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Hypervirulent Klebsiella pneumoniae (hvKp) can cause life-threatening community-
acquired infections among healthy young individuals and is thus of concern for global
dissemination. In this study, a mouse model of acute primary hvKp pneumonia was
established via aerosolized intratracheal (i.t.) inoculation, laying the foundation for
conducting extensive studies related to hvKp. Subsequently, a time-course
transcriptional profile was created of the lungs from the mouse model at 0, 12, 24, 48
and 60 hours post-infection (hpi) using RNA Sequencing (RNA-Seq). RNA-Seq data were
analyzed with the use of Mfuzz time clustering, weighted gene co-expression network
analysis (WGCNA) and Immune Cell Abundance Identifier for mouse (ImmuCellAI-mouse).
A gradual change in the transcriptional profile of the lungs was observed that reflected
expected disease progression. At 12 hpi, genes related to acute phase inflammatory
response increased in expression and lipid metabolism appeared to have a pro-
inflammatory effect. At 24 hpi, exacerbation of inflammation was observed and active
IFN-g suggested that signaling promoted activation and recruitment of macrophages
occurred. Genes related to maintaining the structural integrity of lung tissues showed a
sustained decrease in expression after infection and the decrease was especially marked
at 48 hpi. TNF, IL-17, MAPK and NF-kB signaling pathways may play key roles in the
immunopathogenesis mechanism at all stages of infection. Natural killer (NK) cells
consistently decreased in abundance after infection, which has rarely been reported in
hvKp infection and could provide a new target for treatment. Genes Saa1 and Slpi were
significantly upregulated during infection. Both Saa1, which is associated with
lipopolysaccharide (LPS) that elicits host inflammatory response, and Slpi, which
encodes an antimicrobial protein, have not previously been reported in hvKp infections
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and could be important targets for subsequent studies. To t our knowledge, this paper
represents the first study to investigate the pulmonary transcriptional response to hvKp
infection. The results provide new insights into the molecular mechanisms underlying the
pathogenesis of hvKp pulmonary infection that can contribute to the development of
therapies to reduce hvKp pneumonia.
Keywords: hypervirulent Klebsiella pneumoniae, molecular pathology, lung, time-course transcriptome, inflammation
INTRODUCTION

Klebsiella pneumoniae is a Gram-negative commensal bacterium
and opportunistic pathogen found ubiquitously in the
environment. It often colonizes on human mucosal surfaces
and causes various nosocomial infections in the respiratory
tract, lung, urinary tract, wound sites and blood (Podschun
and Ullmann, 1998). Moreover, it is one of the few Gram-
negative bacteria capable of causing primary pneumonia
(Restuccia and Cunha, 1984) and is a major cause of hospital-
acquired pneumonia (Magill et al., 2018). K. pneumoniae strains
are classified into two distinct pathotypes: classic K. pneumoniae
(cKp) and hypervirulent K. pneumoniae (hvKp) (Catalán-Nájera
et al., 2017; Russo and Marr, 2019). The majority of infections
caused by K. pneumoniae come from the “classical” strains of
cKp (Shon et al., 2013). In contrast to cKp, hvKp is more virulent
and capable of causing severe organ or life-threatening
infections, such as pneumonia, hepatic abscess, meningitis and
necrotizing fasciitis, in healthy individuals from community
settings (Fang et al., 2007; Lederman and Crum, 2005; Patel
et al., 2014; Pomakova et al., 2012). Although community-
acquired pneumonia (CAP) due to hvKp is uncommon
(Choby et al., 2020), it is noteworthy that bacterial CAP due to
hvKp has higher mortality and respiratory failure rates compared
with Streptococcus pneumoniae, the leading cause of CAP
globally (Lin et al., 2010). In the past few decades, hvKp has
spread globally and the incidence of infections has been
increasing steadily (Lederman and Crum, 2005; Pomakova
et al., 2012). Hence, a better understanding of hvKp
pulmonary infection is warranted.

Mechanisms of hvKp infection pathogenesis and hvKp-host
interactions are complex. Lipopolysaccharide (LPS), a major
component of the outer membrane of K. pneumoniae
(Whitfield and Trent, 2014), is recognized by the key pattern
recognition receptor, toll-like receptor 4 (TLR4), which triggers
the innate immune response (Akira et al., 2006; Scott et al.,
2017). One of the most prominent bacterial phenotypes
associated with hvKp is overproduction of capsule
polysaccharide (CPS) (Yu et al., 2008), which leads to a
hypermucous phenotype. Overproduction of CPS impairs
complement-mediated bacterial killing and phagocytosis via
neutrophils and macrophages, which directly correlates with
host resistance to hvKp (Cheng et al., 2010; Catalina et al.,
2013). Macrophages are essential for controlling K.
pneumoniae replication and regulating the inflammatory
response at different tissue sites, such as the lung, liver and
spleen (Olonisakin et al., 2021). Monocytes are heterogeneous
gy | www.frontiersin.org 2
cells capable of displaying proinflammatory or immuno-
regulatory phenotypes, depending on the nature of the
microenvironment at the site of infection (Peñaloza et al.,
2019). Inflammatory monocytes are required to clear K.
pneumoniae from the lung (Xiong et al., 2016), while anti-
inflammatory monocytes are recruited to the lung at later
stages of K. pneumoniae infection and appear to play a
beneficial role by mediating the clearance of apoptotic
neutrophils (Poe et al., 2013). Overall, these results indicate
that hvKp infection may induce discriminatory gene
expression patterns in different types of host cells with
different effects on specific cell types.

