
Vol.:(0123456789)1 3

Basic Research in Cardiology          (2022) 117:28  
https://doi.org/10.1007/s00395-022-00935-6

REVIEW

Innate immune cells in the pathophysiology of calcific aortic valve 
disease: lessons to be learned from atherosclerotic cardiovascular 
disease?

Wieteke Broeders1  · Siroon Bekkering1  · Saloua El Messaoudi2 · Leo A. B. Joosten1,3  · Niels van Royen2  · 
Niels P. Riksen1 

Received: 21 February 2022 / Revised: 4 May 2022 / Accepted: 4 May 2022 
© The Author(s) 2022

Abstract
Calcific aortic valve disease (CAVD) is the most common valvular disease in the developed world with currently no effective 
pharmacological treatment available. CAVD results from a complex, multifactorial process, in which valvular inflammation 
and fibro-calcific remodelling lead to valve thickening and cardiac outflow obstruction. The exact underlying pathophysiol-
ogy of CAVD is still not fully understood, yet the development of CAVD shows many similarities with the pathophysiology 
of atherosclerotic cardiovascular disease (ASCVD), such as coronary artery disease. Innate immune cells play a crucial role 
in ASCVD and might also play a pivotal role in the development of CAVD. This review summarizes the current knowledge 
on the role of innate immune cells, both in the circulation and in the aortic valve, in the development of CAVD and the simi-
larities and differences with ASCVD. Trained immunity and clonal haematopoiesis of indeterminate potential are proposed 
as novel immunological mechanisms that possibly contribute to the pathophysiology of CAVD and new possible treatment 
targets are discussed.
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Introduction

Calcific aortic valve disease (CAVD) is the most common 
type of valvular heart disease in the Western world and is 
characterized by valvular inflammation, fibrosis and cal-
cification. It is the leading cause of aortic valve stenosis 
and, ultimately, it can cause angina, syncope, heart failure 
and sudden cardiac death [27]. One in four people over 
65 years suffer from aortic valve sclerosis of which 10–15% 

progresses to aortic valve stenosis [114]. Once symptomatic, 
untreated patients have a poor prognosis with a 2- and 5-year 
survival rate of 50% and 25%, respectively [114]. CAVD has 
a major impact on health care and this is expected to increase 
in the coming decades due to the ageing population [16]. 
Currently, no effective pharmacological treatment is avail-
able to prevent CAVD or slow down disease progression.

Traditionally, the development of CAVD was seen as a 
passive, degenerative process, but nowadays it is increas-
ingly recognized as an active, multifactorial process with an 
important role for activation of the innate immune system. 
Importantly, this process appears to have many similarities 
with the pathophysiology of atherosclerosis and the patho-
physiological process underlying atherosclerotic cardiovas-
cular disease (ASCVD), such as coronary artery disease 
(CAD) [19, 82]. However, the exact underlying pathophysi-
ology of CAVD remains incompletely understood, which 
hampers target-specific development of pharmacotherapy.

In this review, we discuss the role of innate immune cells, 
and in particular the role of monocytes, in the development 
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of CAVD, and its similarities and differences with ASCVD. 
After a brief comparison of the overall pathophysiology of 
CAVD and ASCVD, we discuss in detail the current knowl-
edge on valvular and systemic inflammation and innate 
immune cells in the development and progression of CAVD 
and the pivotal role of oxidized lipids. For each component, 
we systematically compare its role in CAVD and ASCVD. 
Furthermore, we propose two novel immunological mecha-
nisms that might contribute to innate immune system acti-
vation in CAVD, namely trained immunity and clonal hae-
matopoiesis of indeterminate potential (CHIP). Finally, we 
discuss how this knowledge might deliver novel therapeutic 
targets for the treatment of CAVD.

Summary of the pathophysiology of CAVD

The aortic valve is tricuspid, although 1–2% of individuals 
have a bicuspid or even a unicuspid or quadricuspid valve. 
Aortic valve leaflets consist of valvular endothelial cells 
(VECs), valvular interstitials cells (VICs) and valvular extra-
cellular matrix (VECM) [119]. VECs cover the leaflets and 
regulate valve permeability and homeostasis. The valvular 
interstitium is composed of three layers: the laminae fibrosa 
(aortic side), spongiosa and ventricularis. VICs are found 
throughout the interstitium and regulate valve remodelling 
via the synthesis and degradation of VECM components. 
VICs are quiescent and have characteristics similar to fibro-
blasts in the homeostatic state [115]. Furthermore, healthy 
valves contain few resident macrophages, mast cells and 
dendritic cells as well as a small number of myofibroblast-
like cells [40, 113].

The current proposed pathophysiological process of 
CAVD is divided into an initiation and a propagation phase 
(Fig.  1) [3]. The initiation phase starts by damage and 
stimulation of the VECs, which can be initiated by oxida-
tive or mechanical stress [113, 152]. As bicuspid and uni-
cuspid valves are subject to more mechanical stress, they 
often develop aortic valve stenosis one to two decades ear-
lier [136]. The valvular damage alters the permeability and 
allows for infiltration of circulating lipoproteins, such as 
lipoprotein (a) (Lp(a)) and low-density lipoprotein (LDL) 
and immune cells, including monocytes and T lymphocytes 
[109, 111, 113]. Oxidized LDL (oxLDL) and Lp(a) stimulate 
and activate VICs and VECs, creating an inflammatory envi-
ronment [111, 113] which further propagates the infiltration 
of immune cells [55]. The inflammatory milieu promotes 
VECs, VICs and macrophages to secrete extracellular vesi-
cles, and induces apoptosis of macrophages and VICs, which 
release apoptotic bodies [72, 93]. Both processes cause 
microcalcifications by dystrophic calcification. Moreover, 
VICs are stimulated to differentiate into a myofibroblastic 
phenotype, causing VECM remodelling and fibrosis [25]. 

Further differentiation of myofibroblasts into an osteoblast-
like phenotype results in biomineralization [58].

The propagation phase is characterized by accelerated 
fibrosis and calcification [102]. Accumulation of calcium 
and leaflet stiffening creates more mechanical stress and 
calcium deposition. A self-perpetuating cycle is established 
which eventually leads to narrowing of the valvular orifice 
[102, 177]. The valvular obstruction creates left ventricle 
systolic pressure overload, leading to myocardial hypertro-
phy, interstitial fibrosis and ultimately results in heart failure 
[82]. For the purpose of this review, we refer to excellent 
recent reviews for a more detailed general overview of the 
pathophysiology of CAVD [57, 72, 82, 115].

