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Abstract: Graphene nanoplatelets (GNP) and carbon nanotubes (CNT) are used to enhance electrical
and mechanical properties of epoxy-based nanocomposites. Despite the evidence of synergetic
effects in the hybrid GNP-CNT-epoxy system, there is still a lack of studies that focus on the
influence of different dispersion methods on the final properties of these ternary systems. In the
present work, direct and indirect ultrasonication methods were used to prepare single- and hybrid-
filled GNP-CNT-epoxy nanocomposites, varying the amplitude and time of sonication in order to
investigate their effect on electrical and thermomechanical properties. Impedance spectroscopy was
combined with rheology and electron microscopy to show that high-power direct sonication tends to
degrade electrical conductivity in GNP-CNT-epoxy nanocomposites due to damage caused in the
nanoparticles. CNT-filled samples were mostly benefitted by low-power direct sonication, achieving
an electrical conductivity of 1.3 × 10−3 S·m−1 at 0.25 wt.% loading, while indirect sonication was
not able to properly disperse the CNTs and led to a conductivity of 1.6 ± 1.3 × 10−5. Conversely,
specimens filled with 2.5 wt. % of GNP and processed by indirect sonication displayed an electrical
conductivity that is up to 4 orders of magnitude higher than when processed by direct sonication,
achieving 5.6 × 10−7 S·m−1. The introduction of GNP flakes improved the dispersion state and
conductivity in hybrid specimens processed by indirect sonication, but at the same time impaired
these properties for high-power direct sonication. It is argued that this contradictory effect is caused
by a selective localization of shorter CNTs onto GNPs due to strong π-π interactions when direct
sonication is used. Dynamic mechanical analysis showed that the addition of nanofillers improved
epoxy’s storage modulus by up to 84%, but this property is mostly insensitive to the different
processing parameters. Decrease in crosslinking degree and presence of residual solvent confirmed
by Fourier-transform infrared spectroscopy, however, diminished the glass transition temperature of
the nanocomposites by up to 40% when compared to the neat resin due to plasticization effects.

Keywords: hybrid nanocomposites; processing; sonication; graphene nanoplatelets; carbon nan-
otubes; epoxy; electrical conductivity; synergy

1. Introduction

Epoxy resins are extensively used in high performance applications due to their high
chemical resistance, low density and excellent mechanical properties, making them one of
the most important classes of thermosetting polymers [1]. For these reasons, epoxy resins
became a standard for polymer matrix composites (PMCs), which are widely employed in
structural applications [2]. Among PMCs, epoxy is especially important in the fabrication
of composites known as fiber-reinforced polymers (FRP), resulting in materials that offer
mechanical properties comparable to metals but at a much lower density. The develop-
ment of such materials revolutionized the aerospace industry by allowing it to switch the
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fuselage design from metallic to FRP structures, reducing the overall weight of aircraft
and saving fuel [1,3]. However, epoxy-based materials have their own set of limitations,
including low thermal conductivity that can lead to heat build-up in electronics coated
with them [4,5]. Low fracture toughness [2] is another drawback, being one of the main
causes of delamination in FRP [6]. Another disadvantage is their inherently high electrical
resistance, which is a major source of concern for the aerospace industry [3,7,8]. Airliners
are struck by lightning approximately once every year, and the insulating character of
modern FRP frames renders the airplane structure vulnerable to serious damage when
hit by such electrical discharges, including embrittlement, delamination and vaporization
of the resin and metallic components [3,7–9]. A conductive fuselage is also required in
order to shield the airplane from electromagnetic interference (EMI), which can cause
malfunctioning of communication equipment and electronics on-board [3]. So far, the
industry uses a metallic wire mesh bonded on the fuselage as an effective solution [3,9],
but it is not an efficient solution since it adds considerable weight.