The lung is both a major immune organ in vertebrates and an
important target organ for hvKp infection. Thus, a detailed
description of hvKp pulmonary infection is necessary to
explore the mechanisms of hvKp-host interactions. RNA-Seq, a
recently developed method for high-throughput transcriptome
sequencing (Hong et al., 2017), can reveal dynamic changes
in host gene expression during pathogen infection and has
been used to study various viral infections and diseases
(He et al., 2017; Arun et al., 2018). Based on the above, we
performed time-course RNA sequencing of lung tissues from
mice with primary hvKp pneumonia to investigate transcription
profile changes in hvKp-infected lungs and to screen for
genes or other valuable research targets. This study promotes
our understanding of pathogenesis associated with hvKp
pulmonary infection.
MATERIALS AND METHODS

Bacterial Strain and Growth Conditions
While no molecular diagnostic nor microbiological consensus
exists for the definition of hypervirulence (Harada and Doi, 2018;
Shan et al., 2006), the NTUH-K2044 hvKp strain has been
recognized as hypervirulent given it possesses the magA and
rmpA genes, belongs to capsular serotype K1, has high virulence
and hypermucoviscosity (Fang et al., 2004; Chuang et al., 2006;
Yu et al., 2006; Yeh et al., 2007). In this study, hvKp strain
NTUH-K2044 was inoculated into Brain Heart Infusion (BHI)
broth (BD Biosciences, Lawrence, KS) and grown overnight at
37°C with continuous shaking at 220 rpm. The overnight culture
was diluted with BHI at 1:200 and incubated at 37°C with
shaking for 3 h to achieve OD600 = 1.5. Then the culture was
further diluted and incubated for another 2.5 h. The final culture
was centrifuged, washed and resuspended in phosphate-buffered
saline (PBS) to achieve OD600 = 1.0, a concentration of about
April 2022 | Volume 12 | Article 833080
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6 x 108 CFU/mL. The actual infection dose in each experiment
was determined by serial dilution plating on BHI agar.

Mice Infection
Female C57BL/6Cnc mice aged 6-8 weeks were purchased from
Vital River Laboratories (Beijing, China). Mice were exposed to
aerosolized hvKp (2 x 104 CFU in 50 mL PBS per mouse) via
aerosolized intratracheal inoculation as previously described
(Feng et al., 2019). Briefly, each mouse was deeply anesthetized
with pentobarbital sodium, a Micro Sprayer (Huironghe
Company, Beijing, China) was inserted into the tracheal
bifurcation of the mouse and hvKp aerosol was then generated
by the Micro Sprayer and sprayed into the lung. Following
exposure, survival was monitored twice daily for 14 days.
Animals were randomly divided into four infection groups and
one control group (five mice per group), and the infected mice
were euthanized at 12, 24, 48 and 60 h post-infection (hpi) while
the control group mice were euthanized immediately after
delivery of PBS at the 0 h time point. The lungs of the mice
were isolated and divided into two parts for subsequent
histopathologic examination or total RNA extraction. All
animal experiments were performed in the Laboratory Animal
Center of Academy of Military Medical Science (AMMS),
approved by the Animal Care and Use Committee (IACUC) of
AMMS, and the ethical approval number was IACUC-DWZX-
2020-050.

Histopathological Validation
Collected lungs were fixed in 4% paraformaldehyde, and the
fixed tissues sliced, mounted on slides, and stained with
hematoxylin-eosin (HE). Pathological changes in tissue slices
were observed by light microscopy (BX60, Olympus, Japan).
Tissue sections were evaluated by a trained pathologist (blind to
treatment) according to the following scores: 0, no pathological
lesions; 1, minimal; 2, mild; 3, moderate; 4, severe. The degree of
pathological lesions was related to the distribution of lesions as
follows: inflammatory cell infiltration, edema, congestion, and
tissue necrosis. Pathology scores were assessed using one-way
multilevel ANOVA in SAS 9.3.

RNA Extraction, Library Preparation,
and Sequencing
The collected lungs were submerged in RNAlater stabilization
solution (Invitrogen, Carlsbad, CA, USA) and total RNA was
extracted using an RNA purification kit (Invitrogen, Carlsbad,
CA). The concentration and purity of the extracted RNA were
measured using a Nanodrop 2000c spectrophotometer (Thermo
Fisher, Waltham, Massachusetts, USA). Library construction and
sequencing were conducted by the Novogene Company in
Beijing, China. No less than 1 mg of RNA per sample was used
as the input material for RNA sample preparation. Sequencing
libraries were generated using NEBNext® Ultra TMRNA Library
Prep Kit for Illumina® (NEB, Ipswich, MA, USA). The library
preparations were sequenced using the Illumina sequencing
platform (HiSeq™ 2500, Illumina, San Diego, California,
USA), sequenced reads from all samples were mapped to the
reference genome (mouse) using Hisat2 v2.0.5, and then
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
fragments per kilobase of exon per million fragments mapped
(FPKM) values were calculated for each gene based on gene
length. FPKM (Florea et al., 2013) was used as the unit of
measurement to estimate transcript abundance.

Identification of DEGs and
Bioinformatics Analysis
To normalize the RNA-Seq data, differential expression analysis
was performed using the edgeR package in R (Smyth, 2010).
Triplicates of the RNA-Seq experiments were analyzed separately
and resulting p-value were adjusted using Benjamini and
Hochberg’s approach for controlling false discovery rate (FDR)
(Love et al., 2014). The selection criteria for differentially expressed
genes (DEGs) in this study was an adjusted p–value <0.05 and an
absolute fold change >2 or <0.5. To assess quality of the data,
principal component analysis (PCA) was used to examine the
distribution of samples. Based on the Gene Ontology (GO)
database (http://geneontology.org/) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (https://www.genome.jp/
kegg/), the Clusterprofiler (Guangchuang et al., 2012) package of R
was applied to perform functional enrichment and pathway
analys is , wi th corrected p-va lue <0.05 considered
significantly enriched.

