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Abstract

Most environments favor defection over cooperation due to natural selection. Nonetheless,

the emergence of cooperation is omnipresent in many biological, social, and economic sys-

tems, quite contrary to the well-celebrated Darwinian theory of evolution. Much research

has been devoted to better understanding how and why cooperation persists among self-

interested individuals despite their competition for limited resources. Here we go beyond a

single social dilemma since individuals usually encounter various social challenges. In par-

ticular, we propose and study a mathematical model incorporating both the prisoner’s

dilemma and the snowdrift game. We further extend this model by considering ecological

signatures like mutation and selfless one-sided contribution of altruist free space. The non-

linear evolutionary dynamics that results from these upgrades offer a broader range of

equilibrium outcomes, and it also often favors cooperation over defection. With the help of

analytical and numerical calculations, our theoretical model sheds light on the mechanisms

that maintain biodiversity, and it helps to explain the evolution of social order in human

societies.

1 Introduction

Numerous interdisciplinary researchers have long sought a way to understand how the tre-

mendous biodiversity among species persists in nature despite the significant differences

between them in terms of competitive capability. Darwinian evolution [1] always challenges

the emergence of spontaneous social cooperation, as cooperators act entail an inherent cost for

displaying altruism [2]. Self-interested defectors generally exploit these cooperators and hinder

the maintenance of cooperation. This trivially raises the question of why cooperators act self-

lessly if only the fittest succeeds and how numerous forms of cooperative behavior sustain in

nature ranging from a low-level microbial biological system to a high-level complex social sys-

tem. We resort to the evolutionary game dynamical interaction given by a 2 × 2 pay-off matrix

to solve this riddle. These classical games are capable of analyzing the economic and strategic
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decisions of rational individuals [3]. An unprecedented spectrum of researchers have already

focused overwhelmingly on the evolutionary game theory [4–6] to seek out the mechanisms

that sustain and promote cooperation [7–14].

We construct a mathematical model on evolutionary multigames [15–27] by adopting two

simple two-player games, viz. the prisoner’s dilemma [28] (PD) and snowdrift game [29, 30]

(SD), as metaphors for cooperation between unrelated rational individuals. Our choice of

combining two distinct games is motivated by the fact that people may face different social

complexities rather than a single one. People take care of problems based on their own percep-

tions. This real-life behavioral heterogeneity among individuals inspires us to examine the

effect of multigames for understanding social diversity. Our theoretical approach is another

effective way to explore the impact of the interaction between different cultural backgrounds

on large-scale social ordering [31].

While defection is the ultimate profitable strategy in the classical PD game, irrespective of

the co-player’s decision, a player’s best strategy in the SD game depends on the co-player’s

decision. Thus, we select two different games with two contrasting outcomes. The stable coex-

istence of both cooperators and defectors is the expected consequence in the SD game, result-

ing in the persistence of cooperative behavior. In comparison, cheaters are always encouraged

to exploit the cooperative individuals in the set-up of the PD game. In our constructed model,

unrelated individuals have their probabilistic selection to choose which game they want to

play. We also consider the mutation [32–42] as an evolutionary mechanism that enables peo-

ple to switch their respective strategies. We assume that it is hard to behave rationally under

every circumstance. Hence, in our mathematical model, we incorporate a simplistic assump-

tion that cooperators’ and defectors’ subpopulations can interchange their strategies with a

fixed bidirectional mutation rate. To the best of our knowledge, the majority of the studies on

multigames have been examined in the absence of mutation.

Apart from that, to reveal the interplay between ecological and evolutionary dynamics, we

inspect the influence of free space in our mathematical model. In the context of complex sys-

tems, free space [43–49] proves to be a promising factor for offering significant consequences

on diverse collective dynamics. We assume that each individual’s birth rate depends not only

on the respective average payoffs but are also proportional to the available free space. This free

space will give them reproductive opportunities. The population of unrelated players gains a

payoff due to the interaction of the multigames. We treat these payoffs as reproductive suc-

cesses. Individuals with a higher payoff leave more offspring if sufficient empty spaces are

available and are able to outcompete less successful ones. Free space will also contribute to the

individual’s average payoffs. We consider free space as an ecological variable donating selflessly

to all players’ fitness. However, free space never anticipates any benefit from others. This gen-

erous nature is surprising in a society of self-interested individuals. Still, free space provides

reproductive opportunities to each player and loses their own identity to improve the fitness of

other individuals. We consider such a selfless act of free space because helping others is a com-

mon practice among human beings and other animals. This tendency of unselfish concern for

other people is a unique recipe for promoting cooperation and favors the survival of various

species. The inclusion of such ecological dynamics into evolutionary multigames gives rise to a

fascinating way to reveal the influence of eco-evolutionary dynamics [50–60] on decision-

making and the evolution of cooperation.

The concurrence of ecological changes and rational players’ evolution, depicted in the pres-

ent article, prevails through the same time scale, rather than the typical assumption that eco-

logical processes are much faster than evolutionary processes [61]. Our theoretical model

uncovers how the combination of ecological dynamics and game dynamics is beneficial for

maintaining cooperative behaviors under the influence of mutation and leads to the stable
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coexistence of interacting competitors. Earlier, Nag Chowdhury et al. [8, 16] examined the

influence of eco-evolutionary dynamics on cooperative behavior’s emergence and evolution

under a cooperation-supporting mechanism, viz. punishment. Nevertheless, our model exhib-

its the coexistence of cooperators and defectors in the absence of any such supporting mecha-

nism. Moreover, individuals’ birth rates in those Refs. [8, 16] depend only on their respective

average payoffs. Apart from the addition of free space’s altruistic behavior in the payoff matrix,

we furthermore include the importance of available free space on the birth rates by assuming

their birth rates to be proportional to the available space. The rest of the article is structured as

follows: In Sec. (2), we discuss how we construct our mathematical model in detail. The follow-

ing section (3) deals with the existence, uniqueness, and boundedness of the model, along with

extensive numerical simulations and discussions. The section (4) presents the summary of our

findings. Following that, we provide a brief discussion in the last section (5) on the challenges

in this work’s context that need to be addressed and are worth studying in the future.

2 The model

To start with, we consider a simplistic assumption that each individual has two distinct

choices, viz. (i) cooperation (C) and (ii) defection (D). Even they can play any of the two possi-

ble games (a) PD game and (b) SD game. They can adopt the PD game with probability p, and

alternatively, they interact with other individuals by playing the SD game with the complimen-

tary probability (1 − p). Both of these two-person games can be given by the following two pay-

off matrices A and B respectively, where

A =

C Dµ ¶
C RPD SPD
D TPD PPD

and B =

C Dµ ¶
C RSD SSD
D TSD PSD

:

in which the entries portray the payoff accumulated by the players in the left.

