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Abstract 
The incidence of hepatocellular carcinoma (HCC) has been increasing in recent years. With the development of various detection 
technologies, machine learning is an effective method to screen disease characteristic genes. In this study, weighted gene co-expression 
network analysis (WGCNA) and machine learning are combined to find potential biomarkers of liver cancer, which provides a new idea 
for future prediction, prevention, and personalized treatment. In this study, the “limma” software package was used. P < .05 and log2 
|fold-change| > 1 is the standard screening differential genes, and then the module genes obtained by WGCNA analysis are crossed 
to obtain the key module genes. Gene Ontology and Kyoto Gene and Genome Encyclopedia analysis was performed on key module 
genes, and 3 machine learning methods including lasso, support vector machine-recursive feature elimination, and RandomForest 
were used to screen feature genes. Finally, the validation set was used to verify the feature genes, the GeneMANIA (http://www.
genemania.org) database was used to perform protein–protein interaction networks analysis on the feature genes, and the SPIED3 
database was used to find potential small molecule drugs. In this study, 187 genes associated with HCC were screened by using the 
“limma” software package and WGCNA. After that, 6 feature genes (AADAT, APOF, GPC3, LPA, MASP1, and NAT2) were selected 
by RandomForest, Absolute Shrinkage and Selection Operator, and support vector machine-recursive feature elimination machine 
learning algorithms. These genes are also significantly different on the external dataset and follow the same trend as the training set. 
Finally, our findings may provide new insights into targets for diagnosis, prevention, and treatment of HCC. AADAT, APOF, GPC3, LPA, 
MASP1, and NAT2 may be potential genes for the prediction, prevention, and treatment of liver cancer in the future.

Abbreviations: DEGs = differentially expressed genes, FC = fold change, GO = Gene Ontology, GS = gene significance, HCC 
= hepatocellular carcinoma, KEGG = Kyoto Gene and Genome Encyclopedia, LASSO = Least Absolute Shrinkage and Selection 
Operator, MM = membership correlation, PPI = protein-protein interaction, RFE = recursive feature elimination, SVM = support 
vector machine, WGCNA = weighted gene co-expression network analysis.
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1. Introduction
Hepatocellular carcinoma (HCC) accounts for about 90% of 
primary liver cancer and is one of the deadliest and most sick 
malignancies in humans.[1,2] At now, early stage liver cancer can 
be efficiently treated by drastic therapy such as surgical resec-
tion, liver transplantation, and local ablation. However, due to 
the subtle beginning and fast development of the illness, most 
HCC patients are detected at middle to late stages, and the over-
all treatment success is mediocre.[3] In recent years, large-scale 

genome-wide association studies and meta-analyses[4–10] have 
discovered common disease-associated variations in the popu-
lation. Such genomic profiling might help uncover prospective 
biomarkers to enhance HCC screening and management by 
enabling risk-stratified customization. This is a potential new 
avenue for early detection and therapeutic therapy of liver 
cancer.

In recent years, gene chip technology has received unprece-
dented attention and rapid development, with the establishment 
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of numerous biological information databases in quick suc-
cession.[11,12] The advancement of these new technologies for 
studying various diseases provides a useful tool and opens up 
new ideas and directions. In recent years, there has been grow-
ing interest in applying machine learning and bioinformatics 
to research.[13–15] By integrating multilayered biological data, 
including genomes, transcriptomics, proteomics, and metab-
olomics, these techniques may enable a more comprehensive 
and systematic understanding of the molecular mechanisms 
and pathophysiology underlying HCC. The weighted gene 
co-expression network analysis (WGCNA) approach can ana-
lyze large-scale gene expression profile data, identify genes 
associated with liver cancer, and extract potential biomarkers 
and therapeutic targets from them.[16] The proper screening of 
differentially expressed genes for bioinformatics analysis is a 
worldwide priority. Investigating discrepancies in gene expres-
sion between case and control groups may prove highly ben-
eficial for elucidating the origins, diagnosis, and treatment of 
diseases.