Time Series Gene Clustering
Soft cluster analysis using the fuzzy C-Means algorithm in the
Mfuzz package (Futschik and Carlisle, 2011; Kumar and
Futschik, 2007) was conducted to assign genes to clusters
according to the expression pattern of DEGs. The number of
clusters was set to nine and the fuzzifier coefficient, M, was set
to 1.71.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
To identify modules with different expression patterns, a
weighted correlation network analysis (WGCNA) was
conducted for the 15 lung samples using the WGCNA package
(Langfelder and Horvath, 2009) in R. The WGCNA input data
were normalized values for each transcript and correlations
between any two genes were first collected and analyzed by
Pearson correlation coefficients to form a similarity matrix
(Ivliev et al., 2010). At the same time, the topological overlap
matrix (TOM) method was employed to take both direct and
indirect relationships into account. Then, the hierarchical
clustering tree was used to generate a division of gene modules
based on the TOM values between genes. The module with the
highest correlation for the sample characteristics was selected for
further analysis.

Immune Infiltration Analysis
Immune Cell Abundance Identifier (ImmuCellAI) is a tool to
accurately estimate immune cell abundance from gene
expression datasets, including RNA-Seq and microarray data
(Miao et al., 2020). Immune Cell Abundance Identifier for mouse
(ImmuCellAI-mouse) is used as a complement to ImmuCellAI
to estimate the abundance of 36 immune cell (sub)types in
mouse transcriptome data (Miao et al., 2021). ImmuCellAI-
April 2022 | Volume 12 | Article 833080
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mouse simulated the process of flow cytometry analysis by
adopting a hierarchical strategy, dividing 36 cell types into
three layers. Layer 1 is composed of seven major immune cell
types: B cells, monocytes, dendritic cells (DCs), natural killer
(NK) cells, granulocytes, macrophages and T cells. Cells in layer
2 are subtypes of cells in the first layer, including subtypes of B
cells (B1, follicular B, germinal center B, marginal zone B,
memory B and plasma B cells), subtypes of DCs (cDC1, cDC2,
MoDC and pDC cells), subtypes of granulocytes (basophil,
eosinophil , mast cell and neutrophils) , subtypes of
macrophages (M1 and M2 macrophages) and subtypes of T
cells (CD4 T, CD8 T, NKT and gamma-delta T cells). Finally,
cells in layer 3 are subtypes of CD4 T and CD8 T cells (including
CD4+ naïve, CD4+ memory, Treg, T helper, CD8+ naïve, CD8+
central memory, CD8+ effector memory, cytotoxic and
exhausted cells).
Validation of RNA-Seq by qRT-PCR
To validate the results of the RNA-Seq data, 12 DEGs were
randomly selected for qRT-PCR validation based on their
expression patterns at four time points. RNA samples were
reverse-transcribed into cDNA using the TransScript One-Step
gDNA Removal and cDNA Synthesis SuperMix (TransGen
Biotech, Beijing, China). Primers used in this study have been
previously published or can be found in PrimerBank (https://pga.
mgh.harvard.edu/primerbank/); primer sequences are listed in
Table 1. qRT-PCR was performed using the LightCycler 96 RT-
PCR Detection System (Roche, Basel, Switzerland). Each reaction
mixture was 20 mL in total, containing 10 mL of SYBR qPCR
Master Mix (QIAGEN, Dusseldorf, Germany), 0.7 mL of each
upstream and downstream primers (7 mM), 1 mL of cDNA
template, and 7.6 mL of ddH2O. The following reaction
procedure was used: 95°C for 120 s, then 42 cycles at 95°C for
15 s and 60°C for 30 s. Each experiment was performed in
triplicate. The relative expression values of selected genes were
calculated using the 2-DDCt method and normalized against
expression levels of the b-actin gene. Correlation between the
RNA-Seq and qRT-PCR data was analyzed using Pearson’s
correlation coefficient.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
RESULTS

Histopathological Changes in the Lungs
To explore the influence of hvKp on the survival time of mice, we
recorded death and survival events for 14 days after infection.
Mice started to die in large numbers 2.5 days after infection, with
a mortality rate of 80%; at 4 days post-infection, mortality rate
was 100% (Figure 1A). Therefore, we chose the five time points
of 0, 12, 24, 48 and 60 hpi for subsequent experiments and
analysis. Histopathological changes in HE-stained lung tissues
revealed an intense and continuously increased inflammatory
cell infiltration composed of neutrophils and monocytes during
the infection (Figure 1B, 12-60 hpi). At the last stage of infection
(60 hpi), most alveolar cavities were filled with edematous fluid,
lung tissue was extensively hemorrhaged and tissue structures
were locally destroyed (Figure 1A, 60 hpi). These pathological
changes were absent in the lungs of control group mice
(Figure 1C, 0 hpi). Histological scoring also revealed that the
severity of lung lesions increased over time (Figure 1B).
Histopathological validation indicated that hvKp caused
excessive acute inflammation and severe lung injury in mice.
Hence, the mouse model of acute primary hvKp pneumonia was
successfully established, and all subsequent experiments were
performed based on this animal model.

