Haveai et al. introduced a
cascaded, deep neural network architecture that explores image
features in the local and global context (Havaei et al., 2017).
The proposed architecture uses two-phase training to address the
tumor labeling imbalance and the output of the basic CNNmodel
is fed as an additional input into the subsequent CNN model for
improved tumor segmentation accuracy. Russakovsky’s survey
of the scene recognition methodologies includes the side-by-
side algorithms comparison which concluded that the CNNs
as the multi-stage, hand-tuned feature extractor followed by
a discriminant classifier always outperformed the traditional
feature coded or the single deep neural network architectures
(Russakovsky et al., 2015). The cell image segmentation
using small training and validation data was explored using
multi-channel feature maps based on multi-path heuristics:
the image symmetry coded the localization and the feature
context was coded as the contradicting model hypothesis. The
output of the proposed U-Net architecture was the segmented
and annotated image that could be used as an input to a
subsequent work-flow processing stream (Ronneberger et al.,
2015).

The key advantage of the CNN is their ability to generalize
and learn over large feature set, their invariance to noisy features,
a common characteristic of bio-medical image processing, and
the ability to infer the features necessary for classification (LeCun
et al., 1990, 2004; Jarrett et al., 2009; Lee et al., 2009; Pinto
et al., 2009; Turaga et al., 2010). The superior performance
of a CNN over traditional (NN, SIFT etc.) architectures is
mainly attributed to the ability of the convolutions to recognize
the feature invariance despite small changes in position, noise
frequency, or rotation (Abdel-Hamid et al., 2013). The drawback
of the CNN based architectures is in their reliance on large
number of training images needed to automatically prune
the stochastically generated convolution filters (kernels), the
computational resources needed to implement and train the
model, and the lack of knowledge transparency of the final model.
The image classification is based on the features extracted using
the learned filters, but the filters alone will not explain which
image descriptors, structures, or characteristics were used by the
final discriminant classifier. The re-application of the learned
kernels on the input image may be a useful visualization of
what were the filter activations in the images at each CNN’s
convolution step.

Overall, ML architectures incorporate several different
deterministic machines along with a CNN to implement
image processing work-flow from the image pre-processing,
the feature extraction, to the classification (El-Dahshan et al.,
2014; Havaei et al., 2017). Menze et al. designed a hierarchical
brain tumor detection algorithm, tested on the BraTS data-
set, which used multiple learned models to determine the
classification output. The high classification results were
achieved by the model ensemble as no single machine
achieved the highest classification accuracy on all tasks.
Segmentation of the region of interest first is critical to a CNN’s
classification performance since searching the entire image
is computationally prohibitive and the resolution of detected
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features is too poor to produce high accuracy classifications
(Alakwaa et al., 2017). This observation is especially true for 3D
composites which have a larger search space compared to 2D
images.

A critique of adopting CNNs as the feature extractor
compared to many hierarchical or cascaded ML architectures
is in the lack of mechanistic explanation used as the basis
for the final diagnosis. Instead, the proposed architectures
with a near human-grade classification performance feed
the outputs of one CNN as the additional inputs to the
subsequent processing step or to a classifier, bypassing the
transparency rigor (Ronneberger et al., 2015; Russakovsky et al.,
2015; Havaei et al., 2017). As a result, the high performing
CNN based models are not transferable to other domains
or diagnoses, a ML architecture for a new disease diagnosis
cannot be heuristically constructed from the building block
models, and as the classification accuracy increases so does the
ML architecture’s complexity but the knowledge transparency
decreases. Empirically improving ML classification performance
on the scene recognition problem is acceptable, but if a proposed
architecture cannot be deconstructed in reverse, from classifier to
the original source image manipulation, then its application as a
bio-medical decision support tool is likely to fail.

5.3. Hierarchical Classifications
Incremental algorithms and hierarchical classification (HC)
occur in ML architectures where the partial findings (sub-
models) are organized into hierarchical relationships to
synthesizes a non-trivial classification with multiple decision
paths possible (Cesa-Bianchi et al., 2006; Nakano et al., 2017).
Breaking-up the final medical diagnosis into a network of partial
classifications would improve model transparency by providing
contextual, data-set limited, scope defined findings used to infer
the final classification.