Regarded as “wonder materials” due to their outstanding electrical and mechanical
properties, carbon nanotubes (CNT) and graphene, as well as their less costly counterparts
such as graphene nanoplatelets (GNP), have enabled researchers to overcome epoxy resins’
limitations by using them as advanced nanofillers [10–12]. Recent studies continue to show
the beneficial effects of carbon nanofiller addition on epoxy’s properties. Mostovoy et. al.
showed that functionalized multi-walled carbon nanotubes significantly increased im-
pact and tensile strength, bending stress and elastic modulus of plasticized epoxy [13].
Hesam et al. was able to improve several mechanical and tribological properties of GNP-
epoxy specimens by controlling nanofiller loading and modifying it with silane groups [14].
Lately, hybrid nanocomposite systems (i.e., systems that employ two or more fillers) have
been gaining attention and pose a promising alternative to reduce cost and further enhance
the range of properties of single-filler nanocomposites [15]. This is due to synergetic effects
that may arise when both nanoparticles are mixed together, which are usually justified
in terms of better dispersion and bridging of GNP flakes. In the first mechanism, the
difference in aspect ratio between GNP and CNT makes it more difficult for particles to
re-agglomerate, improving dispersion [16,17]. In the second mechanism, a small amount
of CNTs can act as bridges between adjacent graphene flakes and connect them to form a
percolating network [16,18–20]. In particular, ternary GNP-CNT-epoxy hybrid nanocom-
posites became the focus of widespread research, but the existence of the much desired
synergy in these systems is still far from consensus. In a seminal paper from 2008, Yu et al.
have found synergy for thermal conductivity but not for electrical conductivity [4], while a
2013 study by He and coworkers found synergy for both properties [21]. In the following
year, Yue et. al. reported synergy for electrical and flexural properties [17]. Then, in 2018,
Prolongo and colleagues [22] reported no synergy for glass transition temperature (Tg),
thermal or electrical conductivity, only for storage modulus (E’), while two 2019 papers
reported synergy for every property tested, including Tg and electrical conductivity [16,23].
Other authors have also discussed these contradictory findings [20,24], which are related
to differences in the starting materials and preparation methods. This suggests that more
systematic research is needed in order to understand all variables involved, as Navjot
points out in a 2019 review paper [25].

Proper dispersion of nanofillers is crucial for achieving the desired properties and
could be one of the culprits of these discrepancies, since each study follows a different
dispersion procedure. The effect of sonication processing parameters on nanofillers’ disper-
sion and properties has been studied before. Mellado et al. studied the impact of direct and
indirect sonication on the exfoliation and integrity of graphene oxide (GO) and found that
high-power direct sonication is more efficient in exfoliating the GO flakes, but it induces
defects in the GO sheet structure and therefore sonication bath should be preferred [26].
Sauter and colleagues investigated the influence of amplitude and hydrostatic pressure in
the dispersion of silica nanoparticles and found that the de-agglomeration depended only
on the total specific energy input [27]. Regarding GNP-epoxy nanocomposites, Silva et. al.
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compared solvent assisted and non-solvent assisted sonication methods and found that
the latter lead to higher electrical conductivity and storage modulus [28]. Despite these
previous studies, the impact of sonication parameters on hybrid GNP-CNT-epoxy systems
has been ignored so far.

The present work aims to fill this gap by systematically investigating the influence of
different sonication parameters and methods in the dispersion, electrical and thermome-
chanical properties of single and hybrid-filled CNT-GNP-epoxy nanocomposites.

2. Materials and Methods
2.1. Materials

Aerospace-grade epoxy system Araldite® LY 5052/Aradur® 5052 was purchased from
Huntsman (São Paulo, Brazil) and the resin/hardener mass fraction used was 100 to 38,
respectively, as recommended by the manufacturer [29]. This epoxy resin is a blend of
phenol novolac resin and 1,4 butanediol diglycidyl ether, and the hardener component is
a mixture of two amines, IPDA and cycloaliphatic diamine [30]. Graphene nanoplatelets
(GNP) were produced and provided by 2D fab (Sundsvall, Sweden). Multiwalled carbon
nanotubes (MWCNT) NC7000 were purchased from Nanocyl (Sambreville, Belgium), and
the average diameter and length of the tubes are 9.5 nm and 1.5 µm, respectively, with a
volume resistivity of 10−4 Ω·cm, as stated in the material’s data sheet [31]. For simplicity’s
sake, in the present work these will be referred to as “CNT”. Both nanoparticles were used
as received.

Weight fractions of 2.5 and 0.25% of GNP and CNT, respectively, were chosen with
the purpose of using the minimum amount of nanofiller that would show clear changes
in thermomechanical and electrical properties. The concentration of hybrid samples was
chosen simply as the combination of the single-filled nanocomposites’ concentrations, i.e.,
2.5 wt.% of GNP plus 0.25 wt.% of CNT for a total of 2.75 wt.% of carbon content.