CAVD and ASCVD, two sides of the same 
coin?

The development of CAVD is increasingly considered to 
be an atherosclerosis-like process, especially in the initia-
tion phase [38]. Both CAVD and ASCVD represent chronic 
inflammatory disorders, which involve initial endothe-
lial damage and activation, lipid deposition, immune cell 
recruitment, inflammation, neoangiogenesis and calcifica-
tion (Fig. 2) [38, 102]. Pathological studies show active 
remodelling processes regulated by inflammation in both 
ASCVD and CAVD [27]. Importantly, in atherosclerosis-
prone apolipoprotein E-deficient (ApoE−/−) mice, athero-
sclerotic plaques develop first in the aortic valves and aortic 
root [54]. Furthermore, CAVD and CAD often co-exist [31, 
74], are both slowly progressive conditions with precursor 
lesions that remain asymptomatic for some time and they 
share important risk factors, including increased age, male 
sex, cigarette smoking, hypertension, kidney disease, diabe-
tes mellitus, obesity, hyperlipidaemia, elevated Lp(a) levels 
and shared genetic susceptibility loci [20, 27, 130, 138, 151].

The role of the innate immune system is well established 
in the pathophysiology of ASCVD. Monocyte-derived mac-
rophages are the principal immune cell type in atheroscle-
rotic plaques and are involved in its initiation, progression 
and destabilization [95]. Limiting the influx of circulating 
monocytes into the arterial wall in atherosclerosis-prone 
mice prevents atherosclerotic plaque formation [17]. In these 
ApoE−/− mice, the lesion size was reduced particularly in 
the valve leaflet region, where wild-type mice developed the 
most severe lesions [54]. Furthermore, targeting inflamma-
tion can prevent clinical atherosclerotic complications [139]. 
In addition, accumulating evidence points to the fact that cir-
culating monocytes are characterized by an activated inflam-
matory phenotype in patients with established ASCVD or 
risk factors for ASCVD, including elevated LDL-cholesterol 
and Lp(a). Thus, activation of the innate immune system not 
only occurs in the inflammatory micro-environment of the 
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plaque, but also in circulating monocytes [13, 14, 134, 163]. 
Moreover, recent studies have pointed out that the activation 
of innate immune cells in ASCVD also occur at the level of 
the myeloid progenitors in the bone marrow compartment 
[107, 164].

There are also important differences between CAVD 
and ASCVD, particularly in the advanced stages of the 
diseases. Firstly, there are patients with severe CAVD who 
do not suffer from advanced ASCVD and vice versa [62]. 
Secondly, statins do not prevent cardiovascular events in 
CAVD as opposed to their beneficial effect in patients 
with ASCVD, suggesting different pathophysiological 
processes [23, 48, 126]. Moreover, advanced lesions dis-
play histological differences, such as the fibrous cap and 

necrotic cores rich in foam cells in atheromas, which are 
not present in CAVD [89], and the limited presence of 
foam cells in calcified valves [71]. Lastly, adverse events 
in atherosclerosis are often related to plaque ruptures lead-
ing to acute coronary syndrome, while in CAVD, they are 
mostly caused by slowly progressive valve narrowing 
driven by progressive calcification [38, 90]. Despite the 
differences between CAVD and ASCVD, the profound 
commonalities in risk factors and similarities in (early) 
pathological features suggest overlap in pathophysiology, 
including a key role for inflammation and activation of 
the innate immune system. A systematic overview of the 
similarities and differences between CAVD and ASCD is 
given in Table 1.

Fig. 1  The pathogenesis of calcific aortic valve disease. In the ini-
tiation phase, valvular endothelial cells (VECs) are activated by 
oxidative, mechanical or shear stress, leading to increased valvular 
permeability. This results in infiltration of circulating lipids (lipo-
protein (a) (Lp(a)) and low-density lipoprotein (LDL)) and immune 
cells, such as monocytes, neutrophils and lymphocytes. The oxidized 
LDL (oxLDL) and Lp(a) contain oxidized phospholipids (OxPL), 
which both activate macrophages and T lymphocytes and stimulate 
the release of various pro-inflammatory molecules that activate other 
immune cells, VECs, and valvular interstitial cells (VICs). The oxi-
dized lipids also directly activate VEC and increase the expression 
of adhesion molecules, prompting the recruitment of more immune 
cells. OxPL are transformed into lysophosphatidylcholine (LysoPC) 
by lipoprotein-phospholipase  A2 (Lp-PLA2), which is subsequently 
converted into lysophosphatidic acid (LPA) by autotaxin (ATX). 
LPA then activates VICs, triggering an NF-κB-regulated inflamma-
tory cascade, which results in increased expression of bone morpho-
genic protein (BMP) 2, IL-6 and Runt-related transcription  factor 2 
(Runx2) and secretion of alkaline phosphatase (ALP). Additionally, 

the OxPL derivate LysoPC induces apoptosis in VICs. In the propa-
gation phase, VICs differentiate into a myofibroblastic or osteoblast-
like phenotype upon stimulation by the pro-inflammatory molecules 
and promote fibrosis and calcification, respectively. The activated 
macrophages and myofibroblastic VICs secrete matrix remodelling 
proteins and valvular extracellular matrix (VECM) components. The 
continuous redeposition and destruction of VECM creates valvu-
lar stiffness. The chronic inflammation stimulates apoptosis of mac-
rophages and VICs and the release of extracellular vesicles, including 
apoptotic bodies, which both promote the continuous deposition of 
microcalcifications and crystals. Osteoblast-like VICs induce biomin-
eralization in a way akin to osteogenesis. T lymphocytes stimulate 
proinflammatory polarization of macrophages and the osteogenic 
differentiation of VICs. IFN-γ, produced by T lymphocytes, inhibits 
the function of macrophage-derived osteoclasts. Together, these pro-
cesses create accumulation of calcium and leaflet stiffening, creating 
more mechanical stress and thereby prompting more calcium deposi-
tion, establishing a self-perpetuating cycle which eventually leads to 
valvular outflow obstruction
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CAVD, a chronic inflammatory disease

Inflammation in CAVD occurs on several levels. Besides 
local inflammation in the aortic valves, inflammation can 
be observed in the circulation, by activated immune cells 
and increased inflammatory proteins. In this section, we 
will describe the various components of the inflammatory 
process in CAVD, from local to systemic inflammation, and 
compare this to the situation in ASCVD.