Here, RPD and RSD contemplate the reward for mutual cooperation among two players in

the respective PD and SD games. Similarly, both unrelated players receive the punishment PPD
and PSD for mutual defection in the games PD and SD, respectively. An exploited cooperator

gains the sucker’s payoff SPD and SSD, respectively in the PD and SD games when confronted

by a defector. The mixed choice yields the defector temptations TPD and TSD to exploit a coop-

erator in the PD and SD games, respectively. The payoff ranking of these four-game parame-

ters determines the two-person games. The conventional relative ordering for the PD game is

TPD> RPD> PPD> SPD [8, 16, 31] and 2RPD> SPD + TPD [62]. Without loss of any generality,

we choose TPD = β> 1, RPD = 1, PPD = η 2 (0, 1), and SPD = 0. Similarly, we choose TSD = β>
1, RSD = 1, SSD = 0, and PSD = −η 2 (−1, 0), maintaining the relative ordering TSD> RSD> SSD
> PSD for the standard SD game [8, 16, 31]. Thus, the payoff matrices A and B become

A =

C Dµ ¶
C 1 0
D ¯ ´

and B =

C Dµ ¶
C 1 0
D ¯ ¡´ :

Note that, in both of these games, mutual cooperation leads to the payoff RPD and RSD,

which is relatively higher than PPD and PSD, which one defector receives when playing with a

defector. Thus, cooperation always promises higher income than defection if both the rational

players choose the same strategy. The difference between these two games’ relative ordering

leads to a contrasting scenario. In the SD game, the interaction between the cooperator and

defector always promises a better income in terms of payoff than the interaction between two
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defectors. A reverse reflection is observed in the case of the PD game thanks to the choice of

such relative ranking of game parameters in the PD game. The interaction between two defec-

tors in the PD game allows them to earn more than a cooperator encountering a defector. The

switching between P and S in the relative ordering of both games thus produces noticeable

unexpected consequences on the evolution of cooperation.

Since a player can decide which game they want to play, thus the final payoff matrix for the

multigames looks like

E = pA+ (1¡ p)B =
C Dµ ¶

C 1 0
D ¯ (2p¡ 1)´ :

Here, p 2 [0, 1] is the probability of playing the PD game. Moreover, we consider free space

F as an ecological variable, which contributes altruistically by helping others. Nevertheless, free

space does not get any benefits by giving them reproductive opportunities. We incorporate

this charitable role of free space by extending the 2 × 2 payoff matrix E to the 3 × 3 payoff

matrix G as follows

G =

C D FÃ !
C 1 0 ¾1
D ¯ (2p¡ 1)´ ¾2
F 0 0 0

:

The matrix G clearly reveals that the free space never earns any payoff for their selfless char-

itable act; however, it contributes a positive payoff σ1 and σ2 to the cooperators and the defec-

tors, respectively. Since most of the game parameters (not all) lies within the closed interval

[0, 1], we assume, for the sake of feasible comparison, σ1 and σ2 both lies within the interval

[0, 1]. When σ1 and σ2 are equal to zero, free space will not contribute anything to anyone.

However, whenever σ1 and σ2 attain positive values, individuals gain an additional payoff from

free space.

Inspired by the Malthusianism, we consider the following set of differential equations gov-

erning the changes in frequencies of cooperators and defectors as a function of time t

_x ¼ x½bC � dC�;

_y ¼ y½bD � dD�;
ð1Þ

where

bC ¼ birth rate of cooperators;

bD ¼ birth rate of defectors;

dC ¼ death rate of cooperators;

dD ¼ death rate of defectors:

8
>>>><

>>>>:

Here, x and y are the normalized densities of cooperators and defectors, respectively. Let z
be the available free space. Thus, we have

xþ yþ z ¼ 1: ð2Þ

Relation (2) assures that by studying x and y alone, one can easily capture the dynamics of

the two strategies. We assume the birth rates of each individual depends crucially on the
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available free space as well as on their respective average fitness. Thus, we consider

bC ¼ zfC ¼ ð1 � x � yÞfC;

bD ¼ zfD ¼ ð1 � x � yÞfD;
ð3Þ

where fC and fD are average fitness of the cooperators and the defectors, respectively. The aver-

age payoff of cooperators and defectors can be determined using the payoff matrix G of the

multigames, and the relation (2) as follows,

fC ¼ x:1þ y:0þ z:s1 ¼ ð1 � s1Þx � s1yþ s1;

fD ¼ x:bþ y:ð2p � 1ÞZþ z:s2

¼ ðb � s2Þxþ ½ð2p � 1ÞZ � s2�yþ s2:

ð4Þ

Note that the average fitness of free space is

fF ¼ x:0þ y:0þ z:0 ¼ 0: ð5Þ

This is expected as free space does not gain anything for its benevolent nature. For simplicity,

we further assume that all individuals die at a uniform and constant mortality rate ξ 2 (0, 1].

Hence using the relations (3) and (4), our constructed model (1) transforms into

_x ¼ x½ð1 � x � yÞfð1 � s1Þx � s1yþ s1g � x�;

_y ¼ y½ð1 � x � yÞfðb � s2Þxþ ðð2p � 1ÞZ � s2Þyþ s2g � x�:
ð6Þ

Now, we introduce a constant probability μ as a rate with which each individual mutates

from one strategy to the others, in a continuous manner,

x⇄
m

m
y: ð7Þ

Relation (7) reflects that the mutation probability μ from the cooperators to the defectors is

identical to the mutation rate from the defectors to the cooperators. So using the system (6),

the well-mixed population under the influence of bidirectional mutation gives rise to the dif-

ferential equations

_x ¼ x½ð1 � x � yÞfð1 � s1Þx � s1yþ s1g � x� þ mðy � xÞ;

_y ¼ y½ð1 � x � yÞfðb � s2Þxþ ðð2p � 1ÞZ � s2Þyþ s2g � x� þ mðx � yÞ:
ð8Þ

The system (8) contains seven different parameters. We summarize the necessary informa-

tion about these parameters in (Table 1).

3 Results and discussions

3.1 Existence, uniqueness and positive invariance

Before investigating the model (8) using numerical simulations, we first prove the positive

invariance of the proposed system (8). Clearly, the functions on the right-hand side of the dif-

ferential Eq (8) are continuously differentiable and at the same time, locally Lipschitz in the

first quadrant of R� R. This ensures the existence and uniqueness of solutions for the model

(8) with suitable initial values. Note that the initial conditions (x0, y0) must lie within the

domain [0, 1] × [0, 1] maintaining the inequality 0� x0 + y0� 1, as they represent the
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frequencies of the two strategies. To determine the positivity of the proposed model (8), we

write the system as follows,

_x ¼ xc1;

_y ¼ yc2;
ð9Þ

where c1 ¼ bC � dC � mþ
my
x and c2 ¼ bD � dD � mþ

mx
y are two integrable functions in the

Riemannian sense. Solving Eq (9), we get

x ¼ c1expð
R
c1dtÞ;

y ¼ c2expð
R
c2dtÞ;

ð10Þ

where c1 and c2 are the integrating constants depending on the initial densities x0 and y0. This

proves that both x and y are non-negative. Now, to calculate the upper bound of x + y, we pro-

ceed as follows. The dynamical Eq (8) yield

d
dt
ðxþ yÞ ¼ ð1 � x � yÞ½xfC þ yfD� � xðxþ yÞ ð11Þ

Since as per our previous analysis, x + y� 0 and the mortality rate ξ is always positive, we

have ξ(x + y)�0. Thus, (11) reduces to

d
dt
ðxþ yÞ � ð1 � x � yÞ½xfC þ yfD�: ð12Þ

Integrating both sides, we get

ðxþ yÞ � 1 � c3exp½�
R
½xfC þ yfD�dt� � 1; ð13Þ

where c3 is the initial density dependent constant. Hence, we find that

0 � xþ y � 1; ð14Þ

i.e., the overall species density x + y eventually remains bounded within the region [0, 1]. This

boundedness within the closed interval [0, 1] allows us to relate the possible emerging dynam-

ics of the system (8) to physically implementable scenarios with biological relevance. When the

sum of the population density (x + y) is precisely one, the available free space is zero, as z = 1 −
(x + y). i.e., there is no reproductive opportunity accessible to any individual in that situation

with z = 0. When (x + y) = 0, then individually x = 0 and y = 0. Hence, all individuals die, and z

Table 1. Parameters with their physical significance and domains: The first column represents the symbols used

in the present manuscript to describe several parameters. At the same time, the second column depicts what these

parameters exactly mean. The set of possible input values from which the parameters can assume their values is given

in the third column of the table. For further details, please see the main text.