For example, medical diagnosis of soft tissue pathology from
cellular scans can be defined as a HC problem. The cell level
pathology is dependent on the local, regional, and global context
of the detected features and the final diagnosis is formed as an
incremental synthesis from the detected tissue types. However,
redefining the classification as a HC problem will require
expert knowledge to differentiate the detected tissue features
into the predefined classes and organize the sub-models into
a hierarchical relationships (Wicker et al., 2007; Santos et al.,
2016). The supervised approach to annotate the findings into
annotations and relationships used by the subsequent work-
flow modes is labor intensive and non-intuitive. Recasting the
classification as a HC problem using expert knowledge of the
problem domain remains a challenge as it is not often obvious
what are the local patterns of interest, how do they relate to each
other and how to interpret the local findings in the global context
(Wicker et al., 2007).

Hierarchical classification problems have been solved using
decision trees for information retrieval from text (Cesa-Bianchi
et al., 2006) and neural networks (Santos et al., 2016; Nakano
et al., 2017) for successful DNA sequence classification (Wicker
et al., 2007) and protein function prediction (Cerri et al.,
2016). Properly separating a classification into its hierarchical

components also provides the added benefit of reducing the
number of possible outcomes, and localizes sub problemsmaking
error analysis of the model easier.

5.4. Actor-Critique Models
Actor-critique (AC) ML architectures can provide detailed
feedback on how the information structure emerges from raw
data inputted into the model. In the case of MRI images, AC
architectures can present the features of interest extracted by
the model (Joel et al., 2002). AC modeling allows for analysis
of the information retrieval work-flow which in turn allows
for a side-by-side models comparison as the identification of
model’s strengths as the correctly extracted information from
the images and its weaknesses of missed or incorrectly identified
information. Such detail view of a ML architecture goes well
beyond the frequency based evaluation of model accuracy, and
provides unique opportunities for training and validation.

Fard et al. have shown the robustness of AC ML models to
address different types of noise in the planning and habitual
control systems (Fard and Trappenberg, 2017). Similar noise
characteristics can be found in the MRI scans with low
frequency noise features such as the calcium deposits, implants,
bone structure or the high frequency noise from the imaging
instrumentation error (Kononenko, 2001). More importantly,
this type of ML architecture could be used to identify where to
critique a learned model after making a classification as well as
see why a particular classification error occurred by identifying
the specific features that caused the error.

In practice, the AC architecture can reinforce the habitual
classifications and learn from previous error, making it robust
for handling the imperfect information in the MRI images
(Rosenstein and Barto, 2002; Kober et al., 2013; Fard and
Trappenberg, 2017). The critique model component will correct
the model to meet the target classification if the actor model
continuously makes the same classification error. At the same
time, the architecture can present where the error took place
within the critic network. The actor-critique ML architectures
were used to design artificial neural networks to learn the
dynamic target location and to provide the model’s error back-
propagation transparency (Vamvoudakis and Lewis, 2010; Fard
and Trappenberg, 2017). The use of AC architecture has not been
proposed for other ML algorithms.

5.5. Activation Maps Visualization
Machine learning architectures like ANN and CNN have been
considered as “black boxes” due to the difficulty of understanding
how the learned model makes its decisions (Bengio et al.,
2013; Yosinski et al., 2015). The prevalent use of convolution
neural networks, as the feature extractor in many natural scene
classification solutions, rely on a large image corpus to learn the
convolution filters to identify the local structures in the pixel
space that are common across the training set. Visualizing the
filter response at each logical unit, in each layer of the CNN allows
the semantic explanation of which features were learned across
the training images and would allow the medical practitioner to
understand the information basis used by the ML architecture in
its decision making.
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Yosinsi et al. developed a set of tools to show the filter
activation maps and the corresponding hierarchy during the
classification phase which allows for the visualization of both
the low and high level abstract concepts learned by the ML
architecture (Yosinski et al., 2015). The tool also allows to
visualize the images that contributed to the creation of the
learned filters (that correspond to the learned features), how
multiple low level features were combined to define more
complex features, and how the hierarchy of the activated
feature triggered the classification output. For a radiologist,
understanding how the low level image characteristics are used
for the high level machine reasoning could not only provide the
transparency of the information extraction, but could be used to
discover new knowledge about the nature of the pathology itself.
The visualization tool is specific to the CNN based architectures
and does not port to other ML algorithms.