Local valvular inflammation

CAVD develops by an active inflammatory process driven 
by infiltrated lipoproteins and immune cells. Histopatho-
logical examination of human calcified aortic valves shows 
subendothelial thickening with lipid deposition, immune 
cell infiltration (predominantly macrophages and T lympho-
cytes) and mineralization in early CAVD lesions and more 

advanced lesions in further progressed CAVD [29, 89, 94, 
111, 113]. The inflammatory infiltrates are associated with 
valvular remodelling, neovascularization and osseous meta-
plasia [29]. Moreover, calcified aortic valves show an upreg-
ulated expression of multiple proinflammatory cytokines 
in total valve tissue, including interleukin (IL)-1β, IL-6, 
tumour necrosis factor (TNF), anti-inflammatory cytokines, 
as IL-10, and transforming growth factor (TGF)-β, as well 
as chemokines such as chemokine C-X-C ligand (CXCL) 
5, CXCL9, chemokine C–C ligand (CCL) 19 and CCL 21 
as summarized in Raddatz et al. [118]. The expression of 
the anti-inflammatory cytokine IL-37 is downregulated in 
calcified aortic valves [172]. The cells contributing to this 
valvular inflammation will be discussed below.

Valvular endothelial damage

Early in CAVD development, altered haemodynamic 
forces on the valve affect the phenotype of VECs, leading 
to endothelial dysfunction. These altered forces result for 

Fig. 2  Schematic overview of innate immune cells in the pathophysi-
ology of calcific aortic valve disease and atherosclerotic cardiovascu-
lar disease. The underlying pathophysiology of calcific aortic valve 
disease (CAVD) and atherosclerotic cardiovascular disease (ASCVD) 
shows many similarities in the initiation phase. In both CAVD as 
ASCVD, endothelial cells are damaged and activated, leading to lipo-
protein infiltration and immune cell recruitment. The macrophages 
take up lipoproteins, leading to activation with subsequent secretion 
of proinflammatory cytokines and proteolytic enzymes and foam cell 
formation. Activated endothelial cells differentiate into mesenchy-
mal cells (endothelial to mesenchymal transition) and transmigrate 
to the valvular interstitium or intima of the vessel wall. When the 
CAVD and ASCVD progress, the lesions start to show more differ-

ences. In CAVD, the valvular interstitial cells (VIC) are stimulated 
to differentiate to myofibroblasts or osteoblast-like cells and promote 
fibrosis and calcification, respectively. There are few foam cells and 
there is only little neovascularization. Apoptotic macrophages, VICs 
and foam cells contribute to the calcification. In ASCVD, foam cells 
are abundant and found across the intima and there is intraplaque 
haemorrhage due to leaky neovessels. Vascular smooth muscle cells 
(VSMCs) migrate from the media to the intima and form a fibrous 
cap. The activated macrophages stimulate osteoblastic differentia-
tion of VSMCs subsequently. Macrophages, foam cells and VSMCs 
can die in advanced lesions by apoptosis, generating a necrotic core. 
Calcification is caused by osteoblast-like cells and the deposition of 
microcalcifications, which are generated by apoptotic cells
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example from hypertension [83], by stiffening of the valvular 
tissue due to ageing [143, 165], or from increased oxida-
tive stress. In addition, other risk factors, such as diabetes 
or dyslipidaemia could precipitate endothelial dysfunction. 
The relevance of VEC injury is demonstrated by histopatho-
logical studies showing lipoprotein accumulation mainly in 

regions of low shear stress [109]. In the aortic valve, the 
damaged VECs subsequently express adhesion molecules, 
stimulating the recruitment of immune cells [55]. These 
immune cells produce cytokines leading to further stimu-
lation of VECs and the transition of VECs into VICs by 
endothelial to mesenchymal transition [84]. Furthermore, 

Table 1  Similarities and 
differences between calcific 
aortic valve disease and 
atherosclerotic cardiovascular 
disease
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VECs express endothelial nitric oxide synthase (eNOS), 
which regulates the production of nitric oxide. Calcified 
valves express reduced levels of eNOS, leading to increased 
oxidative stress which contributes to valvular inflammation 
by increasing lipoprotein oxidation [120, 153]. By these 
very processes, VECs promote inflammation, fibrosis and 
calcification.

This is comparable to the initiation phase in atherogen-
esis, where endothelial cell (EC) activation occurs in areas 
of disturbed shear stress, such as near arterial bifurcations, 
which permits circulating ApoB-containing lipoprotein and 
immune cells to enter the intimal space [81]. Stimulated ECs 
can also undergo endothelial to mesenchymal transition and 
migrate to the intima, where they can contribute to inflam-
mation and intimal thickening [81]. Endothelial to mesen-
chymal transition is associated with atherosclerotic plaque 
instability [42].

Valvular interstitial cells contribute to valvular 
inflammation

VICs are the most abundant cells in the valvular tissue and 
transiently transition into myofibroblasts during normal 
hemodynamic stress on the valvular tissue to remodel the 
ECM. During CAVD progression, the transition into myofi-
broblasts is more persistent, leading to pathological fibro-
sis. Ultimately, the myofibroblasts can differentiate into an 
osteoblast-like phenotype, which promotes calcium deposi-
tions. Although the exact underlying process driving val-
vular fibrosis and calcification remains uncertain [77], it is 
clear that proinflammatory communication between VICs 
and immune cells plays an important role. Firstly, Toll-like 
receptors (TLRs), especially TLR-2 and -4, are upregulated 
in VICs in calcified aortic valves. Several pathogen-asso-
ciated molecular patterns (PAMPs) and damage-associated 
molecular patterns (DAMPs) promote inflammation and 
osteogenesis by activating the nuclear factor-κB (NF-κB) 
pathway in VICs via TLR stimulation. This leads to the pro-
duction of proinflammatory and pro-calcifying molecules 
[52]. Recently, it was demonstrated that the upregulation 
of TLR2 in VICs is enhanced through paracrine signalling 
of TNF by activated monocytes [174]. IL-37, which shows 
a lower expression in calcified valves, suppresses the pro-
duction of proinflammatory mediators by human VICs after 
TLR stimulation [172, 173]. Secondly, the differentiation of 
VICs into myofibroblasts or osteoblast-like cells is stimu-
lated by cytokines, including TGF-β1 [76] or TNF, IFN-γ, 
IL-6 and receptor activator of NF-κB ligand (RANKL) [51, 
57, 65]. In addition, myofibroblasts upregulate the expres-
sion of leptin-like oxidized LDL receptor-1 and scavenger 
CD36 receptors, leading to uptake of oxidized lipids and 
production of inflammatory molecules, resembling the foam 
cell-forming potential of macrophages in atherosclerotic 

lesions [147]. Lastly, VICs promote calcification via apop-
tosis and osteogenesis [77].