2.2. Sample Preparation

For samples dispersed by direct sonication, 40 mL of acetone and the nanoparticles
were added in a 50 mL beaker and the nanoparticle suspension was sonicated in the 750 W
20 kHz ultrasonic probe model VCX750 from Sonics (Newtown, CT, USA). The height of
the probe was kept constant, and an ice bath was used to prevent overheating. For each of
the three compositions (2.5 wt.% GNP, 0.25 wt.% CNT and the 2.75 wt.% hybrid), different
combinations of time and amplitude (i.e., power) were used according to Table 1 for a total
of 36 samples with different compositions and sonication parameters. After sonication,
epoxy resin was added, and the mixture was heated to 70 ◦C under magnetic stirring to
remove the acetone. Then, the samples were put into a vacuum oven at 70 ◦C overnight in
order to further remove the solvent. Control samples were prepared by suspending the
nanofillers in acetone and subjecting them to all procedures except the sonication step. For
samples processed by indirect sonication, the epoxy resin and nanoparticles were manually
mixed for 5 min and then sonicated for 120 min in the 70 W 40 kHz ultrasonic bath model
SoniClean 2PS from Sanders (Minas Gerais, Brazil), with manual stirring every 40 min to
maintain homogeneity. Acoustic power delivered to the samples was measured through
the calorimetric method [32] and found to be ~0.53 W.

After both processing routes, samples were taken for rheological characterization
before curing, while the remaining material was manually mixed with the hardener for
3 min. The resulting mixture was put under vacuum for 5 min for degassing and then
cured for 24 h at room temperature followed by a post-curing step of 4 h at 100 ◦C. For each
condition, two test specimens were prepared for DMA and four for impedance analysis.
This procedure is summarized in Figure 1.
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Table 1. Sonication parameters used for preparing GNP-, CNT- and hybrid-filled nanocomposites.

Sonication Method Amplitude
(%)

Time
(min)

Indirect sonication - 120

Direct sonication

25 15
25 30
25 45
25 60
50 15
50 30
50 45
50 60
75 15
75 30
75 45
75 60
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Figure 1. Simplified summary of the sample preparation process.

2.3. Instrumental

Scanning electron microscopy (SEM) was used to image nanoparticles and cured
nanocomposites. GNP and CNT powder were dispersed in either dimethylformamide or
acetone at approximately 0.1 mg·mL−1 and dropped onto a heated silicon wafer substrate.
Cured samples were cryofractured and sputter-coated with 15 nm of gold. Images were
taken using a compact SEM (JSM-6010LA) or a field-emission SEM (JSM-6701F), both from
Jeol (Tokyo, Japan). Small-amplitude oscillatory shear (SAOS) tests were performed at 25 ◦C
in an MCR 502 rheometer from Anton Paar (Graz, Austria). Parameters used include 25 mm
diameter parallel plate geometry with 1 mm gap, shear strain amplitude of 1% (within
the linear viscoelastic region) and angular frequencies ranging from 0.1 to 100 rad s−1.
Viscosity curves were also obtained in the same configuration, with shear rate ranging from
0.01 to 1000 s−1. Dynamic mechanical analysis (DMA) was performed in a DMA Q800 from
TA Instruments (Thermo Fisher Scientific, Waltham, MA, USA) by sweeping temperatures
from 35 to 200 ◦C at a fixed frequency of 1 Hz and 5 µm amplitude in dual cantilever mode.
The storage modulus (E’) was evaluated at the glassy state (40 ◦C) and glass transition
temperature (Tg) obtained as the maximum in tan (δ). Results were averaged using at
least two test specimens with dimensions of approximately 12.7 mm × 3.2 mm × 35 mm.
Raman spectroscopy was performed on the dispersive Raman T64000 from Horiba Jobin-
Yvon (Edison, NJ, USA), with a green laser (532 nm) Verdi G5 from Coherent Inc (Santa
Clara, CA, USA), operating at 1 mW. GNP was analyzed as powder (deposited onto a
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glass slide) and also as individual flakes (suspended in DMF and deposited onto a silicon
wafer substrate). Fourier-transform infrared spectroscopy (FTIR) was performed in ATR
mode (attenuated total reflectance) with a Spectrum Two (Perkin Elmer, Waltham, MA,
USA) instrument, ranging between 500–4000 cm−1 at room temperature. Spectra were
obtained by a data collection of 32 scans and resolution of 1 cm−1. Electrical properties
were measured with an SI 1260A gain phase analyzer, coupled with an 1296A dielectric
interface, both from Solartron (Leicester, UK). Dielectric spectra were taken from 0.1 Hz to
1 MHz with an applied AC voltage of either 1 or 3 volts, depending on the resistivity of
the sample. Specimens were 1 mm thick disc-shaped with about 16 mm of diameter and
were coated with 20 nm of gold on both faces in order to minimize contact resistance. AC
conductivity was then calculated from the imaginary permittivity at the lowest frequency
available (0.1 Hz) using Equation (1):

σAC =ω ε0 ε” (ω) (1)

in which ω is the angular frequency, ε0 is the vacuum permittivity and ε” (ω) is the
imaginary permittivity at the applied angular frequency.

