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The endoplasmic reticulum (ER) is an important organelle that regulates several fundamental cellular processes, and ER
dysfunction has implications for many intracellular events. The nucleotide-binding oligomerization domain-like receptor family,
pyrin domain-containing 3 (NLRP3) inflammasome is an intracellularly produced macromolecular complex that can trigger
pyroptosis and inflammation, and its activation is induced by a variety of signals. ER stress has been found to affect NLRP3
inflammasome activation through multiple effects including the unfolded protein response (UPR), calcium or lipid metabolism,
and reactive oxygen species (ROS) generation. Intriguingly, the role of ER stress in inflammasome activation has not attracted a
great deal of attention. In addition, increasing evidence highlights that both ER stress and NLRP3 inflammasome activation
contribute to atherosclerosis (AS). AS is a common cardiovascular disease with complex pathogenesis, and the precise
mechanisms behind its pathogenesis remain to be determined. Both ER stress and the NLRP3 inflammasome have emerged as
critical individual contributors of AS, and owing to the multiple associations between these two events, we speculate that they
contribute to the mechanisms of pathogenesis in AS. In this review, we aim to summarize the molecular mechanisms of ER
stress, NLRP3 inflammasome activation, and the cross talk between these two pathways in AS in the hopes of providing new
pharmacological targets for AS treatment.
1. Introduction

The endoplasmic reticulum (ER) is the primary intracellular
site for protein synthesis and processing, as well as the pri-
mary calcium reservoir that maintains calcium homeostasis
[1, 2]. Additionally, there are many rate-limiting enzymes
located in the ER membrane involved in the synthesis of ste-
roids and different lipids [3]. Disturbances in ER protein
homeostasis lead to ER stress, which then activates the
unfolded protein response (UPR). The UPR then regulates
many components of the secretory pathway to restore pro-
tein homeostasis, including protein folding, maintenance of
calcium homeostasis, and lipid synthesis [4, 5]. In turn,
abnormal lipid and calcium metabolisms are important
contributors to ER stress [6].

The nucleotide-binding oligomerization domain-like
receptor family, pyrin domain-containing 3 (NLRP3) inflam-
masome is a type of macromolecular complex that can
activate caspase-1, leading to pyroptosis. It can also induce
the maturation and secretion of interleukin-1β (IL-1β)
and IL-18 [7, 8]. Under pathological conditions, NLRP3
inflammasome activation is initiated by host recognition of
pathogen-associated molecular patterns (PAMPs) or danger-
associated molecular patterns (DAMPs) [9]. In addition, sev-
eral signaling pathways, including ER stress, are also involved
in the activation of the inflammasome [8].

When ER stress is excessive, calcium homeostasis, pro-
tein processing, and lipid metabolism are disrupted, which
inevitably damages the intracellular microenvironment and
eventually affects the activation of the NLRP3 inflamma-
some. In this review, we present some of the interesting
cross talk in the molecular signaling pathways between
ER stress and the NLRP3 inflammasome. We propose that
the ER, similar to the mitochondria, is an organelle that is

https://orcid.org/0000-0003-3010-4487
https://orcid.org/0000-0002-7376-7988
https://orcid.org/0000-0001-6694-9671
https://orcid.org/0000-0002-5915-910X
https://orcid.org/0000-0002-7271-8615
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3462530


2 Oxidative Medicine and Cellular Longevity
effective in the activation of the NLRP3 inflammasome,
thus operating as a previously uncharacterized stress
“rheostat” that controls pyroptosis.

Atherosclerosis (AS) is a chronic inflammatory disease
that is the main pathological basis of ischemic cardiovascular
and cerebrovascular diseases [10–12]. Several studies have
documented that both the NLRP3 inflammasome and ER
stress closely affect the progression of AS [13, 14]. Since there
are multiple links between ER stress and the NLRP3 inflam-
masome, it is not inconceivable that these links may also be
related to AS. Recognition of the potential direct or indirect
links between these divergent pathogenic processes may offer
new avenues for the development of treatments against AS.