The focus of this project is to elucidate how bioinformat-
ics, machine learning, and WGCNA approaches can be utilized 
in the study of liver cancer. By contrasting and analyzing gene 
expression data from malignant and normal tissues of liver can-
cer patients, genes and pathways associated with the pathogenesis 
and progression of liver cancer were identified. The genes discov-
ered through these processes were then narrowed down using 
machine learning techniques. To identify potential small molecule 
compounds that may contribute to liver cancer biomarkers, the 
SPIED3 database was also analyzed. With the use of these find-
ings, we aim to improve the diagnosis and management of liver 
cancer, as well as the care and prognosis for liver cancer patients.

GPC3, AADAT, APOF, LPA, MASP1, NAT2, and its related 
molecular activities all have a substantial impact in HCC. GPC3 
(Fang et al, 2022; Li et al, 2023; Zheng et al, 2022) is abun-
dant in cancer tissues, whereas AADAT, APOF, LPA, MASP1, 
and NAT2 are abundant in healthy tissues. According to vari-
ous studies, GPC3 is expressed in a variety of cancers. AADAT, 
APOF, GPC3, LPA, MASP1, and NAT2 have the potential to be 
therapeutic targets for hepatocellular carcinoma.

2. Methods and materials

2.1. Datasets information and data processing

The GSE101685 and GSE136247 datasets were obtained from 
the GEO database (http://www.ncbi.nlm.nih.gov/geo). The 
GSE101685 (GPL570) dataset includes 24 cancerous and 8 
normal liver tissues from liver cancer patients. The GSE136247 
(GPL17586) dataset contains 69 samples, including 39 tissue 
samples from patients with liver cancer and 30 controls of 
normal liver tissue next to cancer. In the microarray dataset, 
probes were replaced by matching gene symbols in subsequent 
analyses (if multiple genes matched, the first gene symbol was 
selected), while probes that did not match any gene were dis-
carded. For all datasets, multiple rows of the same gene sym-
bol were further analyzed by expression value and mean. The 
GSE101685, GSE136247 data sets were merged as the training 
set, and in data processing, batch effects were removed using 
“removeBatchEffect” in the “limma” package for R, and back-
ground correction and normalization were performed using the 
“limma” package. P value < .05 and log2 |fold change (FC) > 1| 
were used as thresholds for screening differentially expressed 
genes (DEGs) in the liver cancer group versus healthy controls.

2.2. Construction of a weighted gene coexpression 
network to identify key genes with HCC

WGCNA identifies potential gene interactions and correlations 
with phenotypes by identifying gene co-expression relationships 

in samples and is used to explore the complex relationships 
between gene expression profiles and phenotypes.[17] The 
WGCNA package (version 1.71) of R software was used to 
analyze the genes in the training set and construct a weighted 
gene co-expression network. The genes were ranked in descend-
ing order by median absolute deviation to take the top 10,000 
genes, and this was used to construct the WGCNA network 
for subsequent analysis. A scale-free network of gene expres-
sion profiles was constructed using a pick soft threshold func-
tion based on a correlation coefficient of R2 > 0.90. Finally, the 
dynamic tree-cutting algorithm was used for module identifica-
tion, and 30 genes were selected as the minimum number for 
each module. Correlations between different modules and dis-
eases were calculated separately, correlations between modules 
and diseases were assessed, and heat maps of module-disease 
correlations were drawn by R software. The module with the 
highest correlation with both phenotypes was used as the key 
module, with genes with gene significance (GS) > 0.2, member-
ship correlation (MM) > 0.8, and a P value of .05 in the key 
module strongly correlated with both disease and module. These 
genes were used as candidate genes for subsequent analyses.

2.3. Functional enrichment analyses

Gene Ontology (GO) and Kyoto Gene and Genome Encyclopedia 
(KEGG) pathway enrichment analyses were performed on 
DEGs screened from liver cancer tissues of liver cancer patients 
and normal liver tissues using the R package “clusterProfiler” 
and the DAVID database[18] (https://david.ncifcrf.gov/tools.jsp) 
to investigate the biological functions and related pathways of 
DEGs. At P .05, the KEGG enrichment analysis was statistically 
significant. The 3 components of the GO analysis were biologi-
cal process, cellular component, and molecular function.