3. Results and Discussion
3.1. GNP and CNT Characterization

The diameters of about 200 individual nanotubes were measured using field-emission
scanning electron microcopy (FE-SEM). Figure 2a shows that the gaussian distribution
peaked at 12.9 nm, which is close to the mean diameter informed by the manufacturer
(9.5 nm) [31]. Multiple SEM images of the GNPs were taken in order to measure about
400 individual flakes and build the lateral size distribution shown in Figure 2b, follow-
ing the recommended method described by the National Physical Laboratory (London,
UK) [33]. Peaking at 0.876 µm, the lateral dimensions are within the expected range for
GNPs (100 nm to 100 µm [34]). The distribution width is also adequate for GNPs, since
they are known to contain graphene-related materials with a wide range of sizes (from
few-layer graphene to nanostructured graphite [35,36]).
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image of GNPs and their respective lateral size distribution.

Raman spectroscopy shown in Figure 3 provides more insight about the GNP’s inner
structure. The most pronounced band around 1582 cm−1 (commonly referred to as “G
band”) is associated with in-plane vibrations from sp2-hybridized carbon atoms, while the
D band around 1350 cm−1 is associated with sp3-hybridized carbon [37]. The peak intensity
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ratio ID/IG is often used to evaluate the level of disorder in the lattice, which comes from
vacancies, kinks, heptagon-pentagon pairs, heteroatoms and other impurities [38–40].
Figure 3 shows that ID/IG ratio of a representative individual flake is small (<0.2), which
suggests a highly ordered carbon crystalline structure.
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Figure 3. Raman scattering spectra for the as-received GNP and its D, G and G’ bands. Top spectrum
was taken from a representative individual GNP flake, and bottom spectrum from GNP powder.

The shape of G’ band around 2720 cm−1 is especially sensitive to the number of
graphene layers. For monolayer graphene the G’ line is a symmetrical band that can be
fitted with a single Lorentzian peak. However, this band splits into four components in
bi-layer graphene, which causes a broadening of the resulting peak along with a slight
upshift. With an increasing number of layers both effects escalate, and above 5 layers the G’
band becomes almost indistinguishable from that of bulk graphite [41]. Shape and position
of the G’ band obtained clearly confirms that the GNP flakes are more than 5 layers thick
(insert in Figure 3), as expected for this kind of nanomaterial.

3.2. Rheology and Electrical Conductivity

Electrical conductivity in nanocomposites reinforced with conductive particles is
closely related to the formation of a percolating network, which in turn can be assessed by
rheological measurements. For this reason, rheological and electrical results are discussed
simultaneously. Uncured samples were subjected to small amplitude oscillatory shear
tests, in which an increase in complex viscosity (η*) is a sign of dispersion enhancement
while a decrease can be interpreted as the predominance of agglomerates [42]. Figure 4a,b
show that the addition of 0.25 wt.% of CNTs caused a dramatic increase in viscosity
when compared to neat epoxy resin, even at such a low concentration. In addition to the
increase in η*, there was also a shift from an essentially Newtonian behavior shown by
neat epoxy resin to a shear-thinning behavior of the filled samples, typical of suspensions
containing nanofillers [43]. The effect of processing is also clear. The viscosity of the
sample processed by an ultrasonic bath dropped when compared to the non-sonicated
sample, suggesting a less efficient dispersion, while direct sonication had a positive effect
on distribution. However, each amplitude had a different response: viscosity increased
and stabilized with time when lower power (i.e., 25% amplitude) was used, but the more
intense sonication at 50 and 75% amplitudes caused the viscosity to decrease over time.
The decrease can be attributed to shortening of the CNTs, commonly caused by fluid
friction at their surface when stronger cavitation bubbles implode nearby [44,45]. The
decrease in length impairs the CNTs’ ability to form percolated networks [46], and thus
better-connected structures were achieved when using direct sonication at low power, or
shorter times with moderate power.
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unprocessed samples and UB 120 the samples processed in the ultrasonic bath.