It is important to note that any visualization tool-set is
designed specifically to a given ML algorithm, so the ML
framework transparency through a visualization is done for each
step of the image processing work-flow that corresponds to one
ML algorithm.

5.6. Visual Attention and the Regions of
Interest
If the primary visual features in theMRI images were successfully
identified by the radiologists and their diagnostic role is well
known and documented, embedding the expert’s knowledge
into the ML framework construction could improve both
the framework’s classification accuracy and the knowledge
transparency. Improved model performance stems from
tuning the model’s attention to the visual cues used by
the radiologist, which effectively narrows the classification
problem for the ML algorithm by providing the preliminary
information about detected structures in the image thus
offloading the low level feature detection in favor of the high
level reasoning.

A common implementation of the visual attention is by
initially training a CNN to extract the visual structures from
the image, then using these learned, high level, pre-processed
structures to guide the low level image processing. In other
words, the CNNs use the pixel space to build the feature space as
the bottom up heuristics, then the visual attention uses the high-
level detected structures as the top-down heat-map of interest.
Regions of interest detection using the image pre-processing is
implemented in several projects that analyse the natural scene
images (Itti et al., 1998; LeCun, 1998; Ioffe and Szegedy, 2015;
Ren et al., 2015; Redmon et al., 2016).

Visual attention and identification of the regions of interest
allows models to create a bias toward specific structures in the
images which could also be used by a radiologist in the feature
extraction from the MRI images. One might argue that the ML
frameworks that bridge the top-down and the bottom-up model
image processing using bias are hindering the generalization
process of feature identification which is needed by the classifier.
That said, the difficulty of making medical diagnosis from the
MRI images and the limited size of the training data-sets could

be significantly aided by embedding human intelligence to the
model construction.

6. THE FUTURE ROAD MAP

A machine learning based implementation of an intelligent
decision support tool that relies on training and validation
data for a medical practitioner must provide high diagnostic
accuracy, information transparency, and traceable heuristics used
to analyse the source image and conclude the final diagnosis.
These technical ML framework requirements are in addition to
the usability guidelines outlined in the section 2. Latest trends in
the fields of human centered design, human computer interaction
(HCI), interactive visualization, and neural computations could
provide solutions that have low decision making complexity
for a physician, are easily integrated into the existing image
processing work-flow and provide new information for a
diagnostician.

The human centered design of the ML framework
construction has to be focused around the radiologist’s domain
knowledge, as the key design principles of the intelligent assistant
design, model training and evaluation as well as the acceptance or
rejection of a final diagnosis. What is the information extracted
from the source images can be visualized as the activation
maps of the CNN’s learned features (Yosinski et al., 2015). A
heuristic feedback of the model’s information selection and the
classification error analysis can be addressed using actor-critique
models (Fard and Trappenberg, 2017). Understanding the
model’s decision making heuristics can be approached by trading
the deep model paradigms for hierarchical and stacked model
ensembles (Kenji Nakano et al., 2017; Nakano et al., 2017).

The above listed design characteristics are examples of
separate research topics, applied to different problem domains
that have not been integrated into a single ML architecture
(Yosinski et al., 2015; Fard and Trappenberg, 2017; Kenji Nakano
et al., 2017; Nakano et al., 2017). The design requirements
of a radiology DST is similar to the requirements of other
projects such as automated air traffic control, autonomous
transportation systems, or autonomous drone technology.
Beyond the computational requirements, software engineering
challenges and a lack of corpus of training data, we believe
the creation of such ML architecture as an intelligent medical
assistant is feasible.