2.4. Candidate gene biomarker identification

Three machine learning algorithms, namely the Least Absolute 
Shrinkage and Selection Operator (LASSO), support vector 
machine (SVM), and RandomForest, were used in this study to 
identify significant HCC diagnostic gene biomarkers. LASSO 
is a regression analysis algorithm with variable selection and 
regularization features that help avoid overfitting and improve 
prediction accuracy. SVM is a widely used supervised machine 
learning technique for classification and regression, while recur-
sive feature elimination (RFE) algorithms can obtain optimal 
combinations of variables to maximize model performance, so 
this study uses the SVM-RFE algorithm to identify characteristic 
biomarkers with better discriminatory power.[19] RandomForest 
can build a classification model, and while building this model, 
the importance of genes to the model can be discriminated and 
classified, the criticality of individual genes to this classifica-
tion can be obtained, and important genes can be filtered out 
in the form of a scoring ranking. Moreover, the RandomForest 
algorithm has a fairly good adaptability to complex data 
and has promising prospects for noisy, non-linear, and other 
high-dimensional genomic data. The overlapping genes calcu-
lated by the above 3 algorithms were used as candidate gene 
biomarkers, and their expression levels in liver cancer were fur-
ther validated using different datasets.

2.5. PPI (protein–protein interaction) network construction

GeneMANIA (http://www.genemania.org) is a website that 
allows users to build PPI networks that may be used to pre-
dict gene function and discover genes with comparable 
outcomes.[20] Network ensemble algorithms employ bioinfor-
matics approaches such as physical interaction, co-expression, 
co-localization, gene enrichment analysis, genetic interaction, 

http://www.ncbi.nlm.nih.gov/geo
https://david.ncifcrf.gov/tools.jsp
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and locus prediction. GeneMANIA was utilized in this study to 
evaluate the PPI networks of feature genes.

2.6. Potential small molecule drugs for the treatment of 
liver cancer

The SPIED3 database (http://www.spied.org.uk/cgi-bin/
HGNC-SPIED3.1.cgi) is a web-based tool designed to facili-
tate fast and simple quantitative queries on publicly available 
gene expression data.[21] The query distribution is associated 
with a given SPIED3 entry based on probability scores from 
a Pearson regression analysis of continuous expression pro-
file queries or a cumulative binomial distribution ranked 
according to gene probabilities estimated from the database 
frequency of discrete expression queries. The output lists 
the SPIED3 entries that are significantly correlated based 
on the score ranking. The genes and their expression trends 
obtained from the screening are imported, and the individual 
small-molecule compounds that can reverse the expression of 
uploaded genes and promote down-regulated gene expression 
are screened by ranking. These compounds have the potential 
to treat liver cancer.

3. Result

3.1. DEG screening and data preprocessing

Figure  1A depicts the principal component analysis (PCA) 
results before eliminating the batch effect for numerous data-
sets, with different colors indicating distinct datasets. Both 
datasets are split as illustrated, with no crossing. Figure  1B 
depicts the PCA findings after batch elimination. As demon-
strated, the intersection of the 2 datasets may be utilized as a 
batch for further analysis. At P value < .05 and log2FC > 1, 
621 genes were identified as DEGs, with 145 genes 
up-regulated and 476 genes down-regulated. The heatmap in 
this paper depicts the log2FC of the DEGs in the control and 
tumor group, as shown in Figure 1C, where each column rep-
resents the expression of a different gene in the same sample, 
and each row represents the expression of the same gene in 
different samples. Warm colors represent up-regulated genes 
and cold colors reflect down-regulated genes, with darker col-
ors representing more pronounced up- or down-regulation. 
The volcano plot can be used to show the distribution of the 
difference in gene expression levels between 2 groups of sam-
ples, with the X-axis log2FC, and the genes with greater dif-
ferences are distributed with the X-axis at the 2 ends. The 

Figure 1.  (A and B) PCA of HCC and control samples. (C) Heat map of DEG. (D) Volcano plot of DEGs. DEGs = differentially expressed genes, HCC = hepato-
cellular carcinoma, PCA = principal component analysis.

http://www.spied.org.uk/cgi-bin/HGNC-SPIED3.1.cgi
http://www.spied.org.uk/cgi-bin/HGNC-SPIED3.1.cgi
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Y-axis is represented by −log10 P value, the result is shown in 
Figure 1D, the red dots represent up-regulated genes, the blue 
dots are down-regulated genes, and the gray dots are stable 
genes.