2. Control of ER Homeostasis: Mechanisms
and Function

2.1. Protein Synthesis, Folding, and Degradation. The ER
serves as a platform that mediates the synthesis and folding
of 30% of the proteome, but its normal function is easily
influenced by external factors [15–17]. Because of the com-
plex and crucial task of protein synthesis and modification,
a protein quality control mechanism in the ER is required
to ensure protein homeostasis in cells. In fact, at least a third
of all polypeptides translocated into the ER fail to satisfy the
quality control mechanisms. These cargoes that do not reach
their final destination are degraded via the ER-associated
degradation (ERAD) pathway which removes misfolded/un-
folded proteins to the cytosol for subsequent ubiquitination
and degradation by the proteasome [16–18]. If ubiquitina-
tion and proteasomal degradation are impaired, then misfol-
ded/unfolded proteins will continue to accumulate in the ER
and eventually clog the ER lumen [17, 19]. Under stress con-
ditions, the demand for secreted and membrane proteins
rapidly increases, resulting in increased levels of protein syn-
thesis that exceed the protein degradation capacity of cells,
which then leads to protein accumulation [15, 19–22]. Insults
caused by genetic, environmental, or nutritional factors
induce imbalances in the ER quality control mechanism,
leading to the accumulation of proteins in nonnative confor-
mations [15, 19, 21–23]. The situation becomes even more
critical if dysregulations in the oxidation-reduction balance,
calcium levels, or posttranslational modifications are present
[15, 17, 19, 21, 22]. In addition, deficiencies in autophagy,
energy deprivation, and inflammatory stimulation all lead
to the accumulation of misfolded proteins [19]. To summa-
rize, due to high protein load on the organelles or impaired
ER quality control mechanisms, protein degradation can
become blocked, leading to protein accumulation in the ER,
which induces the UPR and thereby initiates a stress response
that restores cellular homeostasis [15, 16].

2.2. UPR Signal Transduction. As the most important
response in the ER stress transduction pathway, the UPR
has been studied in depth over the past decade. Three highly
conserved proximal effectors of UPR, namely, inositol-
requiring enzyme 1 (IRE1), protein kinase RNA- (PKR-) like
kinase (PERK), and activating transcription factor 6 (ATF6),
coordinate the cell-autonomous response to ER stress [4]. In
the absence of stress, these ER-localized transmembrane pro-
teins are coupled to the ER chaperone immunoglobulin-
binding protein (BiP) and remain in an inactive state. During
ER stress, BiP separates from stress signal transducers and
preferentially chaperones unfolded/misfolded proteins,
thereby permitting IRE1, PERK, and ATF6 to convert to their
active states [24]. The UPR is then triggered by these acti-
vated protein sensors and their downstream transcriptional
effectors via three distinct pathways (see Figure 1).

In response to ER stress, IRE1 is activated by transauto-
phosphorylation at its cytosolic kinase domain, eliciting
endoribonuclease activity that mediates sequence-specific
cleavage of the mRNA encoding X-box-binding protein-1
(XBP1). After endoribonuclease cleavage, unspliced XBP1
(XBP1u) converts to spliced XBP1 (XBP1s) which is a potent
transcriptional activator that augments the protein folding
capacity of ER [25]. In addition, IRE1 induces the transcrip-
tion of UPR genes that promote ERAD via XBP1 mRNA
splicing to restore homeostasis and cytoprotection [26]. Acti-
vated IRE1 kinase interacts with tumour necrosis factor
receptor- (TNFR-) associated factor-2 (TRAF2), which leads
to the activation of apoptotic signaling kinase-1 (ASK-1) and
the downstream factor Jun-N-terminal kinase (JNK); the lat-
ter of which is a member of the mitogen-activated protein
kinase (MAPK) family that regulates inflammation and apo-
ptosis [27, 28]. In addition to ASK-1 and JNK, the activation
of IRE1α can also contribute to cell death through sustained
regulated IRE1-dependent decay (RIDD), which is a process
in which IRE1α RNase activity degrades a subset of mRNAs
[4, 29]. IRE1-TRAF2 complexes also recruit IκB kinase
(IKK), resulting in the phosphorylation and degradation of
IκB, as well as consequent translocation of nuclear factor-
κB (NF-κB) into the nucleus to regulate the transcription of
inflammatory genes [30].