Figure 5a displays σAC spectra for CNT-filled nanocomposites and neat epoxy. The
AC conductivity measured for neat epoxy confirmed that it is in fact an insulating material.
Additionally, its σAC spectrum shows a strong dependence on frequency over the entire
range scanned, another piece of evidence of its insulating character and a conduction
dominated by non-ohmic mechanisms [28]. Addition of CNTs at only 0.25 wt.% greatly
increased σAC, with samples displaying values up to 10 orders of magnitude higher than
neat epoxy. Their σAC spectra is also drastically different, with σAC almost completely
independent from frequency, indicating that they are above the percolation threshold, i.e.,
a conductive percolating network is achieved and ohmic conduction is predominant [28].
Comparing Figures 4b and 5b reveals that dispersion state assessed by rheology correlates
remarkably well with the electrical conductivity of cured samples, confirming that better-
connected networks translated into superior electrical performance [47]. Samples processed
by direct sonication showed better results in this regard, especially at 25% amplitude,
managing to maintain high conductivities for all times tested. However, these percolated
networks are delicate and tend to degrade fast when sonicated at higher powers, returning
to values close to that of the non-sonicated sample.
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Figure 5. (a,c,e) σAC spectra of CNT-filled, GNP-filled and hybrid-filled nanocomposites, respectively;
(b,d,f) σAC taken at the lowest frequency (0.1 Hz) as a function of processing method. T0 denotes the
unprocessed samples and UB 120 the samples processed in the ultrasonic bath.

Rheological and electrical results show that indirect sonication did not assist the
formation of effective CNTs networks and produced inferior results than the non-sonicated
sample. Figure 6 shows SEM images from cryofractured CNT-filled samples and confirms
that the ultrasonic bath was unable to dissolve the CNT aggregates, which stayed entangled
in large, spherical bundles (Figure 6c). This unfavorable morphology prevented CNTs from
percolating. On the other hand, the non-sonicated sample (Figure 6b) produced small, and
more elongated CNT bundles that are more effective at forming a long-range percolated
network. Thus, surprisingly, the simple fact of suspending CNTs in acetone before mixing
with epoxy resin was more beneficial to dispersion than directly mixing them with epoxy
and then sonicating for 120 min in the ultrasonic bath. Figure 6d–f show the effect of direct
sonication for each amplitude after 60 min of processing, in which CNT bundles seen in
previous samples vanished and the filler is more equally distributed throughout the matrix.
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Figure 6. (a) SEM images of the cryofractured neat epoxy at different magnifications. Smooth
fractured surfaces are typical of brittle-like failures; (b) CNT-filled nanocomposites at 0.25 wt.%,
prepared without sonication; (c) with indirect sonication for 120 min; and with direct sonication for
60 min at 25% amplitude (d), 50% amplitude (e) and 75% amplitude (f). CNT bundles are highlighted.

Figure 4c shows that GNPs did not raise viscosity as much as CNTs did, despite
the 10 times increase in loading. This is due to the difference in geometry: rod-like
nanoparticles can form networks more readily than sheet-like nanoparticles [48,49]. GNP-
epoxy suspensions did not seem to benefit from indirect sonication, since η* was almost
the same as that of the unprocessed sample, indicating a similar degree of dispersion. In
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contrast to CNT samples (Figure 4b), the effect of direct sonication on the GNP’s network
was less clear. This might be due to the fact that layered materials can develop competing
effects with dispersion at high energies of sonication. At first, loosely attached agglomerates
are broken down, leading to a better dispersion (and higher η*), but further sonication
leads to lateral breaking and/or exfoliation of the GNP sheets [26]. These have opposite
effects on the flakes’ aspect ratio, which impact the network formation measured by η*.
At 25% amplitude, a 15 min sonication produced the highest η*, while longer times only
diminished it. This indicates that the power is not enough to exfoliate the GNP sheets
and lateral breaking is predominant after 30 min and beyond. At 50 and 75% amplitude,
however, the power seems to be high enough to exfoliate the sheets and raise η* after
longer times. Although this effect is always competing with lateral breaking, the general
trend is that η* increased with time and amplitude.