3.2. Weighted gene co-expression network construction

The GSE101685 and GSE136247 datasets were retrieved 
from the GEO data, and 38 normal samples and 63 liver 
cancer samples were selected to cluster the samples prefer-
entially and to exclude the obviously abnormal samples by 
setting the threshold, as shown in Figure 2A. Then, as shown 
in Figure 2B, we set the soft threshold to 10 when R2 > 0.9 
and the average connectivity was high. After merging strongly 
associated modules using the 0.5 clustering height restriction 
(Fig.  2C), 9 modules were identified for further study. The 
initialized and merged modules are finally shown under the 
clustering tree (Fig. 2D). Next, correlations between modules 
were examined, and the results showed no significant asso-
ciations between them (Fig.  2E). Transcriptional correlation 
analysis within modules proved the reliability of the mod-
ule delineation, showing no substantial association between 
modules (Fig.  2F). Positive correlations between ME values 
and clinical features were applied to explore the association 
between modules and clinical symptoms. The blue module 
was positively correlated with normal (R = 0.79, P = 5e−08) 
and negatively correlated with HCC (r = −0.79, P = 5e−0.8), 
whereas the turquoise module was negatively correlated with 
normal (R = 0.8, P = 3e−08) and positively correlated with 
HCC (r = −0.8, P = 3e−08) (Fig.  2G). Identification of clini-
cally meaningful modules. The results showed that the blue 
and blue-green modules were highly correlated with HCC in 

the scatter plot of control MM versus GS (Fig. 2H) and HCC 
MM versus GS (Fig.  2I). Further testing was performed for 
key genes in both modules.

3.3. DEGs and functional analysis of key module genes

We obtained 51 key up-regulated genes by taking the intersec-
tion of the key genes from the greenyellow module of WGCNA 
with the up-regulated differential genes (Fig.  3A), and then 
136 key down-regulated genes by intersecting the key genes 
from the blue module with the down-regulated differential 
genes (Fig. 3B), resulting in a total of 187 key genes associ-
ated with the disease. We performed a functional analysis to 
better understand the biological activities of the key genes in 
the module (Table S1, Supplemental Digital Content, http://
links.lww.com/MD/K992). The findings of GO enrichment 
analysis indicated that these genes were connected to “car-
boxylic acid biosynthetic process,” “carboxylic acid catabolic 
process,” “chromosomal region,” “chromosome, centromeric 
region,” “heme binding,” “iron ion binding,” and so on, as 
illustrated in Figure 3D (The X-axis is the GO term, the Y-axis 
is the number of genes, and the brown, orange and purple col-
ors represent the 3 gene functions biological process, cellular 
component and, molecular function, respectively). The KEGG 
results point to a probable connection to “metabolic path-
ways,” “xenobiotic metabolism by cytochrome P450,” “reti-
nol metabolism,” “chemical carcinogenesis – DNA adducts” 
and “drug metabolism—cytochrome P450” (Fig.  3C, The 
X-axis is the P value and the Y-axis is the hsa ID, the size 
of the circle represents the number of genes enriched in this 
pathway, and the color from blue to yellow represents the size 
of the P value).

Figure 2.  Construction of WGCNA co-expression network. (A) Sample clustering dendrogram with tree leaves corresponding to individual samples. (B) Soft 
threshold b = 10 and scale-free topological fit index (R2). (C) Clustered dendrograms were cut at a height of 0.5 to detect and combine similar modules. (D) The 
original and combined modules under the clustering tree. (E) Collinear heat map of module feature genes. Red color indicates a high correlation and blue color 
indicates opposite results. (F) Clustering dendrogram of module feature genes. (G) Heat map of module–trait correlations. Red represents positive correlations 
and blue represent negative correlations. (H) MM versus GS scatter plot of HCC. (I) MM versus GS scatter plot of Normal. GS = gene significance, HCC = 
hepatocellular carcinoma, MM = membership correlation, WGCNA = weighted gene co-expression network analysis.