Overview of Transcriptome Analysis
We isolated hvKp infected lung tissue for RNA-Seq and recorded
gene expression profiles at each time point. To assess the quality
of the data, principal component analysis (PCA) was used to
examine the distribution of samples (Figure 2A). The first
principal component (PC1) accounted for 39.8% of the total
expression variance for the top 1000 most variable genes. The
expression matrices of the control and hvKp infected groups
separated out along the PC1 axis, with the control group found at
one end of the axis, the 12 and 24 hpi groups clustered together
distinctly away from the control group, and the 48 and 60 hpi
groups also clustered together and even further along the axis
away from the control group. Thus, difference in gene expression
profiles after hvKp infection indicate an altered transcriptional
profile intrinsic to the lung.
TABLE 1 | Primers sequences used for qRT-PCR in this study.

Gene Forward primer sequence Reverse primer sequence

AA467197 5’-ATCTTTCGCTTTGTATGCGTTGA- 3’ 5’-GGCTTCCATTGCTGGTTGATG- 3
Adamts4 5’-ATGGCCTCAATCCATCCCAG- 3 5’-AAGCAGGGTTGGAATCTTTGC- 3’
Cyp27a1 5’-CCAGGCACAGGAGAGTACG- 3’ 5’-GGGCAAGTGCAGCACATAG- 3’
Faim2 5’-GACCCCAGACATCACGAGC- 3’ 5’-GGTTAGCCTGGACATAGTCCTTA- 3’
Igsf6 5’-TTCCAAGTCGGTATGGTGGGT- 3’ 5’-CGAAACCACAAGCTCTTTGGTG- 3’
Serpine1 5’-TTCAGCCCTTGCTTGCCTC- 3’ 5’-ACACTTTTACTCCGAAGTCGGT- 3’
Fgfr4 5’-TTGGCCCTGTTGAGCATCTTT- 3’ 5’-GCCCTCTTTGTACCAGTGACG- 3’
Hpcal4 5’-CTTCGAGCAGAAGCTCAACTG- 3’ 5’-TGCCCACCATCTTATAGATAGCC- 3’
Timp1 5’-GCAACTCGGACCTGGTCATAA- 3’ 5’-CGGCCCGTGATGAGAAACT- 3’
Colq 5’-TCCTGGCCTGGATCAGAAGAA- 3’ 5’-GGTGATGGTGACGCCTCAA- 3’
Lbh 5’-CTGCTCTGACTATCTGAGATCGG- 3’ 5’-CGGTCAAAGTCTGATGGGTCC- 3’
Slc38a5 5’-CTACAGGCAGGAACGCGAAG- 3’ 5’-GGTTGAACACTGACATTCCGA- 3’
b-actin 5’-GGCTGTATTCCCCTCCATCG- 3’ 5’-CCAGTTGGTAACAATGCCATGT- 3’
April 2022 | Volume 12 | Article 833080
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Using the control group (0 hpi) as a reference, 6247 DEGs were
identified across four time points after hvKp infection. At 12 hpi,
939 upregulated DEGs and 439 downregulated DEGs were detected,
and by 60 hpi, 2647 upregulated DEGs and 2806 downregulated
DEGs were detected. Overall, the number of upregulated and
downregulated DEGs increased over time (Figures 2B, C) and a
total of 688 genes were upregulated and 240 genes downregulated in
common for all time points (Figures 2D, E). The fold-change and
FDR of the top 20 genes in common with the most significant
expression changes in upregulated genes are shown in Table 2.
Some of these significantly upregulated genes, such as Csf3, Timp1,
Slc39a14 and Cxcl3, are associated with innate immune responses
including immune cell differentiation and migration, while some
genes, such as Aoah, Slpi and Saa1, are closely associated with
inflammatory responses caused by Gram-negative bacteria.
Numerous genes significantly upregulated at 12 hpi are associated
with inflammatory response, such as chemokines (e.g., Cxcl3, Cxcl2,
Cxcl5, Cxcl1, Ccl20 and Ccl3), cytokines IL1a and other acute phase
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
molecules (e.g., Saa3 and Lcn2; Figure 2B). Genes associated with
the control of cytoskeleton formation, such as Kank4 and Itga8,
were significantly down-regulated at later stages (≥48 hpi). All
results suggest a gradual change in the transcription profile of the
lung over time.

Analysis of Expression Patterns of DEGs
To get a more holistic view, DEGs were clustered into nine clusters
according to their temporal expression patterns (Figure 3A) and
the functional processes associated with each temporal cluster
evaluated in a GO enrichment analysis (Figure 3B). Few
functional processes were commonly enriched, indicating that
the gene sets identified by Mfuzz have unique functions. We
also found that identified processes were in keeping with the
molecular pathophysiology of disease progression.

Clusters 1 and 9 showed a trend of decreasing gene expression
levels before reaching a low point at 24 hpi and then increasing.
GO analysis showed that 713 and 717 genes in clusters 1 and 9,
A