Unlike CNT-epoxy samples, better dispersion state in GNP-epoxy suspensions did
not translate into higher electrical conductivity. While Figure 5d confirms that GNP-filled
nanocomposites’ conductivity was highly dependent on the processing methods, the trend
is different from what was observed for η*. Gentler, indirect sonication achieved the high-
est conductivity of the series: over 5 orders of magnitude higher than neat epoxy and
3 orders of magnitude higher than the non-sonicated sample, reaching 5.6 × 10−7 S·m−1.
On the other hand, σAC dropped by up to four orders of magnitude for samples processed
by direct sonication at 25% amplitude. The effect was even stronger for 50 and 75%, in
which longer times invariably deteriorated this property. The σAC spectra in Figure 5c
also revealed that, while all other samples displayed a strong dependence on frequency
(typical of insulating materials), the specimen sonicated in the ultrasonic bath exhibited a
low-frequency independent behavior characteristic of ohmic conduction. As discussed ex-
tensively in the literature, direct sonication can induce the formation of defects in graphene
sheets [26,50–52] and these defects are known to degrade their sp2 structure into sp2-sp3

with less π-π stacking stability, impairing electrical conductivity [53,54]. This explains why
this property deteriorated with higher sonication energies, while processing with ultrasonic
bath managed to preserve it. Based on these results, σAC proved to be more sensitive to the
GNP’s sheet integrity than to its dispersion state, and, therefore, avoiding damage to the
flakes is a more effective strategy than using stronger sonication if σAC is the key property.

Figure 7 shows SEM images of GNP-filled nanocomposites, in which the presence of
the GNP flakes at 2.5 wt.% completely altered the smooth fracture surfaces seen in neat
epoxy (Figure 6a). Micrographs confirm that higher power produced better dispersed
samples, in agreement with η* measurements. The unprocessed nanocomposite displayed
many agglomerates (arrows in Figure 7a), while the sample processed by indirect sonication
had smaller agglomerates but still maintained the flakes’ lateral dimensions unharmed.
Agglomerates seen in the sample prepared by direct sonication at 25% are even smaller,
but this time flakes are also significantly shorter, showing that the negative effect is already
present. Samples sonicated at 50% amplitude continued the trend and did not display large
aggregates, with GNPs finely distributed throughout the matrix, and at 75% the effect is
even more pronounced. However, in addition to the reduction in size, GNP flakes are also
damaged, with apparent sharper edges and kinks. Figure 8 shows SEM images taken from
GNPs processed by ultrasonic probe for 15, 30, 45 and 60 min at the highest power tested
(75% amplitude). Although unprocessed flakes look similar to those processed for 15 min,
the damage from 30 min and above is clear, with flakes becoming smaller, more wrinkled
and with sharper, cracked edges.

The first feature that stands out in the case of hybrid suspensions (Figure 4e,f) is that η*
reached values that are orders of magnitude higher than single-filled composites. Although
this could be explained by the fact that total nanofiller concentration is higher, most likely
this is evidence that a better dispersion was achieved: the difference in aspect ratio between
GNP and CNT makes it more difficult for particles to re-agglomerate, improving their
distribution in the matrix [16,17]. The effect of sonication on dispersion state of the hybrid
samples is similar to that observed for CNT-filled suspensions, but the hybrid nanofiller
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network formed is even more sensitive to higher energies. While indirect sonication and
direct sonication at 25% amplitude resulted in a better-connected network, at 50% it rapidly
degraded when the sample was processed for more than 15 min. At 75% amplitude, η*
dropped to lower values than that shown by the non-sonicated suspension, although a
jump in η* is seen after sonicating for 60 min. The fact that long-duration sonication induces
sheet exfoliation [26] can explain this jump in η* after 60 min.
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Hybrid nanocomposites also achieved σAC orders of magnitude higher than neat
epoxy, and σAC spectra in Figure 5e display the frequency-independent behavior of a
percolated network. However, the highest σAC recorded for this system (1.3 × 10−3 S·m−1)
was virtually the same as that achieved by CNT-filled samples (1.6 × 10−3 S·m−1). This
reveals that the presence of GNPs in the hybrid did not help increase the maximum σAC.
The reason behind it is that CNTs at 0.25 wt.% loading had already established a percolating
network on their own, and thus the introduction of GNPs was ineffectual. Prolongo et al.
reached a similar conclusion in a related study [22]. However, in order to properly assess
synergism in this system it is necessary to investigate multiple concentrations and loading
combinations, which is not the focus of the present work. Regarding the effect of processing,
Figure 5f shows that σAC results are in perfect agreement with the dispersion state evalu-
ated by η*, and thus σAC is closely correlated to the formation of an efficient percolating
network. Hybrid specimens exhibited the highest conductivity (1.3 × 10−3 S·m−1) when
processed with low-power direct sonication at 25% amplitude. However, processing at
50 and 75% amplitude degraded the property, causing it to drop by almost three orders
of magnitude. This adverse effect of high-energy sonication is more pronounced in the
hybrid specimens than in samples filled with only CNT. At the same time, the hybrid
sample processed by the ultrasonic bath improved σAC by 1 order of magnitude when
compared to its CNT-filled counterpart. An important question thus arises: how could the
presence of GNPs have a positive effect on σAC and η* for indirect sonication, while at the
same time lead to rapid decreases in both properties for high-power direct sonication? The
proposed mechanism behind it is that the presence of GNPs helped disperse and space
the large CNT agglomerates that could not be broken by indirect sonication, improving
their distribution and contributing to the formation of a percolated network. However,
with high-energy sonication, disentangled CNTs become shorter, gain mobility and, due
to the strong π-π interaction with graphene sheets, become adhered onto the GNP sur-
face [55]. This diminishes the effective CNT concentration in the epoxy matrix (Figure 9)
and impairs percolation.