Parameters Physical Significance Domain

ξ Death Rate (0, 1]

β The gain of a defector while interacting with a cooperator (1, 2)

η The payoff for mutual defection (0, 1)

p Probability of playing the PD game [0, 1]

μ Mutation probability [0, 1]

σ1 The altruistic incentive of free space towards the cooperators [0, 1]

σ2 The altruistic incentive of free space towards the defectors [0, 1]

https://doi.org/10.1371/journal.pone.0272719.t001
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is equal to one. Thus despite the presence of ample free space, all the individuals are extinct

under that circumstances.

3.2 Coexistence of different stationary points depending on the initial

conditions

Next, we point out the multistable dynamics of our model (8), resulting in the system’s vulner-

ability to small perturbations. Initially, we set the parameter values at ξ = 0.38, β = 1.1, η = 0.85,

p = 0.30, σ1 = 0.36, σ2 = 0.25 and μ = 0 in Fig 1(a). We vary the initial conditions (x0, y0) within

the interval [0, 1] × [0, 1] maintaining the inequality (x0 + y0)2[0, 1]. We find that the dynam-

ics switching between two stationary points, viz. E0 = (0, 0) and E1 = (x�, 0). We analytically

calculate the stationary points of the system (8) in the absence of the mutation, i.e., with μ = 0.

We trace out four different stationary points,

Fig 1. Alternations between multiple co-existing steady states depending on initial conditions. The coexistence of various stable states is portrayed here by varying

the initial conditions maintaining 0� (x0 + y0)�1. Red points signify the extinction equilibrium E0. Violet points represent the defector-free steady state E1. The

cooperator-free stationary points E2 are shown by sea blue points, and the coexistence equilibrium E3 is plotted using yellow points. The mutation-free model in

subfigures (a-c) allows four stable steady states to coexist. However, subfigure (d) supports only bistability for the chosen parameters’ values. The parameter values for

each of these subfigures are (a) ξ = 0.38, β = 1.1, p = 0.30, σ1 = 0.36, σ2 = 0.25, and μ = 0. (b) ξ = 0.15, β = 1.06, p = 0.69, σ1 = 0.75, σ2 = 0.25, and μ = 0. (c) ξ = 0.15, β =

1.1, p = 0.10, σ1 = 0.10, σ2 = 0.25, and μ = 0. (d) ξ = 0.30, p = 0.30, β = 1.1, μ = 0.02, σ1 = 0.30, and σ2 = 0.20. Other parameter is η = 0.85.

https://doi.org/10.1371/journal.pone.0272719.g001
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1. E0 = (0, 0) reveals all individuals die. This point is locally stable when

s1 < x; and

s2 < x:

(

2. E1 = (x�, 0) exhibits a society free from any defectors. Here,

x� ¼
ð1 � 2s1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � 2s1Þ
2
� 4ðx � s1Þð1 � s1Þ

q

2ð1 � s1Þ

and x� 2 (0, 1]. The stability criteria is given by

x > ð1 � s1Þð2x� � 3x�2Þ þ s1ð1 � 2x�Þ and

x > ðb � s2Þðx� � x�2Þ þ s2ð1 � x�Þ:

(

3. E2 = (0, y�) represents that we have only left with defectors. Here, y� ¼ ð2pZ� Z� 2s2Þ

2ð2pZ� Z� s2Þ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pZ� Z� 2s2Þ

2 � 4ð2pZ� Z� s2Þðx� s2Þ

p

2ð2pZ� Z� s2Þ
and y� 2 (0, 1]. This stationary state is stable if

x > s1ð1 � y�Þ � s1ðy� � y�2Þ and

x > s2ð1 � 2y�Þ þ ð2pZ � Z � s2Þð2y� � 3y�2Þ:

(

4. E3 = (x��, y��) indicates the coexistence equilibrium offering the survival of cooperation

and defection simultaneously. Here, y�� ¼ ð1� b� s1þs2Þx��þs1� s2

2pZ� Zþs1 � s2
, and x�� satisfies

the equation, ð1 � s1Þtx�� � s1

ð1� b� s1þs2Þx��þs1 � s2

2pZ� Zþs1 � s2

� �
tþ s1t � x ¼ 0, where,

t ¼
ð2pZ� Zþs1 � s2Þð1� x��Þ� ð1� b� s1þs2Þx��þs2 � s1

ð2pZ� Zþs1 � s2Þ
. x�� and y�� both should lie within the interval

(0, 1). The local stability yields the conditions for the stability of (x�, y�) are

2x > ðb � s2Þðx�� � x��2 � 2x��y��Þ

þð1 � s1Þð2x�� � 3x��2 � 2x��y��Þ

� s1ðy�� � y��2 � 2x��y��Þ

þð2pZ � Z � s2Þð2y�� � 3y��2 � 2x��y��Þ

þs1ð1 � 2x�� � y��Þ þ s2ð1 � 2y�� � x��Þ; and

b � s2Þðx�� � x��2 � 2x��y��Þ

þð2pZ � Z � s2Þð2y�� � 3y��2 � 2x��y��Þ

þs2ð1 � x�� � 2y��Þ � x�½ð1 � s1Þð2x�� � 3x��2

� 2x��y��Þ � s1ðy�� � y��2 � 2x��y��Þ

þs1ð1 � 2x�� � y��Þ � x� > ½ðs1 � 1Þx��2

� s1ðx�� � x��2 � 2x��y��Þ � s1x���½ðb � s2Þðy��

� y��2 � 2x��y��Þ � ð2pZ � Z � s2Þy��
2 � s2y���:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Clearly, the chosen parameters satisfy the local stability criteria of both stationary points E0

and E1. Note that E1 leads to two different values for the selected values of the parameters, out

of which (0.34751, 0) always remains locally stable, and (0.0899, 0) is unstable. Thus, we see

the appearance of two different stationary points E0 (shown by red points) and E1 (displayed

PLOS ONE Eco-evolutionary dynamics of multi games

PLOS ONE | https://doi.org/10.1371/journal.pone.0272719 August 9, 2022 8 / 26

https://doi.org/10.1371/journal.pone.0272719


by violet points) in the basin of attraction portrayed in Fig 1(a). Such toggling between alter-

nate stable stationary points is one of the generic features in some biological systems involving

the fundamental processes of life [63–65] and in a few nonlinear dynamical systems [66–69].