B

C

FIGURE 1 | Histopathological analysis of lung tissue from mice infected with hvKp. Mice were challenged with 100 × LD50 (20000 CFU) hypervirulent Klebsiella
pneumoniae strain (NTUH-K2044), and then the lungs were stained with hematoxylin-eosin (HE). (A) Survival curves of mice in the infected and control groups (n=10
per group). ****p < 0.0001, compared with control group. (B) Pathological changes in the lungs at 0, 12, 24, 48 and 60 hours post-infection. Arrows show the
infiltration of inflammatory cells; monocytes shown with blue arrows and neutrophils shown with yellow arrows (original magnification = 200×; scale bar = 100 mm).
(C) Pathological scores of the lung sections; symbols show individual mouse lung scores, horizontal and vertical lines indicate mean and standard deviations of
group. Scoring standard: 0, no pathological lesions; 1, minimal; 2, mild; 3, moderate; 4, severe. The degree of pathological lesions was related to the distribution of
lesions as follows: inflammatory cell infiltration, edema, congestion, and tissue necrosis. **P < 0.01, ***P < 0.001, compared with 0hpi.
April 2022 | Volume 12 | Article 833080
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respectively, were enriched for biological processes related to
ribosomes, transcription and translation, including rRNA or
mRNA processing, cytoplasmic translation and ribonucleoprotein
complex biogenesis.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Cluster 2 gene expression levels peaked at 24 hpi. GO analysis
revealed that these 682 genes enrich for biological processes
related to interferon immune responses, such as interferon-a
production and cellular responses to interferon-b.
A

B

D E
C

FIGURE 2 | Overview of time-course transcriptome analysis based on the value of FPKM of all groups. (A) PCA of the normalized RNA-Seq data of lung tissues in
response to hvKp infection. The same color represents the same stages in replicates. (B) Volcano plot of RNA-Seq transcriptome data displaying the pattern of gene
expression. Significantly differentially expressed genes (DEGs, FDR P ≤ 0.05) are highlighted in red (up-regulated) or blue (down-regulated). Curated genes with
specialized biological functions are indicated with labels. (C) Number of DEGs at different time points. (D) Venn diagram comparing the up-regulated DEGs. (E) Venn
diagram comparing the Down-regulated DEGs. All transcriptome experiments were performed in biological triplicate.
TABLE 2 | Top 20 DEGs that are significantly up-regulated at different infection time points.

Gene FDR 12h 24h 48h 60h
log2FC log2FC log2FC log2FC

Csf3 1.29E-181 9.384 10.128 13.211 14.054
Stfa2 3.57E-139 1.568 3.439 8.466 10.945
F10 8.7E-107 3.022 4.207 5.692 6.375
Timp1 1.78E-106 5.062 5.639 6.890 7.768
Adamts4 8.35E-102 5.304 4.375 7.202 7.675
Saa3 4.66E-101 8.086 10.327 11.928 12.780
Lcn2 3.02E-100 4.949 5.930 7.100 7.274
Igsf6 7.46E-100 1.351 2.215 3.049 3.886
Msr1 2.27E-97 3.005 3.128 4.549 5.081
Slc39a14 1.26E-96 1.572 2.373 3.842 3.939
Slc2a1 1.39E-96 1.043 1.074 3.244 3.995
Aoah 5.65E-95 1.073 2.562 4.070 4.708
AA467197 1.56E-94 3.917 5.505 6.758 7.759
Serpine1 1.35E-93 2.577 2.588 5.616 5.919
Slpi 3.07E-93 2.145 2.242 4.621 4.995
Cxcl3 1.43E-92 9.810 9.150 9.973 10.862
Rtn4rl2 2.92E-90 1.842 2.644 4.270 4.895
Asprv1 4.1E-90 3.039 3.079 4.688 5.791
Saa1 2.5E-88 8.143 8.967 11.773 12.916
Irak3 3.58E-88 1.161 2.381 3.552 4.207
A
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Clusters 3 and 7 had gene expression levels that began
increasing immediately after infection. GO analysis showed
that the 954 and 728 genes in clusters 3 and 7, respectively,
were enriched for biological processes related to immune
response regulation, including leukocyte activation and
migration, positive regulation of cytokine production,
cytokine-mediated signaling pathways, and cytokine secretion.

Cluster 4 gene expression levels increased starting at 24 hpi.
GO analysis revealed that the 928 genes enrich for biological
processes related to glycolysis metabolism, such as glucose,
pyruvate, oxidative cofactors and ADP metabolism.

Clusters 5 and 8 gene expression levels decreased after infection.
GO analysis revealed that the 1120 and 1887 genes in clusters 5 and
8, respectively, were enriched for biological processes related to
normal physiological processes in the organism, including
regulation of ion transport across membranes, the Wnt signaling
pathway, and cell matrix adhesion.

Cluster 6 gene expression levels decreased continuously after
24 hpi. GO analysis revealed a total of 1350 genes enriched for
biological processes associated with ciliary tissue, such as ciliary
motility, ciliary transport, and non-motile cilia assembly.

Functional Modules Identified by
Network Analysis
WGCNA was performed with the detected DEGs. The dynamic
tree cutting algorithm in the WGCNA package was used to
process the hierarchical clustering tree, and a total of 28 different
modules were finally obtained. The gray modules are the default
modules and include discarded genes that could not be clustered,
and the rest of the modules were named by randomly assigned
colors (Figure 4A). Next, we calculated the correlation between
the infection process (hpi) and the module genes (Figure 4B). To
assess the importance of modules for our study, enrichment
analysis was performed for modules with correlation coefficients
greater than 0.5.

The skyblue2 module was highly positively correlated with
12 hpi. GO analysis revealed that this module was mainly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
enriched in lipid-related biological processes including lipid
biosynthetic processes, lipid metabolic processes and catalytic
activity. KEGG analysis revealed that the main enriched pathways
are related to metabolic regulation such as metabolic pathways,
steroid biosynthesis and fatty acid metabolism (Figure 5A).

The mediumpurple4 module played a key role at 24 hpi. GO
analysis revealed that this module was mainly enriched in
biological processes related to response to cytokines, including
IFN-g and IFN-b, and in intrinsic immune response to
pathogens. KEGG analysis revealed that the main enriched
pathways are related to pattern recognition receptors (PRRs),
such as NOD-like receptor, RIG-I-like receptor and Toll-like
receptor signaling pathways (Figure 5B).