6.1. Existing Open Source Tools
Over the years, many of the medical image processing research
projects produced open source software tools for image pre-
processing and complex analysis. Since the tool quality varies,
this section summarizes the mature, widely used tools. Table 1
lists both general as well as special purpose tools and frameworks
for MRI processing. The table only lists open-source platforms
that are free to modify and distribute for non-commercial use.
A majority of the tools have source code available which makes
them extendable to implement additional functionality or to
integrate the existing tools into a larger AI framework. To our
knowledge, none of the tools in the list are approved by the U.S.
Food and Drug Administration (FDA) for diagnostic purposes.
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TABLE 1 | A list of current, mature, open-source MRI image processing and ML frameworks as well as the general MRI community portals.

General

NIF https://neuinfo.org/ Neuroscience Information Framework - a neuroscience community portal

Open fMRI https://www.openfmri.org/ Community portal for free and open sharing of raw magnetic resonance imaging

(MRI) datasets

Open source imaging http://www.opensourceimaging.org Developers of open hardware imaging devices and image processing techniques

ANDI http://adni.loni.usc.edu/ The Alzheimer’s disease neuroimaging initiative (ADNI)

Open source frameworks

3D Slicer https://www.slicer.org Rich on features, open source, extendable, multi-platform

Brain Voyager http://www.brainvoyager.com/ Analysis and visualization of structural and functional MRI data combined with EEG or

MEG distributed source imaging

Freesufter http://freesurfer.net/ Both low and high level processing and analyzing of brain MRI images

BrainSuite http://brainsuite.org/ Software tools for automated processing of brain MRIs

SlicerDMRI Diffusion MRI Software for Brain Cancer Research

Brain Atlas http://www.brain-map.org/ A collection of tools for segmentation, registration, and volumetric analysis of the

functional brain centers

Fiber Navigator http://scilus.github.io/fibernavigator/ Fiber visualization and reconstruction toolbox from DTI data

TrackVis http://trackvis.org/ Fiber visualization and reconstruction toolbox from DTI data

Camino http://camino.cs.ucl.ac.uk/ DTI image processing and fuber reconstruction

DTI-tk dti-tk.sourceforge.net DTI image processing with spatial normalization and atlas construction for white

matter morphometry measurements

ANTS
http://stnava.github.io/ANTs/

http://picsl.upenn.edu/software/ants/
Advanced Normalization Tools (ANTs)

ITK-Snap http://www.itksnap.org Segmentation of 3D structures from medical images using active contours

MITK http://mitk.org/ A toolbox for development of interactive medical image processing software

Elastix http://elastix.isi.uu.nl/ A toolbox for rigid and nonrigid registration of images

Gadgetgron http://gadgetron.github.io/ NIH framework for medical image reconstruction

gpuNUFFT http://cai2r.net/resources/software Accelerator gridding library with Matlab interface

BART
http://mrirecon.github.io/bart/

https://lists.eecs.berkeley.edu/sympa/\info/mrirecon
Berkeley Advanced Reconstruction Toolbox

Pulseq http://pulseq.github.io/ Open-source pulse sequences

JEMRIS http://www.jemris.org/ Multi-purpose MRI sequence development and simulation environment

MARIE https://github.com/thanospol/MARIE Magnetic Resonance Integral Equation Suite

NiftyRec https://sourceforge.net/projects/niftyrec/ Reconstruction library

General MRI, imaging or ML libraries

GIMIAS http://www.gimias.org/ A workflow-oriented environment for solving advanced, biomedical image computing

and individualized simulation problems

SPM https://www.fil.ion.ucl.ac.uk/spm/ The analysis of brain imaging data sequences using Statistical Parametric Mapping

as an assessment of spatially extended statistical processes used to test hypotheses

about functional imaging data

FSL https://fsl.fmrib.ox.ac.uk A collection of analysis tools for FMRI, MRI and DTI brain imaging data