The initial condition (x0, y0) = (0, 0) always helps the system (8) to converge to the stationary

point E0. The system is never able to give rise to the survival of any cooperators and defectors

without the presence of any individual at the beginning. Since the chosen initial point (0, 0)

itself is the stationary state, the system always stabilizes in the (0, 0) stationary point irrespec-

tive of the parameter values. Fig 1(b) is drawn with ξ = 0.15, β = 1.06, η = 0.85, p = 0.69, σ1 =

0.75, σ2 = 0.25, and μ = 0. Similarly, we find the system (8) in the absence of mutation (i.e.,

μ = 0) converges to E0 for the single initial condition (x0, y0) = (0, 0). It is anticipated that the

choice of x0 = 0 always leads to the cooperator-free steady state. The initial absence of coopera-

tors in the mutation-free model will not entertain any exposure for the cooperators in the long

run. The line of initial conditions x0 = 0 and y0 6¼ 0 produces the stationary state E2 (sea blue

points in Fig 1(b)). Apart from these two steady states, the mutation-free system also switches

between E1 (violet points) and E3 (yellow points) depending on the suitable choice of initial

conditions (See Fig 1(b)). Thus, for the same choices of parameters’ values, the system flips

between four alternate steady states depending on the initial densities of cooperators and

defectors. Similarly, we find the system (8) with the parameters’ values ξ = 0.15, β = 1.1, η =

0.85, p = 0.10, σ1 = 0.10, σ2 = 0.25 and μ = 0 converges to all these four stationary points. All

population extincts for the initial conditions ranging from (0, 0) to (0.06, 0) (See red points in

Fig 1(c)). The system (8) can be solved analytically with σ1 = σ2 = μ = 0 in the absence of defec-

tors (i.e., y = 0) as follows,

x tð Þ ¼

0;

1

2
�
ð1 � 4xÞ

1

2

2
;

c4 � t ¼
1

2x

�

� logðxþ xðx � 1ÞÞ þ 2logxþ
2tan� 1ð

2x � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � 1
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � 1
p

�

:

8
>>>>>>>><

>>>>>>>>:

where c4 is the integrating constant.

Similarly, the system (8) can be solved analytically with σ1 = σ2 = μ = 0 in the absence of

cooperators (i.e., x = 0) as follows

y tð Þ ¼

0;

1

2
�
½� Zð2p � 1ÞðZþ 4x � 2ZpÞ�

1

2

2Zð2p � 1Þ
;

c5 � t ¼
1

2x

�

� logðxþ ð2p � 1ÞZðy � 1ÞyÞ

þ2logyþ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p � 1ÞZ

p
tan� 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2p � 1ÞZ

p
ð2y � 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � ð2p � 1ÞZ

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x � ð2p � 1ÞZ

p

�

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

where c5 is the integrating constant.

Fig 1 is plotted by solving the differential Eq (8) by varying the initial conditions within

[0, 1] × [0, 1] with fixed step-length δx0 = δy0 = 0.01 and maintaining 0� x0 + y0� 1. To solve

our proposed system (8) numerically, we use the 4th order Runge-Kutta (RK4) method with

20 × 105 iterations with fixed integration step length δt = 0.01. The final point (x, y) is stored to
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decide the asymptotic dynamics of the system. Other initial conditions with y0 = 0 stabilize the

dynamics in the defector-free state E1 (violet points). We also track a fair portion of the basin

in Fig 1(c), where the system (8) with μ = 0 converges to either E2 (sea blue points) or E3 (yel-

low points) depending on the choice of initial conditions.

Although we choose the mutation-free model for the Fig 1(a)–1(c), we consider the contri-

bution of μ in Fig 1(d). We generate Fig 1(d) with ξ = 0.30, p = 0.30, β = 1.1, η = 0.85, μ = 0.02,

σ1 = 0.30, and σ2 = 0.20. This non-zero μ leads to the disappearance of two stationary points,

(i) the defector-free steady state E1, and (ii) the cooperator-free steady state E2. The symmetric

mutation from one species to another species always gives them two feasible opportunities.

Either both strategies survive or all the individuals perish for μ 6¼ 0. We also mathematically

derive two possible stationary points as follows,

1. The extinction equilibrium E0 = (0, 0), which is stable under the conditions,

2ðxþ mÞ > s1 þ s2;

m2 < ðxþ m � s1Þðxþ m � s2Þ:

(

2. The interior equilibrium E3 = (x�, y�) becomes stable, if

2ðmþ xÞ > ð1 � s1Þð2x� � 3x�2 � 2x�y�Þ

þð2pZ � Z � s2Þð2y� � 3y�2 � 2x�y�Þ

� s1ðy� � y�2 � 2x�y�Þ

þðb � s2Þðx� � x�2 � 2x�y�Þ

þs1ð1 � 2x� � y�Þ þ s2ð1 � x� � 2y�Þ;

and;

s1Þð2x� � 3x�2 � 2x�y�Þ

� s1ðy� � y�2 � 2x�y�Þ

þs1ð1 � 2x� � y�Þ � x � m�½ðb � s2Þðx� � x�2

� 2x�y�Þ þ ð2pZ � Z � s2Þð2y� � 3y�2

� 2x�y�Þ þ s2ð1 � x� � 2y�Þ � x � m� > ½ðs1 � 1Þx�2

� s1ðx� � x�2 � 2x�y�Þ � s1xþ m�½ðb

� s2Þðy� � y�2 � 2x�y�Þ � ð2pZ � Z

� s2Þy�2 � s2y� þ m�;

where x� and y� satisfy the equations :

x�½ð1 � s1Þx�ð1 � x� � y�Þ � s1y�ð1 � x�

� y�Þ þ s1ð1 � x� � y�Þ � m � x� þ my� ¼ 0;

and

y�½ðb � s2Þx�ð1 � x� � y�Þ

þð2pZ � Z � s2Þy�ð1 � x� � y�Þ

þs2ð1 � x� � y�Þ � m � x� þ mx� ¼ 0:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

The compelling evidence of bistability under the same choice of parameters’ values is recog-

nized in Fig 1(d).
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3.3 Emergent dynamics in absence of mutation

We examine the impact of the parameters p, β, η, and ξ on the system (8) with μ = 0 in Fig 2.

For the comparability, we choose σ1 = σ2 = 0 in subfigures (a), (c) and (e). Also, we set σ1 6¼ 0

and σ2 6¼ 0 for the subfigures (b), (d) and (f). In the absence of mutation (μ = 0) and free space

Fig 2. The interplay of different parameters in the mutation-free model (8). p is the probability of playing the PD game. We investigate the role of p in our proposed

model (8) in the absence of the mutation. The figures (a), (c), and (e) of the left-handed column are drawn with σ1 = σ2 = 0. The remaining figures in the right-hand

column are plotted with non-zero values of σ1 and σ2. The advantages provided by the free space help to promote cooperation, as portrayed through the broad area of

yellow and violet regions in figures (b), (d), and (f). Red, sea blue, violet, and yellow depict the stable extinct state, cooperator-free state, defector-free state, and co-

existence state, respectively. We also plot our calculated curves from the local stability analysis of the stationary points. The white line represents that of E0, whereas the

blue line portrays that of the coexistence equilibrium E3. The brown dotted line is the stability curve for the cooperator-free stationary state E2, while the blue dashed

line represents that of the defector-free steady state E1. The mismatches with the stability curve in a few places are due to the multistable behavior of our constructed

model (8). Other parameter values are kept fixed at (a-d) ξ = 0.15, (c-f) β = 1.1, (a,b,e,f) η = 0.85, (b,d,f) σ1 = 0.75, (b,d,f) σ2 = 0.25 and μ = 0.

https://doi.org/10.1371/journal.pone.0272719.g002
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induced benefits (σ1 = σ2 = 0), the defector-free E1 ¼ x� ¼ 1�
ffiffiffiffiffiffiffi
1� 4x
p

2
; 0

� �

is unable to stabilize.

Although E1 exists for 0 < x � 1

4
, but two eigenvalues of the Jacobian of the linearized system

are

l1 ¼ 2x� � 3x�2 � x;

l2 ¼ bx� � bx�
2 � x ¼ xðb � 1Þ:

(

Since β> 1 and ξ> 0, λ2 is always positive. Consequently, E1 is always unstable. This result

is physically meaningful, as both the chosen games (PD and SD) do not encourage a defection-

free society without any supporting mechanism. However, we find three different steady states

in Fig 2(a), 2(c) and 2(e). These stationary points and their corresponding stability analysis are

given below,

1. The extinction equilibrium E0 = (0, 0) (red points in subfigures (a), (c) and (e) of Fig 2)

always exists and is always locally stable.