The grey60 module was highly positively correlated with all
time points, suggesting a key role at all stages. GO analysis
revealed that this module was mainly enriched in biological
processes, including positive regulation of biological process,
response to organic substances and cellular response to
chemical stimuli. KEGG analysis revealed enrichment mainly
in signaling pathways such as TNF, IL-17, NF-kB, MAPK and
HIF-1 (Figure 5C).

Immune Cell Abundance Analysis
To explore immune cell infiltration in lung tissue after infection, we
used ImmuCellAI-mouse (Miao et al., 2021) to investigate variation
in the infiltration of 36 immune cells among samples fromdifferent
time points. ImmuCellAI-mouse divided the 36 cell types into three
layers using a hierarchical strategy. Abundant immune cell
populations with various kinds in each sample were shown in
Figure 6A. As shown inFigure 6B, for the sevenmajor immune cell
types in layer 1, anoverall decreasing trendwith timeoccurred forB,
NK and T cells, while an overall increasing trend occurred for
granulocytes, macrophages and monocytes. This suggests innate
immunity plays a dominant role after infection. Given this, we
further considered the abundance of the 10 subtypes from the three
major innate immune cells. Levels of neutrophils, M1 and M2
macrophages increased significantly (Figure 6C).
A B

FIGURE 3 | Clustering analysis of expression patterns based on DEGs. (A) Clustering by Mfuzz identified nine distinct temporal patterns of gene expression. Red indicates
the variation of gene is more conformed to the center of the cluster, followed by blue, and finally green. (B) Heatmap shows the significance of the gene ontology (GO) terms
in the biological processes describing each of the nine clusters. The number of enriched genes belonging to each cluster is shown in parentheses.
April 2022 | Volume 12 | Article 833080

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Zheng et al. Hypervirulent Klebsiella Pneumoniae
Quantitative RT-PCR Validation
To validate the reproducibility and repeatability of DEGs
identified from transcriptome sequencing, 12 DEGs were
randomly selected for qRT-PCR validation based on their
expression patterns at four time points, namely, AA467197,
Adamts4, Cyp27a1, Faim2, Igsf6, Serpine1, Fgfr4, Hpcal4, Timp1,
Colq, Lbh and Slc38a5 (Figure 7A). These genes were significantly
differentially expressed and consistently upregulated or
downregulated with gene expression changes based on RNA-
Seq. Correlation was measured using log2 (fold changes) between
RNA-Seq and qRT-PCR; a high correlation coefficient (R2) of
0.9548 (Figure 7B) confirmed reliability of the transcriptome
sequencing data.
DISCUSSION

Massive inflammation characterized by polymorphonuclear
neutrophils and edema is a typical feature of pneumonia in
mice caused by K. pneumoniae (Bengoechea and Pessoa, 2018).
In this study, typical symptoms of pneumonia caused by
K. pneumoniae were observed in mice within 60 hours after
exposure, successfully validating the hvKp pulmonary infection
mouse model. Using this model, we then investigated
transcriptome profile changes in the lungs of infected mice at
different time points to increase our understanding of hvKp
pulmonary infection and to screen for genes or targets of
research value.
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Infection is a dynamic process, and temporal expression
pattern clustering can effectively characterize gene expression.
To get insight into the gene expression pattern during hvKp
pulmonary infection, multiple bioinformatics analysis methods
including Mfuzz time clustering, WGCNA and ImmuCellAI-
mouse were comprehensively applied in this study. Mfuzz can
cluster DEGs from different time points to show their progressive
expression dynamics. WGCNA, based on gene co-expression
clustering, screens gene modules of interest for further analysis.
Recent research has emphasized the potential of this approach
for grouping genes into functional modules to reveal the
regulatory mechanisms behind complex traits (Behdani and
Bakhtiarizadeh, 2017; Mohammad et al. , 2018). The
ImmuCellAI algorithm can evaluate the abundance of immune
cell infiltration in gene expression profiles, and flow cytometry
results confirm a higher accuracy compared to other commonly
used algorithms, including CIBERSORT and TIMER (Li et al.,
2017; Miao et al., 2020; Newman et al., 2015). ImmuCellAI-
mouse as a supplement to ImmuCellAI is a comprehensive
method for estimating the abundance of immune cells in
mouse with a high accuracy (Miao et al., 2021).

At the early stage of infection (12 hpi), an overview of
transcriptome analysis showed a rapid increase in the
expression of genes encoding pro-inflammatory mediators
(chemokines, cytokines and other acute phase molecules),
suggesting the triggering of an acute inflammatory response.
The skyblue2 module, which was highly associated with 12 hpi
in WGCNA analysis, is closely related to the regulation of lipid
A B

FIGURE 4 | Genes modules in weighted gene co-expression network analysis (WGCNA). (A) Hierarchical clustering tree (Cluster Dendrogram) indicates the co-
expression modules identified by WGCNA at different infection stages. The branches correspond to modules of highly interconnected groups of genes. The height (y-
axis) indicates the co-expression distance and the x-axis corresponds to genes. Colors represent the 28 different modules along with gray indicating genes that
could not be assigned to any module. (B) A heatmap chart showing module-trait relationships. Red denotes a positive correlation and Blue indicates a negative
correlation between the module and infection stage.
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A