The processes of valvular fibrosis and calcification by 
VICs differ substantially from the extracellular matrix 
remodelling that occurs in atherosclerotic plaques, in which 
local inflammation stimulates smooth muscle cells to form a 
fibrous cap that shields to growing necrotic core, and stimu-
lates vascular calcification which is summarized in detail in 
other reviews [37, 81].

Macrophages

Macrophages are present in healthy valves, although his-
topathologic examination of explanted calcified valves 
demonstrates a higher abundance with CAVD progression 
[79, 113]. The majority of macrophages are located close to 
calcium deposits and areas of vascularization [99] and the 
inflammatory infiltrates are associated with active VECM 
remodelling, the severity of the stenosis and haemodynamic 
progression [29].

Macrophages are presumed essential in the initiation 
phase of CAVD (Fig. 1). After infiltration of circulating 
monocytes and differentiation into macrophages, the cells 
take up modified lipids via their scavenger receptors and can 
become foam cells [71, 111]. Calcified aortic valves contain 
only few foam cells, although fatty streaks are prominently 
found at the inflow and outflow surface of the valves [71]. In 
addition, macrophages are activated by cytokines and oxi-
dized lipoproteins via pattern recognition receptors (PRRs) 
resulting in activation of the NF-κB pathway. Activated 
macrophages secrete multiple proinflammatory molecules, 
including IL-1β, IL-6, TNF, TGF-β, cathepsins, osteopon-
tin and matrix metalloproteinases (MMPs) [47, 72]. The 
predominant macrophage subset found in human explanted 
calcified aortic valves consists of proinflammatory CD11c-
positive macrophages [79] with an increased mRNA expres-
sion of iNOS, monocyte chemoattractant protein 1 (MCP-1), 
TNF, IL-6 and IL-12 [78]. In addition, the number of anti-
inflammatory macrophages (CD206 +) is lower compared 
to healthy valves [79]. Chronic inflammation arises as the 
macrophages stimulate VECs, VICs and other immune cells, 
thereby promoting further immune cell recruitment, apopto-
sis, myofibroblastic and osteogenic differentiation of VICs 
and the differentiation of VECs into VICs via endothelial to 
mesenchymal transition [57, 96].

In the propagation phase, macrophages contribute to 
accelerated valvular fibrosis and calcification [57, 72]. 
Fibrous VECM remodelling is dependent on fibrosis and 
proteolysis. Activated macrophages produce TGF-β1, which 
in turn induces myofibroblastic differentiation of VICs [76] 
and secrete matrix remodelling proteins, such as MMPs, 
which promotes proteolysis.
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Valvular calcification relies on two distinct processes; 
dystrophic calcification and biomineralization. Dystrophic 
calcification is defined by continuous deposition of microc-
alcifications and hydroxyapatite by apoptotic macrophages 
and VICs and extracellular vesicles, and is responsible 
for most of the calcification [72, 93]. Biomineralization 
is induced by osteoblast-like VICs, resembling osteogen-
esis. Inflammatory communication might play an important 
role in the calcification potential of these VICs [58, 79]. 
Conditioned medium of proinflammatory macrophages 
deactivates myofibroblasts and stimulates their prolifera-
tion, which is attributed to TNF and IL-1β [58]. TNF and 
IL-6, also secreted by proinflammatory macrophages, stimu-
late osteogenic differentiation of VICs and upregulate the 
expression of osteogenic markers by VICs [58, 79]. Mac-
rophages can also contribute to clearance of mineralization 
through osteoclastogenesis after stimulation by RANKL and 
macrophage colony-stimulating factor (M-CSF), produced 
by osteoblast-like cells and T lymphocytes [18, 33]. These 
osteoclast-like cells can be found in calcified aortic valves 
and express proteins involved in mineral uptake and bone 
resorption [93, 97]. However, interferon (IFN)-γ produced 
by activated T lymphocytes impairs this osteoclastic activity. 
As a result, the osteoclast-like cells cannot counterbalance 
the osteoblastic activity from the VICs [98]. These pro-
cesses, orchestrated by macrophages, progressively increase 
valvular fibrosis and calcification. The role of the adaptive 
immune system in the development of CAVD is discussed 
in recent excellent reviews [10, 118].

The role of macrophages in ASCVD is well established 
and shows many similarities with the pathogenesis of CAVD 
(Table 1). Monocyte-derived macrophages are the main 
immune cell type found in the atherosclerotic plaque and 
play a central role in all stages of atherogenesis [95]. Proin-
flammatory stimuli within the atherosclerotic plaque stimu-
late the macrophages to produce multiple proinflammatory 
chemokines and cytokines, creating an inflammatory milieu 
[24, 145]. However, contrary to in CAVD, foam cells are 
abundant in the atherosclerotic plaque and are distributed 
randomly across the neointima [71]. During progression of 
the atherosclerotic plaque, the death of foam cells and mac-
rophages and subsequent impaired clearance of apoptotic 
cells by phagocytic cells (efferocytosis), contribute to the 
formation of a lipid and necrotic core [69, 80]. Moreover, 
macrophages contribute to destabilization of the atheroscle-
rotic plaque by producing proteases [103].

Oxidized lipids: central regulators of inflammation 
in CAVD

Lipoproteins take centre stage in the development and 
progression of CAVD by orchestrating the underlying 

inflammatory process. Observational studies and Men-
delian randomization studies indicate that elevated LDL-
cholesterol and Lp(a) levels are risk factors for CAVD 
[5, 7, 91, 137, 144]. Elevated Lp(a) levels are also asso-
ciated with accelerated disease progression [7, 20, 176]. 
A single nucleotide polymorphism in the Lp(a) locus 
(rs1045872) is associated with elevated Lp(a) levels [7] 
and with aortic valve calcification [150]. Patients with 
mild to moderate CAVD with elevated Lp(a) levels suffer 
from a faster CAVD progression [21]. Lipids and lipid 
loaded macrophages localize predominantly in the suben-
dothelial region of the fibrosa side of the valve [71, 111]. 
Valves containing higher amounts of oxLDL have denser 
inflammatory infiltrates, increased valvular tissue remod-
elling and higher expression of TNF [94]. The crucial 
role of lipoproteins is further demonstrated in the Reserva 
mouse model in which rapid normalisation of circulat-
ing cholesterol after a period of hyperlipidemia leads to 
a normalization of valvular oxidative stress, suppression 
of pro-osteogenic signalling, and a prevention of disease 
progression [91].