2. E2 = (0, y��) is the cooperator-free stationary point (sea blue points in subfigures (a), (c)

and (e) of Fig 2), where y�� ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2ð2p� 1Þ2 � 4Zxð2p� 1Þ

p

2Zð2p� 1Þ
. This state exists under the condition

0� 4ξη(2p − 1)�η2(2p − 1)2, and becomes stable if ξ> η(2p − 1)(2y�� − 3y��2).

3. E3 = (x�, y�) allows the coexistence of both cooperators and defectors (yellow points in sub-

figures (a), (c) and (e) of Fig 2), where x� ¼ 1�
ffiffiffiffiffiffiffiffiffi
1� 4kx
p

2k
, and y� ¼ 1� b

2pZ� Z x
�, with k ¼

1� bþ2pZ� Z
2pZ� Z .

The stationary state is stable under the following conditions,

2x > ð2þ bÞx� � ð3þ bÞx�2 � 2ðbþ 1Þx�y�

þð2pZ � ZÞð2y� � 3y�2 � 2x�y�Þ;

ð2x� � 3x�2 � 2x�y� � xÞðbx��

bx�2 � 2bx�y� þ ð2pZ � ZÞð2y� � 3y�2 � 2x�y�Þ

� xÞ þ x�2ðby� � by�2 � 2bx�y� � ð2pZ � ZÞy�2Þ > 0:

8
>>>>>>><

>>>>>>>:

With increasing p, players are prone to play the PD game. Hence, we can not anticipate the

survival of cooperators for large p. Thus, for large p, either the extinction equilibrium E0 or the

cooperator-free stationary point E2 stabilizes in Fig 2(a), 2(c) and 2(e). However, the free-space

induced benefits in Fig 2(b), 2(d) and 2(f) facilitate the emergence of cooperation and stabilize

the interior equilibrium E3. Even, Fig 2(f) provides a range in the p − ξ parameter space, where

the defector-free stationary point E1 stabilizes. The comparative study between the left and

right column of Fig 2 ensures the encouraging role of free space in the promotion of coopera-

tion under suitable circumstances.

With increasing β, the defectors are getting extra aid, and thus, we get the stabilization of

the extinction equilibrium E0 (red zone) in Fig 2(a). However, the presence of free space assis-

tance converts that area into a coexistence zone (yellow zone) in Fig 2(b). The increment of p
in both subfigures (a-b) permits only the existence of defectors, as people are playing mostly

the PD game in such circumstances. Defectors are getting a favorable atmosphere in the PD

game for our chosen PD game parameters’ values. A similar sort of stabilization of cooperator-

free steady state (sea blue area) is observed in subfigures (c-d) for larger values of p. However,

lower values of p provide the opportunity for playing the SD game. Hence, coexistence equilib-

rium (yellow region) stabilizes in Fig 2(c) and 2(d) for smaller p. Nevertheless, the inclusion of

PLOS ONE Eco-evolutionary dynamics of multi games

PLOS ONE | https://doi.org/10.1371/journal.pone.0272719 August 9, 2022 12 / 26

https://doi.org/10.1371/journal.pone.0272719


free space induced benefits helps to broaden the region of coexistence in the p − η parameter

plane, as shown in Fig 2(d). The comparison between the Fig 2(e) and 2(f) suggests that appro-

priate non-zero values of σ1 and σ2 entertain the stabilization of a defector-free steady state

(violet region). Hence, we can trace a fair portion of violet points in the p − ξ parameter space

of the subfigure (f). However, too large a mortality rate reduces the opportunity of survivability

of any individual, resulting in the stabilization of the extinction equilibrium E0. We focus on

the effect of mortality rate ξ more elaborately in Fig 3.

As expected, higher values of ξ constantly enlarge the chances of extinction. Thus, we

observe a fair portion of the red region in Fig 3. Nevertheless, the amount of this red area is

considerably lesser in the right column of Fig 3 compared to the left column. We introduce the

non-zero values of σ1 and σ2 in the right column of this figure. These free space induced bene-

fits encourage maintaining a defector-free society, as shown in Fig 3(b) and 3(d). We choose

Fig 3. Influence of death rate ξ in the mutation-free model (8). The influence of game parameters β and η and the mortality rate ξ on the emergent dynamics of the

model (8) in the absence of mutation is examined here. Subfigures (a) and (c) are drawn with σ1 = σ2 = 0. While subfigures (b) and (d) are generated with σ1 = 0.75 and

σ2 = 0.25. Since, σ1 > σ2, we notice a fair portion of defector-free region (violet points) in subfigures (b) and (d). In the absence of free space induced benefits, we are

unable to trace such defector-free regions in subfigures (a) and (c). The red region reflects the disappearance of all individuals for relatively high values of death rate ξ.
Note that we keep the value of p fixed at 0.3. Thus, the system gets more opportunities to play the SD game, which generally encourages stabilizing the coexistence

equilibrium. Therefore, we notice lower values of ξ will lead to the convergence towards the coexistence equilibrium E3 (yellow points). β is kept fixed at 1.1 for the

subfigures (a-b) and η is set at 0.85 for subfigures (c-d). We iterate the system (8) with μ = 0 for 20 × 105 iterations with fixed integration step size δt = 0.01 and fixed

initial condition (x0, y0) = (0.35, 0.35).

https://doi.org/10.1371/journal.pone.0272719.g003
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σ1 = 0.75> 0.25 = σ2 for Fig 3(b) and 3(d). i.e., the free space will provide an additional advan-

tage for the cooperators, and thus depending on the other parameters, the defectors are van-

ished in the long run, as shown in Fig 3(b) and 3(d). In all of these subfigures of Fig 3, we trace

a portion of yellow points depicting the survival of both cooperators as well as defectors simul-

taneously. We choose p = 0.3 in Fig 3. Thus, people get more chances to play the SD game,

which facilitates the concurrence of both cooperation and defection. Thus, smaller values of ξ
provide an opportunity to coexist for all strategies, which is observed in Fig 3 with initial con-

dition (x0, y0) = (0.35, 0.35). We plot the stability curve of all stationary points in Figs 2–5 as

follows,

(i) The brown dotted line for the cooperator-free steady state E2,

(ii) the blue dashed line for the defector-free steady state E1,

(iii) the solid blue line for the interior equilibrium E3, and

(iv) the solid white line for the extinction equilibrium E0.