Similarly, PERK dissociated from BiP is also responsi-
ble for decreasing ER workload by inhibiting mRNA
translation, thereby further decreasing protein synthesis.
Activated PERK phosphorylates eukaryotic translation ini-
tiation factor 2α (eIF2α), which greatly inhibits general
translation by interfering with 5′cap assembly, facilitating
the accumulation of ATF4 through an alternative transla-
tion initiation site [31]. ATF4 transcriptionally upregulates
CCAAT/enhancer-binding protein-homologous protein
(CHOP) and growth arrest and DNA damage-inducible
34 (GADD34) which participates in a feedback loop to
dephosphorylate eIF2α [32, 33]. In addition, PERK-eIF2-
mediated translational suppression of IκB increases the
activity of NF-κB which subsequently transcribes a broad
network of proinflammatory signals [34, 35].

After separating from BiP, ATF6 interacts with the coat
protein II (COPII) complex, following which ATF6 is trans-
ited to the Golgi apparatus where it is consecutively cleaved
by site 1 protease (S1P) and S2P. As a result, ATF6f, which
is a cytosolic domain fragment of ATF6, is liberated from
the membrane and translocated into the nucleus [36, 37].
ATF6f contains a basic leucine zipper domain which acts as
a transcription factor to regulate transcription activation of
specific target genes involved in protein folding and ERAD,
such as CHOP and XBP1 [25, 38]. As ATF6 is capable of
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Figure 1: UPR signaling pathways. UPR induced by ER stress triggers downstream signaling through three major sensing proteins (IRE1,
PERK, and ATF6). (a) IRE1 autophosphorylation induces XBP1-specific cleavage, enhancing ER folding function and UPR gene
transcription. Furthermore, activated IRE1 recruits TRAF2 which induces apoptosis and inflammation through JNK and NF-κB pathways.
IRE1α also degrades select mRNAs through RIDD. (b) Activated PERK phosphorylates eIF2α which upregulates ATF4 expression to
promote UPR gene transcription while inducing NF-κB-mediated inflammatory responses. (c) ATF6 interacts with COPII to transport
ATF6 to the Golgi for cleavage, and the resulting ATF6f induces the transcription of downstream genes such as XBP1 and CHOP. UPR:
unfolded protein response; ER: endoplasmic reticulum; IRE1: inositol-requiring enzyme 1; PERK: protein kinase RNA- (PKR-) like kinase;
ATF6: activating transcription factor 6; XBP1: X-box-binding protein-1; TRAF2: tumour necrosis factor receptor- (TNFR-) associated factor-
2; JNK: Jun-N-terminal kinase; NF-κB: nuclear factor κB; RIDD: regulated IRE1-dependent decay; eIF2α: eukaryotic translation initiation
factor 2α; ATF4: activating transcription factor 4; COPII: coat protein II; CHOP: CCAAT/enhancer-binding protein-homologous protein.
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activating inflammation-related proteins such as C-reactive
protein and NF-κB, it would be interesting to assess ATF6
as a synergistic mediator between the ER stress and proin-
flammatory signaling pathways [39].