Lp(a) and oxLDL are powerful stimuli that drive valvular 
inflammation and calcification by oxidized phospholipids 
(OxPL) (Fig. 1). Lp(a) is the major carrier of OxPL in the 
circulation[163]. Antigen-presentation of oxLDL and apoB 
can activate T lymphocytes that subsequently stimulate 
VICs [92]. Oxidized lipids directly stimulate VECs lead-
ing to increased expression of bone morphogenic protein 
(BMP) 2 and adhesion molecules, thereby promoting cal-
cification and the recruitment of immune cells [55, 109, 
146]. OxLDL can augment the osteogenic response of 
human VICs through modulation of the NF-κB pathway and 
NOTCH1 activation [171]. Furthermore, OxPLs are trans-
formed into lysophosphatidylcholine (LysoPC) and subse-
quently into lysophosphatidic acid (LPA) by Lp-PLA2 (lipo-
protein-phospholipase  A2), leading to apoptosis in VICs. 
LPA triggers an NF-κB-regulated inflammatory cascade in 
VICs and leads to increased expression of BMP2, IL-6 and 
Runt-related transcription factor 2 (Runx2) and secretion 
of alkaline phosphatase, stimulating valvular calcification 
[108, 130]. Additionally, LysoPC induces apoptosis in VICs 
[85]. In addition to Lp(a) and oxLDL, also triglyceride-rich 
lipoproteins are associated with an increased CAVD risk. 
Triglyceride-rich lipoproteins likely contribute to the lipid 
deposition and local inflammation by the release of mono-
acylglycerols and free fatty acids [66].

OxPL play a similar role in the development of ASCVD. 
OxLDL induces endothelial dysfunction and activation, 
triggers the recruitment of circulating immune cells and 
foam cell formation, and stimulates the VSMC migra-
tion and proliferation in the atherosclerotic plaque. Fur-
thermore, oxLDL contributes to the destabilization of the 
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atherosclerotic plaque by inducing apoptosis and the release 
of MMPs [116]. The OxPL on Lp(a) cause a proinflamma-
tory monocyte response and inflammation of the arterial 
wall in humans [163].

Beyond the valve: systemic inflammation 
and circulating immune cell activation

There is accumulating evidence that CAVD, just like 
ASCVD, is characterized not only by local valvular inflam-
mation, but also by low-grade systemic inflammation, 
although this is still controversial. In ASCVD, it is well 
established that elevated circulating levels of proinflamma-
tory markers, e.g. IL-6 and high-sensitive C-reactive protein 
(hsCRP), are associated with major adverse cardiovascular 
events, which is independent of other traditional risk factors 
[68, 121, 124, 169]. Some studies also suggest an associa-
tion between circulating hsCRP and the presence, severity 
and progression of CAVD [50, 88, 129], mostly in patients 
with advanced CAVD. Other studies, however, did not find 
a relationship between elevated hsCRP, the presence of aor-
tic sclerosis or CAVD and disease progression [59, 106]. 
Also, no correlation was found between hsCRP and valvular 
inflammatory infiltrates [88]. The exact relationship between 
hsCRP levels and CAVD therefore remains uncertain. In a 
small observational study, patients with severe CAVD had 
increased levels of circulating TNF, but it is still not known 
whether this is causally related to CAVD pathophysiology 
or results from the haemodynamic consequences of CAVD 
[67]. More evidence points to activation of circulating innate 
immune cells in CAVD pathophysiology, which is high-
lighted below.

Monocyte activation in CAVD

Human monocytes can be divided in three subsets based 
on the surface expression of CD14 and CD16: classical 
monocytes are CD14++ CD16−, intermediate mono-
cytes CD14++ CD16 + and non-classical monocytes are 
CD14+ CD16++ [141, 178]. In addition, other surface 
markers can be used to characterize subsets with specific 
functions. For example, classical monocytes are known for 
their high C–C chemokine receptor type 2 (CCR2) expres-
sion, whereas intermediate monocytes have high CCR5 
expression [46, 141]. In general, circulating CD16+ mono-
cytes, especially the intermediate monocytes, are associated 
with atherosclerotic disease [125, 155].

Few studies have characterized monocyte subsets in the 
setting of CAVD. Most of these studies are cross-sectional 
and observational in small patient groups, hence results 
need to be interpreted with caution. Shimoni et al. showed 
increased levels of CD14+ monocytes in patients with severe 

CAVD compared to controls which was inversely corre-
lated with the aortic valve area surface [133]. Hewing et al. 
showed that patients with severe CAVD have higher levels of 
proinflammatory intermediate monocytes [59]. The level of 
intermediate monocytes has been reported to drop after aor-
tic valve replacement (AVR) [60, 101], although the effect 
of the surgical intervention itself was not evaluated with 
a control group. The relationship between disease severity 
and monocyte subtypes is still unclear [59, 101]. It remains 
speculative whether the increased levels of circulating (inter-
mediate) monocytes play a causal role in the pathophysiol-
ogy of CAVD or, are rather a consequence of the disease 
through haemodynamic changes or valvular inflammation. 
Although these studies suggest that the phenotype of circu-
lating monocytes is altered in patients with CAVD, more 
in-depth exploration of monocyte function and phenotype 
has not yet been performed.

Changes in monocyte phenotype have been described in 
the setting of ASCVD and also for several risk factors for 
CAVD. In patients with established CAD, circulating mono-
cytes are characterized by an augmented cytokine production 
capacity [14, 134]. In addition, patients with elevated levels 
of Lp(a) show an increased level of intermediate monocytes, 
which correlates with OxPL/apoB, independent of circulat-
ing CRP and IL-6 [73]. Also, monocytes from patients with 
increased levels of LDL-cholesterol as well as Lp(a) show 
a hyperresponsive state, with an enhanced cytokine pro-
duction capacity and increased transendothelial migration 
[13, 131, 163], which is associated with increased arterial 
wall inflammation in high Lp(a) conditions [163]. Circu-
lating monocytes stem from bone marrow hematopoietic 
stem and progenitor cells. In patients with CAD, the bone 
marrow myeloid progenitor cells are programmed towards 
a proinflammatory phenotype [107]. This has never been 
investigated in the context of CAVD.