In Fig 4, we fix the value of σ2 at 0.25 and examine the role of σ1. Since σ1 represents the free

space induced benefits towards the cooperators, thus enhancement of its (σ1) value will help in

Fig 4. Importance of σ1 in the enhancement of cooperation. Four different parameter spaces (a) σ1 − β, (b) σ1 − η, (c) σ1 − p, and (d) σ1 − ξ are contemplated here

with fixed initial condition x0 = 0.35 and y0 = 0.35. σ1 is varied within [0, 1], and the other parameters’ values are for the subfigures (a) ξ = 0.15, η = 0.85, p = 0.30, σ2 =

0.25, and μ = 0. β is varied within the open interval (1, 2), (b) ξ = 0.15, β = 1.1, p = 0.30, σ2 = 0.25 and μ = 0. η is varied within (0, 1), (c) ξ = 0.15, β = 1.1, η = 0.85, σ2 =

0.25, and μ = 0. p is varied within the closed interval [0, 1], and (d) β = 1.1, η = 0.85, p = 0.30, σ2 = 0.25 and μ = 0. ξ is varied within the interval (0,1]. The color code

represents the following: (i) red represents the extinct state, (ii) yellow portrays the co-existence state, (iii) violet displays the defector-free state, and (iv) sea blue depicts

cooperator-free state, respectively. We have run the numerical simulations for 20 × 105 iterations for each point and store the final value for determining the final

asymptotic state. Increment of σ1 contributes more to the cooperators’ payoff, and hence, we observe a defector-free region for higher values of σ1 depending on the

other parameters. We draw the stability curves for E0 (the solid white line), E1 (the blue dashed line), E2 (the brown dotted line), and E3 (the solid blue line).

https://doi.org/10.1371/journal.pone.0272719.g004

PLOS ONE Eco-evolutionary dynamics of multi games

PLOS ONE | https://doi.org/10.1371/journal.pone.0272719 August 9, 2022 14 / 26

https://doi.org/10.1371/journal.pone.0272719.g004
https://doi.org/10.1371/journal.pone.0272719


promoting cooperation in the society. Fig 4 reflects the same scenario. A defector-free society

(violet region) is noticed in all these subfigures. The increment of temptation parameter β’s

value challenges the prevalence of cooperation. Thus, for a small σ1, we find a defector domi-

nated society (the sea blue region in Fig 4(a)). σ1 proves to be a cooperator facilitating parame-

ter as we detect a wide range of yellow regions in Fig 4(a), where both cooperators and

defectors can coexist. Similarly, irrespective of the choice of η in Fig 4(b), higher values of σ1

provide all cooperators an extra benefit for survival, and thus, the stationary point E1 (violet

points) stabilizes. For the intermediate choice of σ1, the stationary point E3 (yellow) yields the

stable coexistence of both strategies. However, cooperators strive to keep in existence for the

lower values of σ1, and we find the sea blue region of cooperator-free steady state. The parame-

ter p indicates the probability of playing the PD game. Thus, p! 1− always gives defectors a

more favorable environment to survive. That’s why we spot a sea blue portion in Fig 4(c) for

higher values of p and σ1. When p is small, people are prone to play the SD game; and thus, we

get the coexistence of both strategies (the yellow region in Fig 4(c)) for smaller p and σ1. Never-

theless, a larger value of σ1 with a moderate value of p always provides a reasonable scope for

Fig 5. Investigating the impact of σ2 on the evolution of cooperation. For the smaller values of σ2, the mutation-free system gives rise to the

defector-free (violet region) society. While larger values of σ2 encourage the defectors and stabilize the cooperator-free stationary point E2 (sea

blue region). Suitable choices of parameters may favor the co-existence of cooperators as well as defectors. Even for a higher mortality rate ξ’s
values, all individuals die in the red portion of the parameter space σ2 − ξ in subfigure (d). All the parameters are set at ξ = 0.15, η = 0.85, β = 1.1,

p = 0.30, σ1 = 0.75, and μ = 0, unless it is varied. The simulations are computed for 20 × 105 iterations with fixed initial condition (x0, y0) = (0.35,

0.35). The color codes are as follows: (i) red represents the extinct state E0, (ii) yellow represents the co-existence state E3, (iii) violet represents

the defector-free state E1, and (iv) sea blue represents cooperator free state E2, respectively. We plot the stability curves corresponding to each

stationary point in each subfigure.

https://doi.org/10.1371/journal.pone.0272719.g005
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the cooperators to survive, and we discover a healthy portion of the stationary point E1 (the

violet region) in Fig 4(c). A higher mortality rate ξ always results in the extinction of both

cooperators and defectors, and we locate a huge red region in the σ1 − ξ parameter plane of Fig

4(d). We find a very tiny sea blue region in Fig 4(d), where defectors are only able to survive.

But, as expected, a higher value of σ1 always promotes the cooperation strategy, and we obtain

a violet zone of defector-free stationary point and a yellow region of interior equilibrium E3 in

Fig 4(d).

Fig 5(a) shows that except for a smaller portion of the defector-free region (violet zone),

the whole σ2 − β parameter space produces the coexistence of both cooperators and defectors

depending on other parameters’ values. Despite the increment of σ2 and β, the cooperators are

able to survive along with the defectors due to our choice of other parameters’ values. The σ2 −
η parameter space portrays that smaller values of σ2 can not provide any benefit to the defec-

tors, and stabilize the defector-free stationary point E1 (violet region) irrespective of η’s value.

However, if σ2 increases, it will yield a window of opportunity for the defectors to thrive. We

observe a wide coexistence region (yellow region) and a small area of cooperator-free station-

ary point (sea blue region)in Fig 5(b). σ2 indicates the free-space induced benefits towards the

defectors. So, it is expected that larger values of σ2 always enhance the chances of defectors’

survivability. Thus, we notice a cooperator-free region (sea blue zone) in both Fig 5(c) and

5(d). Nevertheless, larger values of p enhance the chances of playing the PD game, where defec-

tors get a favorable environment to survive. Thus, the cooperator-free sea blue region is found

in Fig 5(c). We are also able to detect a small violet region of a defector-free environment in

the σ2 − p parameter space. However, we trace a healthy portion of coexistence (yellow) too in

Fig 5(c) due to our chosen parameters’ values.

3.4 The influence of bidirectional mutation

Now we investigate the influence of bidirectional mutation on the long-term behavior of the

nonlinear differential Eq (8). Since every species can mutate into the other at a specific uni-

form rate μ 2 (0, 1], thus cooperators and defectors can not remain alive alone. Either all popu-

lations will die; otherwise, the dynamics will lead to the coexistence of all two species. Fig 4

already portrays the influence of free space-induced benefits on the cooperators in the absence

of mutation. We scrutinize the impact of σ1 under the influence of 50% mutation (i.e., μ = 0.5)

in Fig 6. As σ1 increases, the cooperators are getting a better environment for survival. We find

a portion of stable coexistence equilibrium in each two-dimensional parameter space for large

σ1 in Fig 6. Thanks to the mutation, the cooperators can not live alone. The white line in Fig 6

is the stability curve corresponding to the extinction equilibrium. The local stability analysis

fits almost exactly with the numerical simulations in Fig 6 with fixed initial condition (x0, y0) =

(0.35, 0.35). There are a few places where the stability analysis fails to predict the stabilization

of the extinction stationary point (0, 0). This is mainly due to the multistable behavior of the

proposed model 8.

As discussed, the increasing values of the parameters β, η, and p always provide the defec-

tors a favorable environment to dominate the cooperators. However, beyond a critical value of

σ1, both the cooperators and defectors can coexist, as shown in Fig 6(a)–6(c). The larger values

of ξ always hinder the evolution of cooperators as well as of defectors. However, an intermedi-

ate choice of σ1 − ξ favors the successful evolution of both strategies, as portrayed through Fig

6(d). The same feature is also noticeable in Fig 7. The complex evolutionary dynamics switch

between two stationary points depending on the choices of parameters’ values in Fig 7. For

smaller values of σ2, the defectors are not getting enough advantages to survive, and thus the

extinction equilibrium (0, 0) stabilizes in the red region of all subfigures of Fig 7. The choice of
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other parameters’ values is also crucial for obtaining these stationary states. The parameter σ2

benefits the defectors; hence the defectors can survive beyond a certain threshold of σ2. The

employed 50% mutation rate helps to flow a certain fraction of defectors into cooperators, and

we have a moderate portion of coexistence state (yellow region) in Fig 7. The observed results

may vary for different choices of initial conditions, as the system is multistable. We plot the

boundary separating solid white lines in all subfigures by analyzing the local stability analysis

of the extinction equilibrium. Clearly, this stability curve agrees well with our numerical simu-

lations, and the places, where they don’t agree with the numerical simulations, is due to the

multistable behavior of our proposed model 8. All the simulations are done by iterating for

20 × 105 times with fixed integrating step length δt = 0.01. The last point is gathered to finalize

the asymptotic state. All the codes to generate these figures are publicly available at Ref. [70].