2.3. Secretory Pathways. The ER and UPR are crucial in
the maintenance of basic functions of many cells; in addi-
tion to their well-known role in protein quality control,
they are highly important for many aspects of the secre-
tory pathway in restoring protein folding homeostasis,
including maintenance of calcium homeostasis, ROS pro-
duction, and lipid synthesis [4, 40]. Calcium stored in
the ER plays a key role in posttranslational processing,
folding, and export of proteins, as well as in Ca2+ signaling
[41]. The accumulation of misfolded proteins in the ER
can interfere with Ca2+ homeostasis, and conversely, a
change in Ca2+ content in the lumen has a major effect
on protein synthesis [42]. Some new proteins found at
the ER-mitochondria interface have drawn attention as
pivotal targets for regulating interorganelle calcium signal-
ing potentially leading to mitochondrial Ca2+ overload and
apoptotic cell death [43–46]. Among this group, it is not
fully understood which are specifically involved during
ER stress. The study identified that a sarcoendoplasmic
reticulum Ca2+-ATPase 1 (SERCA1) variant (S1T) acting as
an ER stress protein was directly involved in Ca2+-dependent
mitochondrial apoptosis. In addition, S1T was found to
amplify ER stress through the PERK-eIF2α-ATF4-CHOP
pathway [41]. ER stress-inducible eIF2α kinase PERK is
also involved in the activation of the integrated stress
response (ISR), which is important in dealing with physio-
logical levels of ER stress [47]. ROS has a dual role in ER
stress signaling that can be loosely described as the signal-
ing intermediates that report ER stress to the UPR in
order to mitigate ER stress but appear to arise and con-
tribute to cell death in chronic ER stress [48].

The ER is the central hub of lipid metabolism, as most of
lipogenesis occurs on the cytoplasmic surface of the ER
membrane, including the synthesis of triacylglycerols, sterols,
ceramides, and phospholipids, as well as that of lipid droplet
biogenesis [5, 49]. Additionally, the ER is the site of fatty acid
desaturation [5]. Recent studies show that the UPR can
directly control the transcription of genes coding for proteins
involved in lipid metabolism and interfere with the secretion
of apolipoproteins [50, 51]. UPR stress sensors can be acti-
vated by lipotoxic stress in addition to classical protein fold-
ing stress [52, 53]. A recent study indicates that certain stress
stimuli which cause lipid- or membrane-related aberrations
are likely to be sensed by IRE1, without the need for interac-
tion between IRE1 and unfolded proteins [54]. Furthermore,
membrane lipid saturation induces autophosphorylation of
IRE1α and PERK, which is different from the mechanism
by which unfolded proteins activate the UPR [55–57]. A pre-
vious study has demonstrated that ER stress can dysregulate
lipid metabolism, leading to lipid disorders by activating the
sterol regulatory element-binding proteins (SREBPs) [58].
Both SREBP-1 and the homologous SREBP-2 are inserted
into the ER/nuclear membrane [59]. Within the ER mem-
brane, SREBP cleavage-activating protein (SCAP) interacts
with the newly synthesized SREBP precursor and insulin-
induced gene (Insig). SREBP-1 and SREBP-2 contribute
to cholesterol and fatty acid homeostasis through tran-
scriptional regulation of genes involved in the biosynthesis
of cholesterol, triacylglycerides, and phospholipids [60].
Inhibition of SREBP-1 prevents excessive lipid accumula-
tion via downregulation of the expression of its down-
stream proteins [61]. SREBP-2 is a major regulator of
cholesterol biosynthesis [60]. When cholesterol is depleted,
the expression of SREBP-2 along with that of miR-33,
which is located at an SREBP-2 intron, increases to
replenish cellular cholesterol [62]. In addition, interactions
among sterol metabolism, ISR, and the SREBP pathway
affect lipid metabolism as well [10, 47]. In summary, these
results suggest that lipids, calcium, and ROS, as products
of secretion pathways, can be activated by different ER
stress signals to mediate the information transmission
between the ER and other organelles, but the specific
mechanisms are far from being spelled out.
3. Molecular Mechanisms of NLRP3
Inflammasome Activation