Neutrophils: important players in CAVD?

The role of neutrophils in cardiovascular inflammation and 
their possible contribution to the pathogenesis of CAVD 
only recently gained attention. Patients with severe CAVD 
have a higher absolute circulating neutrophil count com-
pared to healthy controls [140]. An increased neutrophil-to-
lymphocyte ratio is associated with the presence, severity 
and prognosis of CAVD [9, 26, 140]. In addition, Kopytek 
et al. demonstrated that calcified aortic valves exhibit signifi-
cantly more neutrophil extracellular trap (NET) formation 
compared to healthy valves and that the amount of valvular 
NETs correlates with disease severity, suggesting a role for 
neutrophils in the progression of CAVD [70]. In contrast, 
by using electron microscopy, Kostyunin et al. did not find 
neutrophils to be present in severely calcified aortic valves 
[71]. More research is needed to identify the exact role of 
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neutrophils in the fibro-calcific remodelling of the aortic 
valve.

The role of neutrophils and NETs in ASCVD is more 
established. A recent prospective epidemiological study 
demonstrated that circulating granulocyte count is strongly 
associated with the future occurrence of ASCVD [43]. Fur-
thermore, an increased granulocyte-to-lymphocyte ratio 
is a risk factor for ASCVD [43]. Neutrophil activation 
and recruitment is promoted by chemokines, such as CC-
chemokine ligand 5, during atherogenesis [135]. Activated 
neutrophils then secrete granule proteins, including Cath-
epsin G, at the luminal side, which can activate chemokines 
resulting in further myeloid cell recruitment. The secretion 
of ROS and myeloperoxidase, which mediates LDL oxida-
tion and subsequently promotes foam cell formation, further 
promotes atherosclerotic disease progression [135]. Besides, 

neutrophils can promote vascular wall inflammation by the 
secretion of proinflammatory microvesicles [56] and the for-
mation of NETs [35].

Proposed new mechanisms for circulating 
immune cell activation in CAVD

Until now, it is unclear how activation of innate immune 
cells might contribute to CAVD pathophysiology. Trained 
immunity and CHIP are recently described immunological 
mechanism that could potentially contribute to long-term 
activation of innate immune cells and we propose that these 
mechanisms could contribute to the development of ASCVD 
and CAVD (Fig. 3).

Fig. 3  A schematic illustration of how systemic immune cell repro-
gramming can contribute to CAVD pathophysiology. Oxidative, 
mechanical or shear stress damages and activates valvular endothe-
lial cells (VECs), altering endothelial permeability. This causes 
lipoproteins and immune cells to infiltrate the valvular tissue, creat-
ing an inflammatory environment. Local migrated immune cells 
and activated VECs and valvular interstitial cells (VICs) continue to 
stimulate each other, thereby causing chronic inflammation, fibrosis 
and calcification. This leads to valve leaflet stiffening and thickening, 
which increases mechanical stress, establishing a self-perpetuating 
cycle. Activation of innate immune cells, such as monocytes, mac-
rophages and neutrophils, contributes to the initiation and develop-

ment of CAVD. Risk factors for CAVD, such as hyperlipidaemia, 
elevated Lp(a) levels and a Western diet, activate hematopoietic stem 
and progenitor cells (HSPCs) and circulating immune cells. Trained 
immunity can lead to a persistent pro-inflammatory phenotype of 
circulating innate immune cells and myeloid progenitor cells. Clonal 
haematopoiesis of indeterminate potential (CHIP) results in a pro-
inflammatory phenotype of HSPCs. The proinflammatory leukocytes 
infiltrate the valvular tissue and contribute to the development of 
CAVD by creating an inflammatory environment. The chronic inflam-
mation that arises might in turn impact on HSPCs and circulating leu-
kocytes
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Trained immunity

Trained immunity describes the phenomenon that innate 
immune cells, including monocytes and macrophages, are 
able to adapt their function after a first encounter with a 
DAMP or PAMP, leading to a long-term hyperresponsive 
phenotype [11]. Although this mechanism is beneficial in 
the context of recurrent infections, it might be detrimental 
in chronic inflammatory diseases in which these innate 
immune cells themselves contribute to pathophysiology 
and tissue damage, such as atherosclerosis [45]. Trained 
immunity is dependent on intracellular metabolic and epi-
genetic reprogramming, resulting in a persistent proinflam-
matory phenotype, characterized by an increased cytokine 
production capacity [100]. In vitro, brief exposure of iso-
lated human monocytes to oxLDL, Lp(a), uric acid or 
adrenaline/noradrenaline induces a trained macrophage 
phenotype [12, 161, 163].

Recent studies translated the concept of trained immu-
nity to patients with established ASCVD or risk factors for 
ASCVD. In patients with CAD, the augmented cytokine 
production of circulating monocytes was associated with 
increased glycolysis and enrichment of epigenetic his-
tone markers, characteristic of trained immunity [14]. In 
addition, monocytes from treatment-naïve patients with 
familial hypercholesterolaemia have an increased cytokine 
production capacity and enrichment of activating histone 
modifications on the promotors of these cytokine genes, 
which persisted for three months after cholesterol lower-
ing with statins [13]. A similar hyperresponsive monocyte 
phenotype was observed in patients with elevated Lp(a) 
levels [163].

The prolonged presence of monocytes with a trained 
hyperresponsive phenotype is explained by the fact that 
training occurs at the level of myeloid precursors in the 
bone marrow [100]. In this regard, it was recently shown 
that isolated bone marrow mononuclear cells of patients 
with severe CAD demonstrate an increased cytokine pro-
duction capacity and a higher metabolic rate than individu-
als without CAD. The bone marrow composition of the 
CAD patients showed skewing towards myelopoiesis and 
the hematopoietic stem and progenitor cells demonstrated 
enriched monocyte and neutrophil related pathways [107]. 
Moreover, several risk factors for both CAVD and ASCVD 
are described to reprogram myeloid progenitor cells in 
mouse models [28, 132, 167]. A Western type diet in 
Ldlr−/− mice induces long-term epigenetic and transcrip-
tomic reprogramming of myeloid progenitor cells, leading 
to increased myelopoiesis and augmented innate immune 
responses, which persist despite switching back to a chow 
diet [28]. Furthermore, bone marrow transplantation from 
Western type diet fed Ldlr−/− mice into Ldlr−/− mice on 
a chow diet was associated with an increased number of 

circulating inflammatory leukocytes and an increased aor-
tic root plaque sizes compared to chow fed donor bone 
marrow [167]. Similarly, transplantation of bone mar-
row progenitors from diabetic mice into normoglycemic 
atherosclerosis-prone mice accelerated atherosclerosis by 
trained immunity [41].