http://links.lww.com/MD/K992
http://links.lww.com/MD/K992
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3.4. Selection of feature genes

The above genes were used to isolate the feature genes used to 
diagnose HCC. SVM is a regression or classification-supervised 
machine learning technique that requires a training set with 
labels. SVM-RFE is a machine learning technique that trains 
a subset of features from different classes to narrow down 
the feature set and find the most predictive features (Table 
S2, Supplemental Digital Content, http://links.lww.com/MD/
K993, Fig.  4A). To compute and select linear models and 
retain valuable variables, a LASSO regression was performed 
using the “glmnet” package in R. Binomially distributed vari-
ables were then used for LASSO classification, combined with 
a standard error λ value as a minimum criterion (1-SE crite-
rion) to construct the model, which had good performance 
(Table S3, Supplemental Digital Content, http://links.lww.
com/MD/K994, Fig.  4B and C). Genes were ranked using 
RandomForest, and their relative values above 0.25 were con-
sidered to be typical causes of chance (Table S4, Supplemental 
Digital Content, http://links.lww.com/MD/K995, Fig.  4D 
and E). We used the Venn diagram to find the 6 genes that 
overlapped using the intersection of the 3 methods described 
above (Fig. 4F).

3.5. Validation of gene expression

Using the combined training set data from GSE101685 and 
GSE136247, we validated the expression of these 6 genes 
in HCC and discovered that AADAT, APOF, LPA, MASP1, 
and NAT2 were dramatically decreased in HCC except for 
GPC3, which was significantly upregulated in HCC (Figure 
S1A, Supplemental Digital Content, http://links.lww.com/
MD/K997). Furthermore, the validation dataset GSE84402 

revealed that GPC3 was dramatically increased in HCC, 
whereas AADAT, APOF, LPA, MASP1, and NAT2 were 
all abundantly expressed in normal tissues (Figure S1B, 
Supplemental Digital Content, http://links.lww.com/MD/
K997). As shown, 6 genes were significantly different in both 
control and tumor groups in both datasets with a consistent 
trend. It proves the reliability of this study. Gene correlation 
is also studied in this paper. As shown in Figure 5, the lower 
left corner represents the correlation value, the size of the cir-
cle in the upper right corner represents the correlation, red 
represents negative correlation, and blue is positive correla-
tion. These 6 genes have strong correlation, which proves that 
they may have some kind of intrinsic connection with each 
other. In addition, AADAT, APOF, LPA, MASP1 and NAT2 are 
positively correlated, which suggests that 5 genes other than 
GPC3 may have similar effects in disease expression.

3.6. Trait gene interaction analysis

We created a PPI network of feature genes using the GeneMANIA 
database (Fig.  6A, the 6 circles in the middle represent the 6 
genes, and the outer circles represent the genes associated with 
the 6 genes, with the larger the circle the higher the correlation). 
GO/KEGG analysis was done on 6 genes to further study the 
activities of the distinctive genes. The core genes were related 
with “organic cyclic compound catabolic process,” “steroid met-
abolic process,” “blood microparticle,” “regulation of hormone 
levels,” and “small molecule catabolic process” according to GO 
analysis (Fig. 6B). The KEGG analysis revealed that these genes 
were associated with “metabolic pathways,” “complement and 
coagulation cascades,” “coronavirus disease – COVID-19,” “ret-
inol metabolism,” and “steroid hormone biosynthesis” (Fig. 6C).