PyBrain http://pybrain.org/ Reinforcement Learning, Artificial Intelligence and Neural Network Library

TensorFlow: http://tensorflow.org ML and AI frameworks

Caffe http://caffe.berkeleyvision.org/ A deep ML framework

PyMVPA http://www.pymvpa.org/ Statistical learning analysis platform

Weka https://www.cs.waikato.ac.nz/ml/weka/ Data mining platform

Shogun http://www.shogun-toolbox.org/ Machine learning framework

SciKit Learn http://scikit-learn.org Scientific computation libraries

PRoNTo http://www.mlnl.cs.ucl.ac.uk/pronto/ Machine learning framework

The table includes the standalone, purpose built packages as well as the extendable frameworks for the MRI image processing and machine learning.
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7. THE SUMMARY AND DISCUSSION

In recent years, the fields of computer vision, machine learning,
artificial intelligence and imaging robotics have experienced a
boom due to the availability of large data sets, engineering
of intelligent algorithms, and the support of high throughput
computational platforms (LeCun et al., 2015; Menze et al., 2015;
Alakwaa et al., 2017; Havaei et al., 2017). As a result, the
performance of the AI algorithms analyzing the unstructured
information in the images is approaching or exceeding human
performance on a limited problem domain such as the natural
scene classification or object detection. These trends present
a unique opportunity of applying and integrating currently
developed methods to the largely unexplored problem of
diagnostic analysis of the brain pathologies from theMRI images.

Analysis of the human brain MRI based image sets also
presents a unique set of challenges that must be addressed in
order to build the decision support tools that can be easily
integrated into the existing image-based diagnostic work-flow
used by the radiologists and other medical professionals. The
tool’s goal is to augment the process of a human decision
making rather than replacing a man by a machine. The
tools must eliminate the type 2 diagnostic classification error
(missing a diagnosis). An interactive visualization and alternative
construction of the ML architectures will provide a transparent
and traceable analysis of what is the useful image information and
how did the ML framework arrived at the final diagnosis. This
will also allow for a physician-in-the-loop diagnostic verification.
Finally, the tool has to integrate into the diagnostician’s decision
making stream with a minimum added complexity. These
human centered engineering requirements are in addition to the
technical challenges unique to the analysis of theMRI images that
include detection of diffused features, processing image signal
in the presence of both high and low frequency noise, feature
validation across multiple scopes (local, regional and global),
encoding the feature-to-feature relationship in 3D, and designing
custom hardware and ML framework architectures to support
the computational needs for processing of the 2D and 3D MRI
data sets.

To address these challenges, the radiologist’s expert knowledge
has to be integrated in each step of the image processing work-
flow which is only possible using an iterative human centered
design with a level playing field between the tool’s engineers and
the medical professionals. The technical approach to address the
knowledge transparency and the decision making explanation
is likely to trade a single, deep computational paradigm for
a machine learning framework that consists of a hierarchy
of stacked sub-models that extract and process meaningful
information in the forward direction with the ability to trace-
back the framework’s decision making.

The fundamental requirement to construct a high diagnostic
accuracy ML framework is an availability of a unbiased,
large, diverse, correctly annotated data-set. Currently, the ML
community does not have an access to such data-sets. The
training and validation corpus has to include a hard to detect
tissue anomalies. The data-set has to be annotated and cross-
validated by the radiologists with expert knowledge of the brain
pathologies. The annotation labels have to provide ground-truths
about the imaged tissue on all analytical scales: local, region
and global. The resulting image collections will provide training
heuristics for the ML algorithms to address the hard questions of
early disease detection, monitoring brain’s recovery progress, and
aiding in the disease diagnosis that cannot be done by a naked
eye. The data-set should consist of images taken by the latest
imagine robotics with high resolution and low slice thickness.
That said, even the largest data sets will be considered “small-
data”, in terms of the number of samples, in comparison to
the training images used to train other computer vision neural
networks, and therefore expert guidance in model development
and feature extraction could be used in order to achieve parity
with the state of the art in other computer vision fields with much
larger datasets.
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