Clonal haematopoiesis and CAVD

Recently, clonal haematopoiesis of indeterminate potential 
(CHIP) has been identified as an important mechanism 
of innate immune cell activation [49, 64]. Clonal hae-
matopoiesis (CH) describes the disproportionate clonal 
growth of leukocytes arising from a single progenitor 
cell harbouring a somatic mutation, without the presence 
of haematologic malignancy [142]. CH is rare in young 
patients, but the prevalence increases with age, affect-
ing > 10% of individuals older than 65 years [53, 170]. 
CH-driver mutations (CHDM) provide a survival advan-
tage to the mutated cells and allow progressive clonal 
expansion, leading to accumulation of circulating mutant 
leucocytes [142]. CHDM occur mainly in genes encoding 
for epigenetic regulators, such as ten–eleven translocation 
2 (TET2) and DNA methyltransferase 3A (DNMT3A). CH 
is associated with an augmented all-cause mortality risk 
[53, 63] and an increased risk of atherosclerotic CVD [49, 
64]. At least for TET2 driver mutations, this association 
appears to be driven by a hyper-inflammatory phenotype 
of clonal monocytes. This is mediated, at least partly, due 
to the fact that TET2-deficient macrophages exhibit an 
increased NLRP3 inflammasome-dependent secretion of 
IL-1β [49], which is key to the development of athero-
sclerosis [123]. DNMT3A deficiency has been associated 
with diminished immunosuppressive function of myeloid-
derived suppressor cells, proinflammatory activation of 
mast cells and an increased production of IFN-γ by T 
lymphocytes. However, a direct pathophysiological con-
nection between DNMT3A loss-of-function and athero-
sclerosis has not yet been established [6]. Interestingly, it 
was demonstrated that increased haematological stem cell 
proliferation, driven by atherosclerosis itself, can acceler-
ate CH, creating a vicious cycle [61].

Recently, in patients with severe CAVD undergoing 
transcatheter AVR, a higher prevalence of DNMT3A and 
TET2 mutations was found in circulating monocytes com-
pared to other cohorts of healthy subjects or to subjects 
with CAD. Patients with CHDM had a markedly increased 
all-cause mortality during the first eight months after a 
successful transcatheter AVR. Compared to non-CHDM 
carriers, patients with TET2 mutations had elevated 
levels of proinflammatory non-classical monocytes and 
patients with DNMT3A mutations showed proinflamma-
tory T lymphocyte polarization [87]. Moreover, another 
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study demonstrated that monocytes of patients with 
severe degenerative aortic valve stenosis or chronic pos-
tischemic heart failure, who harbour DNMT3A or TET2 
CHDM, appeared to be primed for excessive inflamma-
tory responses by assessing the transcriptome of circulat-
ing peripheral monocytes of CAVD by single-cell RNA 
sequencing [2].

Imaging of valvular inflammation 
and calcification

Currently, echocardiography is used to clinically assess 
the severity of the aortic valve stenosis and computed 
tomography (CT) is used to quantify valvular macrocalci-
fication and disease severity and progression [36]. How-
ever, it is important that we can properly measure inflam-
mation, both systemically and locally, to obtain a better 
understanding of how inflammation contributes to CAVD 
pathophysiology. Active arterial wall inflammation can be 
visualized by 18F-fluorodeoxyglucose (18F-FDG) positron-
emission tomography (PET) combined with CT [127]. 
In atherosclerotic plaques, FDG-uptake correlates with 
plaque macrophage burden [149]. Marincheva-Sancheva 
et al. were the first to demonstrate higher valvular 18F-FDG 
uptake in patients with mild and moderate CAVD, but 
not in patients with severe CAVD, compared to controls. 
This suggests that inflammation plays a more important 
role in the early phases of CAVD than in advanced dis-
ease. Also, patients with higher baseline 18F-FDG uptake 
showed an increased disease progression [86]. In addition, 
18F-sodium fluoride (18F-NaF) PET–CT can be used, to 
detect recent calcification activity and calcium remodel-
ling. Dweck et al. demonstrated that both valvular 18F-
FDG and 18F-NaF uptake were higher in CAVD patients 
compared to controls. However, the 18F-NaF uptake dis-
played a more progressive rise with disease severity than 
the more modest increased uptake of 18F-FDG. Moreover, 
uptake of 18F-NaF and not 18F-FDG strongly correlates 
with disease severity [39]. A follow-up study demonstrated 
that both 18F-FDG and 18F-NaF uptake independently pre-
dict disease progression and adverse outcomes. 18F-NaF 
uptake correlates strongly with CT calcium score progres-
sion and novel calcium depositions develop in the same 
distribution as baseline 18F-NaF uptake. Interestingly, 
Abdelbacky et al. demonstrated that valvular 18F-FDG 
uptake independently predicted subsequent calcification in 
patients without CAVD at baseline and thus indicated that 
inflammation precedes calcification [1]. Together, these 
studies support that valvular inflammation plays an impor-
tant role in early CAVD and precedes calcification, which 
predominantly drives disease progression in later stages. 
These findings correspond to recent findings in patients 

with atherosclerosis, showing mainly 18F-FDG uptake in 
arterial segments without advanced plaques, suggesting 
an arterial inflammatory state at early stages of athero-
sclerosis [44].

Finally, another emerging imaging technique in the 
imaging of CAVD patients is the use of PET combined 
with magnetic resonance imaging (MRI). In addition to 
the potential to detect valvular inflammation with tracers, 
the PET/MRI has particular added value in assessing prog-
nostic factors, including characterization of the myocardial 
tissue for remodelling, fibrosis and hypertrophy [156].