Figure 3.  Functional analysis of key module genes merged with DEGs. (A and B) Venn diagram of key module genes versus DEGs. (C) GO analysis. (D) KEGG 
analysis. DEGs = differentially expressed genes, GO = Gene Ontology, KEGG = Kyoto Gene and Genome Encyclopedia.

http://links.lww.com/MD/K993
http://links.lww.com/MD/K993
http://links.lww.com/MD/K994
http://links.lww.com/MD/K994
http://links.lww.com/MD/K995
http://links.lww.com/MD/K997
http://links.lww.com/MD/K997
http://links.lww.com/MD/K997
http://links.lww.com/MD/K997
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3.7. Small molecule drug candidates

The identified important genes and their expression patterns 
were entered into the SPIED3 database to forecast prospec-
tive medicines that might reverse critical expression changes. 
Furthermore, SPIED3 database revealed that metamizole sodium 
was the co-occurring medicine with the highest overall score 
(Table S5, Supplemental Digital Content, http://links.lww.com/
MD/K996). These chemicals have the potential to cure HCC.

4. Discussion
Globally, liver cancer is the most common fatal malignancy. As 
the liver involves extensive physiological functions, strong com-
pensation, and no distribution of peripheral nerves, early symp-
toms of liver cancer are not obvious and can easily be overlooked, 
thus missing the best time for treatment and being detected only 
at an advanced stage, leading to increased difficulty in treatment 
and a poor prognosis. Cancer cells of advanced hepatocellu-
lar carcinoma are extremely active in growth, highly invasive, 

prone to invade the periphery and blood vessels, local spread 
and bloodstream metastasis, affecting prognosis.[3,22] As a result, 
new therapeutic approaches[23–26] are urgently needed. Thus far, 
the exploration of new genetic targets will provide new ideas for 
liver cancer treatment and therapeutic strategies.[27,28] Molecular 
research and bioinformatics techniques have been rapidly devel-
oped in recent decades.[29–33] Through the enrichment analysis of 
molecular functions, biological processes, and cellular compo-
nents, molecular biology can provide clues for a comprehensive 
and further study of how gene variants and co-expression affect 
protein function and disease progression. At the same time, the 
emerging WGCNA is increasingly being used for associations 
between diseases and associated phenotypes and highly corrected 
gene module.[34–36] Several studies have elucidated the role of 
hub genes and their underlying molecular mechanisms in HCC 
patients through WGCNA analysis. With the development of 
various detection technologies, machine learning is an effective 
method to screen disease characteristic genes. With the advance-
ment of artificial intelligence, machine learning is a way to screen 
for genes that characterize diseases has also come on strong. 

Figure 4.  Feature gene selection. (A) Biomarker signature gene expression validation by support vector machine recursive feature elimination (SVM-RFE) algo-
rithm selection. (B and C) Adjustment of feature selection in the minimum absolute shrinkage and selection operator model (lasso). (D) RandomForest error rate 
versus the number of classification trees. (E) The top 47 relatively important genes. (F) Three algorithmic Venn diagram screening genes.

http://links.lww.com/MD/K996
http://links.lww.com/MD/K996
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Machine learning algorithms can learn from large amounts of 
medical data and automatically identify patterns and regularities 
to assist doctors in making diagnoses.[37,38] In addition, machine 
learning algorithms can analyze data such as historical cases and 
biomarkers to predict the type of disease[39,40] and the level of risk 
that a patient may be suffering from, and take early intervention 
measures to reduce the incidence of medical errors. After we ini-
tially obtained the DEGs, we applied WGCNA combined with 
machine learning to further screen the biomarkers. The biomark-
ers found provide a reference for the early prevention, timely 
diagnosis and treatment of liver cancer, and the expression of 
these biomarkers in the patient's body can be used to set up a 
personalized treatment plan.

In view of this, we aim to broaden the horizons of studying the 
physiological, pathological, and molecular mechanisms of HCC 

through bioinformatics and provide new therapeutic targets for 
clinical treatment. In this study, 621 DEGs were screened, and 
145 genes were found to be up-regulated and 476 genes were 
found to be down-regulated. 187 genes were obtained from 
WGCNA analysis by screening the corresponding modules most 
associated with disease and most associated with normal and 
intersecting the differential genes. Subsequent GO enrichment 
analysis was obtained and showed that all genes were mainly 
associated with carboxylic acid biosynthetic process, carboxylic 
acid catabolic process, chromosomal region, chromosome, cen-
tromeric region, heme binding, iron ion binding, while KEGG 
enrichment analysis showed association with Metabolic path-
ways, Metabolism of xenobiotics by cytochrome P450, retinal 
metabolism, Chemical carcinogenesis - DNA adducts, Drug 
metabolism – cytochrome P450. The results of RandomForest, 

Figure 5.  Validation of gene expression correlation between key genes.