SEM micrographs in Figure 10 show that the morphology of fractured hybrid samples
is similar to that of the GNP-filled nanocomposites. Indirect sonication for 120 min managed
to decrease the number of GNP agglomerates (highlighted by arrows) when compared to
the non-sonicated sample, and at the same time avoid damage to GNP flakes. The absence
of large CNT aggregates in these samples confirms that the steric hindrance caused by
the presence of GNPs helped disperse CNT bundles [16,17] and supports the proposed
mechanism in Figure 9.
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Figure 9. Schematic of the opposing effects of adding GNPs on the CNT network formation. Low-
power sonication is not able to break the CNT bundles alone, but the presence of GNP flakes helps
reduce bundle size and better distribute them throughout the matrix. With high-power sonication
the CNTs become shorter, disentangled and better dispersed, but then tend to be collected onto the
surface of GNP flakes due to π-π interactions, impairing their ability to form a percolating network.

3.3. Dynamic Mechanical Analysis (DMA)

While most studies have reported increases in Tg for single-filled CNT [22,23] and
GNP [28,56,57] nanocomposites, results in Figure 11b,d show that the addition of these
nanofillers did not improve Tg when compared to neat epoxy. CNT-filled samples recorded
up to 55 ◦C drops in Tg, while GNP-filled specimens showed up to 32 ◦C drops. Hy-
brid specimens have also shown Tg decreases for most processing methods (Figure 11f),
although samples processed by direct sonication for 45 and 60 min at 50% amplitude
managed to slightly increase it by up to 2 ◦C. Usually, the higher the filler content and
the better the dispersion, the more effective is the hindering of polymer chains and Tg is
enhanced. However, for thermosetting polymers such as epoxy, the addition of carbon
fillers might lead to lower crosslinking density due to a decrease in fluidity, which prevents
diffusion of reactive groups during the curing process and causes Tg to decrease [58].
Another important factor is residual acetone, which causes a plasticization effect that
can strongly decrease Tg [59]. Therefore, the final impact on Tg is a combination of all
these individual contributions. FTIR spectroscopy was performed in order to assess the
presence of residual solvent. Figure S1 shows that a measurable amount of acetone is still
present in all samples processed by the solvent-assisted sonication method, despite the
efforts in eliminating acetone from the system. Plotting the integrated area of characteristic
ketone peak (1710 cm−1) versus Tg, a clear dependence arises for both GNP- and especially
CNT-filled composites, confirming that residual acetone is in fact the main reason why Tg
decreased (Figure 12). Since the samples processed by the ultrasonic bath have no acetone,
the slight decrease in Tg should be due to a reduction in crosslinking density, as discussed
previously. Although the acetone-Tg correlation also exists for hybrid specimens, they were
less affected by it and managed to perform close to neat epoxy. This might be explained by
the higher total nanofiller content present in these hybrid systems, which further reduced
the matrix free volume and countered the detrimental effect of residual solvent [60].
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Although storage modulus (E’) is not identical to Young’s modulus (E), they are
conceptually similar and E’ is frequently used to evaluate stiffness of viscoelastic materi-
als [28,61]. Overall, the addition of nanofillers greatly improved E’ for all compositions.
This is usually attributed to the high stiffness of the nanofillers, as well as good interfacial
interactions that promote stress transfer between matrix and nanoparticles [62–64]. Regard-
ing GNP-filled nanocomposites, Figure 13d shows that the different processing parameters
had little effect on E’ and, therefore, it is not as dependent on dispersion state. This is an
unexpected result, considering the differences in morphology (Figure 7) and η* (Figure 4)
achieved by each processing route, and the fact that literature argues that the structure
of networks and rheological percolation are related to better mechanical properties [65].
Figure 12 shows that, although the residual acetone content also affected this property, the
dependence is rather weak. Notwithstanding, there are still some remarks to report: the
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specimen processed by indirect sonication achieved an E’ ~69% higher than neat epoxy,
which was slightly above the non-sonicated sample and higher than most nanocomposites
sonicated by the ultrasonic probe with 25 and 75% amplitudes. However, specimens
directly sonicated at 50% amplitude exhibit the highest values of E’ for all times tested, and
the sample sonicated for 45 min at 50% amplitude achieved a remarkable 78% improvement
over neat epoxy. Therefore, this condition seems to be the best compromise between lateral
breaking and further exfoliation of the GNP flakes. Addition of CNT also led to a signifi-
cant increase in E’, as shown in Figure 13b, reaching up to 57% improvements. Different
from GNP-filled samples, however, the results varied considerably for each condition, and
Figure 12 shows that this is correlated with residual acetone content. Similar to its effect
on Tg, plasticization decreased the stiffness of the material in proportion to the amount
of residual solvent present. Hybrid GNP-CNT nanocomposites have shown even greater
increases in E’, with the sample processed at 25% amplitude for 60 min reaching 3000 MPa,
an ~84% enhancement over neat epoxy and the highest achieved by all cured specimens.
Despite this relevant improvement, it is still below the expected increase based on the
separate contribution of each nanofiller given by the rule of mixtures, and thus this specific
configuration showed no synergy for E’. Figure 13f shows that, similar to the GNP-filled
samples, E’ proved to be little dependent on the different processing methods and residual
solvent content. This similarity might be explained by the fact that the morphology of
hybrid-filled nanocomposites (Figure 10) closely resembles that of the GNP-filled samples
(Figure 7), with little influence of the presence of CNTs.
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4. Conclusions