B

C

FIGURE 5 | Fold enrichment of top-level overrepresented GO terms (biological process) and KEGG terms within modules that are highly positively correlated with
different infection stages. (A) skyblue2 module, (B) mediumpurple4 module, (C) grey60 module.
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metabolism, indicating that lipid metabolism plays a key role at 12
hpi. Metabolic regulation is important during host infection and
has a significant impact on the immune response (Nhan et al.,
2019). Both anti-inflammatory and pro-inflammatory immune
responses require energy and metabolic regulation for their
development (Kirthana and Ajay, 2014). Thus, to overcome the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
stresses induced by pathogens, the host needs to regulate relevant
metabolic pathways early in the infection. Lipids are not only a
very efficient source of energy, but also a key signaling mediator,
thus being treated as ‘bioactive lipids’ (Escribá, 2006; Shimizu,
2009). Bioactive lipids play a vital role in immune regulation,
inflammation and maintenance of homeostasis within the body
A
B

C

FIGURE 6 | Immune cell infiltration analysis via ImmuCellAI-mouse. (A) Abundance of 36 immune cell types in all samples. (B) Abundance of the seven major
immune cell types in layer 1 at different infection stages. (C) Abundance of 10 subtypes of the three major innate immune cell types in layer 2 at different infection
stages. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, compared with 0 hpi.
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(Shimizu, 2009). In the event of tissue infection, innate immune
cells are recruited to the infected site and rapidly generate classical
eicosanoids, a family of bioactive lipids involved in immunity and
inflammation, whose main roles include amplifying or reducing
inflammation, coordinating leukocyte recruitment, cytokine and
chemokine production, antibody formation, cell proliferation and
migration, and antigen presentation (Funk, 2001; Nathan, 2002;
Harizi et al., 2008). Accordingly, we speculate that lipid
metabolism may reflect a pro-inflammatory effect in the early
stage of hvKp pulmonary infection and may have some clinical
significance. However, further studies are needed to fully
understand the underlying mechanisms.

Cluster2, whose gene expression level peaked at 24 hpi in the
Mfuzz analysis, and the mediumpurple4 module, which is highly
correlated with 24 hpi, are both closely associated with
interferons according to GO analysis. The KEGG analysis for
the mediumpurple4 module associates it with PRRs signaling
pathways. Cellular immunity is essential to clear pathogens and
type II interferon IFN-g is a key molecule in promoting cellular
immunity. A complex interaction between immune cell activity
and IFN-g leads to initiation of a cascade of pro-inflammatory
responses through coordinated integration of other signals
involving cytokines and PRRs, such as TNF-a, LPS and type I
interferons (Kak et al., 2018). IFN-g is an essential activator of
antibacterial macrophages (Nathan, 1983). Glycolytic
metabolism, which also promotes the survival, differentiation,
and effector function of activated macrophages (Van den
Bossche et al., 2015), had a sustained rise in the expression
of its associated genes in cluster 4 starting from 24 hpi.
Correspondingly, macrophage abundance in ImmuCellAI-
mouse analysis continued to increase at 24 hpi after an already
significant increase.

In the immune cell infiltration analysis, neutrophils and
monocytes consistently increased after infection. Although
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
neutrophil migration and activation are essential for infection
clearance, excessive neutrophil recruitment and aberrant
activation can lead to severe host tissue injury and may
ultimately lead to death (Weber et al., 2015). This was reflected
in our pathological findings, where after lung immune cells
were significantly activated and recruited, local damage to lung
tissue structures followed at 48 hpi. However, the abundance of
NK cells continued to decrease. This finding is contrary to a
previous study that found no change in NK cells in the lung
during the first two days after K. pneumoniae infection (Xu et al.,
2014). It is also dissimilar to responses observed with most
bacteria, such as Streptococcus pneumoniae (van den Boogaard
et al., 2016), Shigella flexneri (Le-Barillec et al., 2005),
Pseudomonas aeruginosa (Wesselkamper et al., 2008), and
Staphylococcus aureus (Small et al., 2008), where NK cells
remain constant or increase after pulmonary infection. This
suggests the decrease in pulmonary NK cells may be specific to
hvKp infection. NK cells account for the highest percentage of
resident lymphocytes in the lung, unlike other tissues (Wang
et al., 2012; Sun et al., 2013), suggesting that NK cells are essential
for the pulmonary immune response when pathogens invade.
Although NK cells are traditionally well known for their critical
protective role in antiviral innate immunity (Lodoen and Lanier,
2006), growing evidence indicates that NK cells are closely
associated with fighting bacterial infections, with both
beneficial or detrimental effects on the organism possible. For
example, Dunn and North (Dunn and North, 1991) showed that
early production of IFN-g by NK cells is essential for resistance to
L. monocytogenes. NK cells also contribute to host defense
against K. pneumoniae (Xu et al., 2014). In contrast, other
studies have shown that NK cell depletion leads to enhanced
clearance of L. monocytogenes (Teixeira and Kaufmann, 1994)
and a significant increase in survival for Streptococcus
pneumoniae lung-infected mice (Christaki et al., 2015).
A

B

FIGURE 7 | Validation of RNA-Seq data by qRT-PCR. (A) Twelve differentially expressed genes (DEG) were selected for verification. Relative quantity of gene
expression (fold change) for each gene was calculated with the comparative 2-DDCT method. The y-axis shows the fold changes of different infection stages
compared to the beginning point, with positive values indicating up-regulation and negative values indicating down-regulation. Each data point was obtained from
three biological replicates. (B) Correlation of fold change analyzed by data obtained using qRT-PCR (x axis) with RNA-Seq platform (y axis). Correlation analysis was
performed using GraphPad software 8.0.
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These contrasting results could be related to the diversity of
infection routes, bacterial strains and mouse strains and this
possibility should be followed up. Interestingly, NK cells are also
found to be reduced in paraquat dichloride induced lung injury,
and in vivo NK cell depletion reduces macrophage and
neutrophil infiltration, resulting in attenuated lung injury (Wu
et al., 2020). Therefore, we hypothesize that hvKp lung infection
decreases NK cells for attenuated inflammatory cell infiltration.
The role of NK cells in severe hvKp lung infections, which could
provide new targets for therapy, deserves further investigation
and clarification.