Figure 6.  Interaction analysis of key genes. (A) Characterized gene co-expression network. (B) GO analysis of co-expressed genes. (C) Co-expressed gene 
KEGG analysis. GO = Gene Ontology, KEGG = Kyoto Gene and Genome Encyclopedia.
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SVM-RFE, and LAASO regression analyses were taken from 
the intersection set to identify 6 hub genes. The validation data-
set confirmed that GPC3 was highly expressed in HCC, and 
AADAT, APOF, LPA, MASP1, and NAT2 were highly expressed 
in normal samples, consistent with the results of the training 
set analysis. The latter 5 genes were highly similar in biological 
function, suggesting that the signature genes are associated with 
disease progression.

Unlike the latter 5 genes mentioned above, GPC3 has been 
well documented in HCC studies. is a tumor fetal proteoglycan 
anchored to the cell membrane and is commonly detected in fetal 
liver but not in healthy adult liver.[41,42] To predict the diagnostic 
value of serum GPC3 in patients with HCC, a meta-analysis by 
Yang et al showed an association between GPC3 expression and 
HCC patient.[43] Another study pointed to GPC3 as a potential 
novel therapeutic target for osteosarcoma[44]; Yu et al[45] found 
that the expression of GPC3 protein was significantly higher 
in lung squamous cell carcinoma than in lung adenocarcinoma. 
GPC3 may be a candidate marker for detecting lung squamous 
cell carcinoma. These diverse studies imply that GPC3 is a very 
diagnostic gene and also remind us that further, more compre-
hensive, and in-depth studies are needed to determine the link 
between GPC3 and HCC patients.

AADAT, APOF,[46,47] LPA,[48] MASP1, and NAT2 are all 
reduced in HCC and are also neuroprotective factors. These 5 
genes' expression was likewise lower in cancer samples than in 
normal tissues. And the results of the GeneMANIA database 
revealed that these 5 genes had close co-expression interactions. 
At the moment, no literature has clearly identified the precise 
mechanism of action of these 5 genes on cancer, and further 
study is required to determine the unique process of the 5 genes 
that may diagnose or treat liver cancer.

Among the small molecule compounds screened, there was an 
association between nonselective β-blockers and reduced risk of 
HCC in cirrhosis.[49] The small molecule compound nadolol has 
been reported to be associated with a reduced risk of HCC in 
patients with cirrhosis,[50] but there are no reports demonstrat-
ing that biperiden, metamizole sodium, and H-7 are associated 
with HCC treatment, and their potential for treating HCC may 
be related to the modulation of key genes, which needs to be 
investigated further.

Our study also has some limitations. We use data from pub-
lic databases, which come from different platforms and are not 
directly comparable. There are some differences in the inclusion 
criteria of data sets, generally a lack of corresponding clinical 
data, and some data sets have fewer clinical samples. In addi-
tion, our study is limited to the transcriptome level, and the 
significance of the findings needs to be further verified by pro-
spective clinical and basic experiments. In conclusion, our study 
identified GPC3, AADAT, APOF, LPA, MASP1, and NAT2 as 
potential biomarkers for HCC by applying WGCNA and ana-
lyzing HCC transcriptome data. It provides a new perspec-
tive for exploring the pathogenesis of liver cancer and a new 
research clue for preventing the occurrence and development of 
liver cancer.

5. Conclusion
We conducted a thorough, in-depth study of linked genes and 
pathways in order to investigate the specific diagnosis of the 
relationship with HCC as well as possible therapeutic genes. 
Our identification of 6 hub genes (GPC3, AADAT, APOF, LPA, 
MASP1, and NAT2) will widen our understanding of molecu-
lar pathways and provide more possible therapeutic targets for 
clinical therapy, which will also need more research to confirm 
and develop. GPC3 was identified as the most likely target in 
HCC and several other cancers in subsequent investigations, 
providing hope for the therapy of human immune-related ill-
nesses and even cancer.
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