Fig 8 demonstrates the importance of the parameters σ1, σ2 and ξ for the enhancement of

cooperation under the presence of mutation. The larger values of σ1 and σ2 facilitate the evolu-

tion of at least one species, and the positive mutation rate μ 2 (0, 1] assures that species should

mutate into the other. This mechanism will lead to the species’ coexistence in a major portion

(yellow region) of the two-dimensional parameter spaces represented in Fig 8(a) and 8(b). The

results are further validated by plotting the stability curve (white solid lines) below which the

Fig 6. The effect of altruist free space on the nonlinear dynamics of multigames with mutation. The influence of free space-induced benefits by

varying σ1 within the closed interval [0, 1] is established. The whole population goes extinct in the red region, and the yellow area reflects the system’s

stable interior point, corresponding to the coexistence of all two strategies. All the parameters are kept fixed at ξ = 0.25, η = 0.85, p = 0.30, σ2 = 0.20, β =

1.1, μ = 0.5, unless it is varied. The initial condition is kept fixed at (0.35, 0.35). A notable difference is observed from (Fig 4), which is drawn in the

absence of mutation. Larger values of σ1 always facilitate the maintenance of cooperation, and the bidirectional mutation reinforces the system’s

inherent tendency to flow from cooperators to defectors. The solid white line in each figure is the analytically computed stability curve corresponding

to the extinction equilibrium.

https://doi.org/10.1371/journal.pone.0272719.g006
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stationary point (0, 0) is locally stable. A higher mortality rate never entertains the evolution of

both strategies; thus, we obtain the red region in Fig 8(c). This red region indicates the extinc-

tion equilibrium (0, 0). Once again, we plot the stability curve (solid white line) in Fig 8(c),

above which both the species should be extinct as per our local stability analysis. All the subfi-

gures are drawn with fixed initial condition (0.35, 0.35).

We inspect the influence of different parameters on the constructed model (8) in Fig 9. We

keep fixed all parameters’ values at ξ = 0.25, β = 1.1, μ = 0.5, p = 0.65, η = 0.85, σ1 = 0.75 and σ2

= 0.25, unless they are varied. Since free space provides additional advantage to the cooperators

compared to the defectors as we choose σ1 = 0.75 > σ2 = 0.25, we have a defector-free society

at least initially with μ = 0 in Fig 9(a). However, whenever the mutation rate μ becomes posi-

tive, each strategy can mutate into other. In this way, the density of the cooperators (red line)

decreases, and the defectors’ density (blue line) increases. Eventually, both densities almost

become identical for μ! 1 −. In of Fig 9(b), the vital role of p is investigated in the one-dimen-

sional bifurcation diagram. As p! 1 −, the defectors are getting the upper hand over the coop-

erators as p indicates the probability of playing the PD game. PD game always provides

Fig 7. The impact of free space-induced benefits on the defectors in the presence of the mutation. Either all populations die (red region), or the symmetric

mutation preserves the coexistence state (yellow area) in all these subfigures. Beyond a critical value of σ2, both strategies mutate one into another, providing the

opportunities for the coexistence of both species. The solid white line is the analytically derived stability curve to stabilize the extinction equilibrium. All the parameters

are kept fixed at ξ = 0.25, η = 0.85, p = 0.30, σ1 = 0.30, μ = 0.5, β = 1.1, unless they are varied. The initial condition is kept fixed at (0.35, 0.35). The slight mismatch of the

stability of the extinction equilibrium (0, 0) in subfigures (a) and (c) is due to the multistable dynamics of our proposed model (8).

https://doi.org/10.1371/journal.pone.0272719.g007
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additional assistance to the defectors. All these results obtained in Fig 9 are consistent with the

social dilemmas considered for constructing the model (8). Fig 9(b) points out that lower val-

ues of p are always better for the maintenance of cooperation as small values of p indicate

more rational people are playing the SD game and the SD game always favors the coexistence

of both strategies. Increasing the temptation parameter β always uplifts the defectors’ fraction

y (blue line). Thus, one needs to choose the value of β wisely so that we obtain a moderate

range of β in Fig 9(c) allowing the coexistence of both strategies. When β is small, we found the

cooperators’ density x (red line) dominates the defectors’ fraction y (blue line). However for

β> 1.45, y is larger than x. Note that the results may alter for a different choice of initial condi-

tion as the system 8 is multistable. We plot Fig 9 with fixed initial condition (0.35, 0.35) and

the code to generate this figure is freely available at [70]. Increasing the parameter η 2 (0, 1)

can provide extra benefits to the defectors. Thus, the rate of increment of y is slightly better

Fig 8. Effect of bidirectional mutation on the emergent dynamics. The positive mutation rate μ 2 (0, 1] allows the system (8) to settle into two stationary points

depending on the choice of other parameters’ values. When the free space-induced benefits are small, all species are extinct, as depicted through subfigures (a-b).

However, all strategies can coexist for suitable choices of other parameters. The red region reflects the extinction equilibrium, and the yellow region indicates the stable

coexistence of cooperators and defectors. The solid white line represents the analytically derived stability curve below which the extinction equilibrium (0, 0) is locally

stable in subfigures (a-b). The initial condition is chosen here as (x0, y0) = (0.35, 0.35). Other parameters’ values are kept fixed at ξ = 0.25, β = 1.1, η = 0.85, p = 0.30, σ2 =

0.20, σ1 = 0.30, unless they are varied. The moderate choice of mortality rate ξ 2 (0, 1] allows the species’ coexistence in subfigure (c). Beyond a critical value of ξ, both

the cooperators as well as the defectors die, as reflected through the red region of subfigure (c).

https://doi.org/10.1371/journal.pone.0272719.g008
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than that of x in subfigure (d) of Fig 9. However, other parameters’ values are also crucial for

stabilizing the competitive communities. Hence, y (blue line) remains always lower than x (red

line) in Fig 9(d) for our chosen parameters’ values.

Since the mutation rate μ is 50%, we can obtain only two stationary points of the model (8).

Thus, initially, for a smaller choice of σ1, extinction of both species prevails in Fig 9(e). Never-

theless, with an increment of σ1, cooperators are getting further assistance from free space, and

hence x becomes positive beyond σ1 = 0.25. Since μ = 0.5, 50% of these cooperators mutate

bidirectionally into the defectors, and thus, we have positive y too in that range of σ1. Since

σ2 = ξ = 0.25, thus we get the stabilization of (0, 0) within the interval σ1 2 [0, 0.25]. In fact, the