During infection biological processes associated with immune
response regulation, such as leukocyte activation and migration,
cytokine production, cytokine-mediated signaling pathways and
cytokine secretion were continuously activated. While biological
processes associated with normal physiological processes of the
organism, such as the regulation of ion transport across the
membrane, the Wnt signaling pathway and cell matrix adhesion
were continuously inhibited. This suggests that the organism
undergoes a violent and sustained inflammatory response after
infection and that the structures of the lungs are damaged. The
grey60 module was highly positively correlated with all infection
time points, indicating that the module genes play a key role in
the infection process. KEGG analysis showed that grey60 module
genes were closely associated with TNF, IL-17, HIF-1, NF-kB,
and MAPK signaling pathways. TNF and IL-17 signaling
pathways have important functions in host defense and disease
pathogenesis (Gaffen, 2009; Kalliolias and Ivashkiv, 2016). NF-
kB and MAPK are signaling pathways help mediate lung
inflammatory responses (Lavoie et al., 2010; Wang et al.,
2013). LPS is a potent stimulator that triggers MAPK and NF-
kB signaling pathways (Li et al., 2015; Zhang et al., 2015). NF-kB
is a key target of the p38 MAPK signaling pathway after LPS
binding of TLR4/MYD88 to initiate the intracellular pathway
(Shi et al., 2019; Zhou et al., 2019). P38MAPK/MK2 can regulate
LPS-induced gene expression by controlling NF-kB p65
hyperphosphorylation and nuclear translocation (Gorska et al.,
2007; Ehlting et al., 2011). Given the prominent role of these
signaling pathways in hvKp pulmonary infection, further
elucidation of the mechanisms of these signaling pathways in
hvKp immunopathogenesis could provide novel insights for
emergency treatment.

Some of the top 20 upregulated genes during the infection
process are associated with the innate immune response, while
others are closely associated with the inflammatory response
induced by Gram-negative bacteria. One of them, Saa1 encodes
serum amyloid A1 (SAA1), an acute phase protein in the
inflammatory response and can be an antimicrobial agent by
acting as a direct modulator of bacteria (Buck et al., 2016; Sun
and Ye, 2016). Inducible expression of SAA1 in the acute phase
may protect the host from Gram-negative bacterial infection by
reducing LPS-induced tissue damage (Cheng et al., 2017). Lcn2
encodes Lipocalin-2 (LCN2), a key antimicrobial protein, whose
primary antibacterial function is to bind and sequester bacterial
iron carriers, thereby depriving bacteria of the iron that provides
them with nutrients (Goetz et al., 2002). Previous work found
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
LCN2 protein is upregulated in the lung after K. pneumoniae
infection (Chan et al., 2009), and our findings support this. Aoah
encodes a mammalian enzyme named acyloxyacyl hydrolase
(AOAH) that can inactivate LPS in host tissues (Munford
et al., 2009) and promotes recovery from lung inflammation
caused by K. pneumoniae (Zou et al., 2017). Slpi encodes
secretory leucocyte peptidase inhibitor (SLPI) that is secreted
from lung tissue, exhibits antibacterial and antifungal properties
and is an essential respiratory host defense protein similar to
antimicrobial peptides (Gomez et al., 2009; Majchrzak-Gorecka
et al., 2016). Irak3 encodes interleukin-1 receptor-associated
kinase 3 (IRAK3; also known as IRAK-M), which has been
rarely studied in bacterial pulmonary infections. However,
IRAK3 is known to be involved in the regulation of LPS
tolerance (van ‘t Veer et al., 2007; Yu et al., 2017), whereby
cells or organisms exposed to LPS enter a non-responsive state
and are unable to respond to further LPS stimuli, thus preventing
inflammatory overload (Biswas and Lopez-Collazo, 2009;
Hotchkiss et al., 2013). IRAK-M mRNA was upregulated in
the lungs of WT mice with K. pneumoniae (Hoogerwerf et al.,
2012) and our findings are consistent with this. Among these five
genes involved in the antimicrobial response to bacterial
infection, Saa1, associated with the LPS cell wall component of
Gram-negative bacteria that causes host inflammatory response,
and Slpi, which encodes an antimicrobial protein, have not
previously been reported in hvKp lung infection. Given their
persistently high expression levels and multiple functions in
hvKp infected lungs, they are expected to be good therapeutic
targets for intervention in hvKp-induced lung injury and deserve
to be investigated in depth.

Our findings suggest that hvKp causes a primary acute
inflammation in the lung that increases over time, leading to
the damage of lung structures. Clarifying the role of NK cells in
severe hvKp lung infections could provide new targets for
therapy. Saa1 and Slpi, significantly upregulated during
infection and associated with the immune response, have not
been reported in hvKp infections and could be important
targets for subsequent studies. Given that disease progression
may depend on immune cells, further explorations at the level
of a single cell type are warranted to elucidate the cellular
associations of the phenomena found in this study. In
conclusion, our work both validates the results of previous
studies on K. pneumoniae pulmonary infections and provides
new insights on hvKp pulmonary infections that have promise
for the development of therapeutic approaches to reduce hvKp
lung inflammation.
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