Pharmacological treatment to prevent 
severe CAVD

Although CAVD can be diagnosed at an early stage, there 
is currently no effective medical treatment available and 
‘watchful waiting’ is the only option until endovascular or 
surgical intervention is needed. Elucidation of the patho-
physiology of CAVD will hopefully reveal potential pharma-
cological targets for prevention or treatment. Given the piv-
otal roles of (oxidized) lipoproteins, various trials have been 
performed with lipid-lowering drugs (Table 2). In addition, 
targeting systemic inflammation and the immune system 
might be an effective strategy to prevent or treat CAVD. For 
other examined agents in the search for a pharmacological 
treatment for CAVD, we refer to the recent review of Donato 
et al. [34].

Lipid‑lowering therapy

The pivotal role of oxidized lipoproteins in CAVD sug-
gest lipid-lowering as possible treatment. However, four 
double-blind randomized controlled trials (RCTs) showed 
that statins do not halt or slow down CAVD progression, 
in contrast to strong beneficial effects on ASCVD (Table 2) 
[23, 30, 32, 126]. This might be explained by the fact that 
these patients already had established CAVD with a self-
perpetuating calcification process. Another explanation is 
that statins do not lower Lp(a), and can even increase Lp(a) 
levels [154]. Additionally, statins are suggested to increase 
vascular calcifications, which might increase plaque stabil-
ity and reduce the number of cardiovascular events in the 
context of atherosclerosis [117, 122], but further drives 
calcification and subsequent disease progression in CAVD. 
Interestingly, a post hoc meta-analysis of three studies 
investigating the effect of 80 mg atorvastatin mg per day 
in patients with stable CVD without CAVD, did not show a 
reduced risk for developing CAVD [8]. However, two of the 
three included trials compared low-dose statin therapy as 
control; treatment naïve patients as control group may have 
resulted in different results.
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Convertase subtilisin/kexin type 9 (PCSK9) inhibitors are 
monoclonal antibodies that bind to circulating PCSK9 and 
inhibit PCSK9-mediated LDL-receptor degradation. This 
results in a powerful LDL-cholesterol lowering. In addition, 
PCSK9 inhibitors also lower Lp(a) concentration by 20–30% 
respectively [110, 128]. The FOURIER trial examined the 
effect of the PCSK9-inhibitor evolocumab in patients with 
stable atherosclerotic disease receiving statin therapy and 
demonstrated a reduced cardiovascular event risk [128]. 
Interestingly, a post hoc analysis of this trial displayed that 
treatment with evolocumab might also reduce CAVD related 
events [15], which is in line with the findings that patients 
with a PCSK9 loss-of-function mutation have a reduced 
CAVD risk [75]. These findings suggest that Lp(a) lower-
ing might be able to prevent or slow down the progression of 
CAVD. These preliminary findings need further validation 
with RCTs and currently, the effects of PCSK9 inhibitors in 
CAVD are being investigated (Table 3) [157]. In addition, 
the effect of Lp(a) lowering on CAVD progression by niacin 
is being explored (Table 3) [158].

Another promising therapy targeting Lp(a) is antisense 
oligonucleotide therapy. These synthetic oligonucleotides 
bind to apoB or apo(a) mRNA in hepatocytes, resulting in a 
decreased production of apoB-containing lipoproteins and 
Lp(a). This leads to a significant reduction in circulating 
OxPL and Lp(a) [168]. Currently, the HORIZON trial, a 
large phase 3 multicentre RCT is recruiting patients to assess 
the impact of the antisense oligonucleotide TQJ230 on major 
cardiovascular events in patients with CVD (Table 3) [160]. 
This therapy might also be beneficial in patients with CAVD.

Anti‑inflammatory agents

To the best of our knowledge, there are no clinical tri-
als investigating the effect of anti-inflammatory drugs on 
CAVD. In the setting of ASCVD, however, recently several 
RCTs have reported effectiveness of the anti-inflammatory 
drugs colchicine and canakinumab in the prevention of 
CVD, following the publication of many neutral trials with 
other anti-inflammatory drugs [175]. Given the overlap in 
inflammatory components in the pathophysiology of ath-
erosclerotic CVD and CAVD, these drugs might also have 
beneficial effects in the context of CAVD.

The low-dose colchicine for secondary prevention of car-
diovascular disease (LoDoCo) trial demonstrated that col-
chicine, a broad anti-inflammatory agent, reduces the risk 
of cardiovascular events in patients with stable CAD [104]. 
This beneficial effect was confirmed in two large RCTs in 
patients after recent myocardial infarction [148], or with 
chronic coronary disease [105]. In addition to its known 
inhibitory effect on inflammasome activation, colchicine 
appears to attenuate neutrophil activation [112]. Given these 
actions, colchicine might be an attractive candidate to limit Ta
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CAVD progression and this hypothesis will soon be tested 
in a new randomized controlled clinical trial [159].

The Canakinumab Anti-inflammatory Thrombosis Out-
come Study (CANTOS) demonstrated that inhibition with 
the human anti-IL-1β antibody canakinumab decreases car-
diovascular event rates in patients with a recent myocardial 
infarction [123]. This trial did not evaluate the effects on 
CAVD. Nonetheless, IL-1β production by macrophages 
induces calcification by vascular mesenchymal cells [22], 
which makes IL-1β also an interesting candidate for CAVD 
treatment. Furthermore, the CHIP-associated aberrant 
inflammation, such as the IL-1β overexpression by TET2 
deficient macrophages, further strengthens the possible role 
for IL-1β as therapeutic target in CAVD [49]. As a con-
sequence of the promising results of the CANTOS trial, 
attention has moved upstream of the IL-1β pathway to tar-
get inflammasomes and downstream IL-6. Animal studies 
using NLRP3 inflammasome inhibitors and IL-6 receptor 
antagonists have shown promising results in targeting ath-
erosclerosis [4, 162, 166], but larger trials are needed to 
investigate their clinical relevance.

Conclusion

In conclusion, evidence is gradually accumulating that the 
complex pathophysiology of CAVD is an inflammatory pro-
cess in which various immune cells plays a prominent role. 
Considering the central role of innate immune cells in the 
pathophysiology of ASCVD and the similarities between 
ASCVD and CAVD, it is rational to hypothesize that acti-
vation of the innate immune system also contributes to the 

initiation and progression of CAVD. Further elucidation of 
the driving processes of innate immune cell activation in 
CAVD, including trained immunity and CHIP, might iden-
tify novel therapeutic targets that can be used for prevention 
and treatment of CAVD. The recent exciting evidence that 
anti-inflammatory strategies potently limits atherosclerotic 
CVD further underscores the importance of this scientific 
field.
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