Fig 9. Effects of various parameters in spreading of cooperative behavior. Subfigure (a) reveals two contrasting scenarios, where the cooperators decrease with the

increment of the mutation rate μ. However, the defectors’ fraction gradually increases with increasing μ. In the absence of mutation (i.e., for μ = 0), all defectors are

extinct as the parameters values chosen to produce this subfigure is ξ = 0.25, β = 1.1, η = 0.85, p = 0.65, σ1 = 0.75 and σ2 = 0.25. Thus, the free space induced benefit

towards cooperator σ1 is greater than that of defector σ2. Subfigure (b) shows that both species’ densities gradually increase with the probability p of playing the PD

game. As the probability of playing the PD game increases, the increment of the fraction of defectors (blue line) gets over in margin with respect to the fraction of the

cooperators (red line) after p = 0.85 depending on other parameters’ values. This fact is obvious from the view that a higher possibility of playing the PD game gets a

more beneficial ambiance for defectors. Subfigure (c) indicates the same phenomena as the value of the temptation payoff parameter β increases, both the fractions

escalate. Whereas at β = 1.45, both these fractions get the same value. After that value of β, the value of the fraction of defector (blue line) becomes more than that of the

cooperators (red line). Subfigure (d) also highlights the increment of both the fractions as the punishment payoff parameter η increases. But up to the highest received

payoff value of η, the value of the fraction of defectors can never exceed the cooperators’ fraction because the free space provides more benefit to the cooperators than

the defectors. Subfigure (e) demonstrates that when σ1 2 [0, 0.25], both these fractions are extinct, as the mortality rate ξ has more value than these free space-induced

benefits. But as the value of σ1 increases, the cooperator gets more advantages than defectors. Subfigure (f) shows that both the fractions increase with the enhancement

of σ2. Up to σ2 = 0.5, the cooperators’ density acquires more value than y, as the value of σ1 = 0.75 is taken sufficiently high. After σ2 = 0.5, y becomes higher than x. All

the subfigures are drawn by iterating the system (8) with 20 × 105 times with fixed integrating step length δt = 0.01 and fixed initial condition (x0, y0) = (0.35, 0.35). The

last point at 20 × 105 iteration is collected to identify the asymptotic state of the proposed model. Other parameters are kept fixed at ξ = 0.25, β = 1.1, μ = 0.5, p = 0.65, η
= 0.85, σ1 = 0.75 and σ2 = 0.25, unless they are varied.

https://doi.org/10.1371/journal.pone.0272719.g009
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cooperators’ density x is slightly better than that of y for the higher values of σ1 in Fig 9(e). The

choice of the initial condition and other parameters’ values are vital in obtaining all these

results. Similar observation can be found in Fig 9(f), where we examine the role of σ2 in our

proposed model (8). With increasing σ2, the defectors will be benefited from free space, and

hence, y (blue line) dominates x (red line) for larger values of σ2. But since σ1 is taken suffi-

ciently large in this Fig 9(f), we initially have a small portion for smaller values of σ2 where

x> y. Fig 9 discloses suitable choices of all parameters’ values not only entertain the coexis-

tence of both strategies but also may promote the evolution of cooperation.

4 Concluding remarks

Our mutation-induced model provides widespread coexistence of both strategies under suit-

able choices of parameters’ values. Such stable persistence of ecological communities strength-

ens the theory of concurrency. Our thorough analysis with several numerical simulations

enhances our understanding of the mechanisms that drive the survival of cooperative behavior

in the multigames consisting of both the Prisoner’s Dilemma and the Snowdrift games. The

inclusion of altruistic behavior of free space along with the mutation in our proposed evolu-

tionary model seems to be a natural course of action as observed in many realistic settings.

Our findings clearly demonstrate that there exists an optimal probability of playing each game

so that people are more likely to cooperate in such circumstances. Throughout the study, we

have pointed out the positive impact of diverse factors (parameters) on significant improve-

ment of cooperation. We have shown that the selfless contribution of free space promotes the

coexistence of all strategies efficiently, even in the absence of mutation.

In summary, our research indicates the proposed model (8) may possess four different sta-

tionary points in the absence of mutation. The exciting feature of this model is that the system

never allows settling into a cooperator-free state in the lack of free space-induced benefits and

mutation rate. This precise result is consistent with the chosen games as both the PD and SD

games never encourage a cooperator-free society in the usual scenario. The merging of two

games with different outcomes provides a more realistic representation of the concept of opin-

ion formation. However, the numerical results presented here are highly sensitive to the varia-

tion of initial conditions. The positive invariance and boundedness of the model are analyzed

too in this article. We have shown the viable choice of bidirectional mutation allows the system

to switch between only two stationary states. Either all people will die, or both the strategies

coexist in the eco-evolutionary model with mutation. This is an interesting angle of our

research as our model brings forth stable biodiversity in the form of a heterogeneous popula-

tion (mixed cooperator-defector state). Note that we have only focused on the equilibria of the

corresponding dynamical system (8) throughout the article so that we can relate those station-

ary states from the game-theoretical point of view. Our simple model with mutation sheds

light on how cooperation emerges in a complex society. The presented insightful results attest

that altruistic behavior and mutation are advantageous for the spontaneous maintenance of

biodiversity. We believe the presented results may help us understand the mechanism behind

the coexistence of competing species through the co-evolution of both strategies.

5 Discussion: Limitation & future perspectives

Lastly, we discuss challenges related to our work that merits further investigation. Even though

it is almost impossible to incorporate all complex, realistic relationships among social creatures

using minimal modeling, it is nevertheless absolutely essential to investigate such models

using elementary mathematical principles. In fact, the literature already provides a number of

excellent models that offer a stimulating starting point for exploring many practical situations.
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Chen et al. [71] proposed an elegant model aimed at understanding the co-evolutionary out-

come of the strategies of the traffic management department, drivers, and pedestrians. Refer-

ence [72] proposes a hybrid machine learning model to predict traffic accidents. A novel

autonomous system without any stationary points may offer hidden attractors, as revealed

in Ref. [73]. It is almost impossible to incorporate even a partial list of relevant references to

emphasize the importance of minimal modeling here. Motivated by all these works, we present

a new model that can offer several valuable insights into the evolution of cooperation and

altruism. However, our model is far from perfect. Instead of considering two-person interac-

tions, the introduction of group interactions may yield a deeper understanding of decision-

making. Interdependent networks may be an excellent choice to study the evolution of cooper-

ation, as reflected through Refs. [20, 31, 62, 74]. This remains a promising future research gen-

eralization, including interdependent networks which may yield several complex dynamical

behaviors other than stable equilibrium states.

One should observe that our approach works absolutely fine with other social dilemmas.

For any two two-person games of the form
R S
T P

� �

, the system constructed with the help of

our policy always remains bounded within the closed interval [0, 1]. However, the stationary

points alter due to the change in the mathematical model. We have verified this boundedness

by considering the snowdrift and the harmony game [75, 76] (results are not shown here). In

fact, on the generality of our results, we can comment that a similar impact of mutation and

free space can also be expected for other two-person games. It will be interesting to examine

how the results may vary with other games like public goods games, rock paper scissor, etc.

Besides introducing other realistic scenarios like apology and forgiveness [77], intention recog-

nition [78], delay [79] etc., one may advance our understanding of the roots of cooperation in

social and biological systems. Moreover, the impact of higher-order interactions [80] among

the agents on the coevolution [81] of cooperation and synchronization [82–84] in a coupled

network remains largely unexplored. The interdisciplinary researchers of complex systems can

pay attention to this exciting topic for future research.
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Investigation: Sayantan Nag Chowdhury.

Methodology: Sourav Roy, Sayantan Nag Chowdhury.

Project administration: Sayantan Nag Chowdhury, Dibakar Ghosh.

Resources: Sayantan Nag Chowdhury.

PLOS ONE Eco-evolutionary dynamics of multi games

PLOS ONE | https://doi.org/10.1371/journal.pone.0272719 August 9, 2022 22 / 26

https://doi.org/10.1371/journal.pone.0272719


Software: Sourav Roy.

Supervision: Sayantan Nag Chowdhury, Dibakar Ghosh.

Validation: Sourav Roy, Prakash Chandra Mali, Matjaž Perc, Dibakar Ghosh.
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