• In general, direct sonication led to better dispersion of GNP and CNT nanoparticles
than indirect sonication. The better dispersed CNT-filled samples invariably achieved
higher electrical conductivities. However, this high-energy method induced defects in
the GNP sheets that impaired their electrical conductivity;

• For the GNP-epoxy system, the use of the ultrasonic bath led samples to achieve σAC
four orders of magnitude higher than specimens that were direct-sonicated, despite
their inferior dispersion state. Therefore, the sheets’ integrity should be prioritized
over the dispersion quality in order to achieve higher electrical conductivity;

• In the hybrid system, the addition of GNP helped improve CNT’s dispersion state
when processed by indirect sonication due to the steric hindrance effects. This raised
σAC by almost two orders of magnitude when compared to single CNT-filled samples
that were also processed by indirect sonication;

• At the same time, the presence of GNPs in the hybrid caused electrical conductivity to
decrease when compared to single CNT-filled samples if high-energy direct sonication
is used instead. The proposed mechanism to explain this decrease in σAC for direct-
sonicated hybrid specimens involves selective localization of shortened CNTs onto
the GNP flakes due to strong π-π interactions, impairing percolation;

• DMA results showed that, while the introduction of nanofillers significantly improved
E’ for all compositions, these enhancements were little impacted by the different
sonication methods and parameters. The only relevant fluctuations in E’ happened for
CNT-filled specimens processed by direct sonication that were caused by the presence
of residual acetone, which led to a plasticization effect;

• Tg results were strongly impacted by the plasticization effect caused by residual
solvent content, although reduction in crosslinking density also contributed to a lesser
degree. Therefore, the use of solvent-assisted methods must be carefully considered
when designing the processing procedure, and solvent-free alternatives should be
prioritized whenever possible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13234128/s1, Figure S1: FTIR spectra for all samples, Table S1: Total acoustic energy
delivered during sonication and results for each property tested.
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Abbreviations

ATR Attenuated total reflectance
CNT Carbon nanotube
DMA Dynamic mechanical analysis
E Young’s modulus
E’ Storage modulus
FE-SEM Field-emission scanning electron microscopy
FRP Fiber-reinforced polymer
FTIR Fourier-transform infrared spectroscopy
GNP Graphene nanoplatelet
IPDA Isophorone diamine
PMC Polymer matrix composite
SAOS Small-amplitude oscillatory shear
SEM Scanning electron microscopy
Tg Glass transition temperature
η* Complex viscosity
σAC AC electrical conductivity
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