The NLRP3 inflammasome is a cytosolic protein complex
composed of the sensor protein NLRP3, the adaptor protein
known as apoptosis-associated speck-like protein containing
a C-terminal caspase recruitment domain (ASC), and the
effector molecule caspase-1 [63, 64]. NLRP3 recruits ASC
upon activation, which serves as a platform for the recruit-
ment and autocatalytic cleavage of pro-caspase-1, giving rise
to active caspase-1 [65, 66]. Once activated, caspase-1 pro-
motes IL-1β and IL-18 maturation and release and also
cleaves gasdermin D (GSDMD). The N-terminal domain of
GSDMD then becomes bound to the plasma membrane
inner leaflet, forming many pores on the host cell membrane,
which directly destroys membrane permeability, leading to
pyroptosis and passive release of proinflammatory cytokines,
such as mature IL-1β and IL-18 [7, 8].

It is generally believed that NLRP3 activators do not
directly interact with NLRP3 but induce one or more
downstream cellular activities or disorders [8]. The activa-
tion of the NLRP3 inflammasome requires two signals:
toll-like receptor 4 (TLR4) ligand lipopolysaccharide
(LPS) binding to its receptor, which induces the transcrip-
tional upregulation of NLRP3 along with pro-IL-1β
through NF-κB (signal 1). Alternatively, TLR4 provides
signal 1 by means of its adaptors myeloid differentiation
factor 88 (MyD88), interleukin 1 receptor-associated
kinase 1 (IRAK1), and IRAK4, independently of new protein
synthesis [67]. A posttranscriptional modification, such as
NLRP3 deubiquitination mediated by BRCA1/BRCA2-con-
taining complex subunit 3 (BRCC3), is required for
NLRP3 activation (signal 2) [67, 68]. The second signal
provided by NLRP3-activating agents (e.g., ATP, ROS, oxi-
dized mitochondrial DNA (mtDNA), and other stimuli)
triggers assembly and activation of the NLRP3 inflamma-
some, followed by proinflammatory caspase-mediated pyr-
optosis [69–71].
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4. The Molecular Pathways between ER Stress
and NLRP3 Inflammasome Activation:
Mechanistic Cross Talk with AS

A great deal of research indicates that ER stress occurs in a
variety of cell types involved in AS including endothelial cells
and macrophages and also influences the disease process
of AS by coordinating protein and lipid metabolism,
inflammatory response, various stress responses, and cell
death [13, 72–78]. Similarly, the NLRP3 inflammasome
and its genetic variants are involved in atherosclerotic
pathogenesis [79, 80]. The mechanism of pathogenesis
involves mediating immune cell interactions, driving sterile
inflammation, and promoting the progression of atheroscle-
rotic plaques, such as that seen in AS [14, 79, 81, 82]. More-
over, the NLRP3 inflammasome can instigate inflammatory
pathologies toward hyperhomocysteinemia-aggravated AS
[83, 84]. Therapeutic approaches targeting ER stress and
the NLRP3 inflammasome separately have shown promise
in the prevention and/or regression of AS. There are multiple
associations between ER stress and the NLRP3 inflamma-
some, and a variety of cellular processes observed among
these associations are required for atherogenesis, which sheds
lights on the significance of AS therapies targeting these
associations.

4.1. Terminal Signaling in the UPR

4.1.1. p38 MAPK. Previous studies have shown that the UPR
induces an increase in p38 MAPK activation [85, 86]. In par-
ticular, ER stressors lead to PERK-dependent activation and
recruitment of MAPK kinase 4 (MKK4) to lysosomes, acti-
vating p38 MAPK at the lysosomes [87]. Under the action
of ASK1, IRE1 can also activate p38 MAPK [88]. In addition,
p38 MAPK modulates the UPR via p38-dependent phos-
phorylation of CHOP and ATF6 [86]. So, p38 MAPK plays
a dual role in the UPR [89]. The p38 MAPK pathway partic-
ipates in maintaining a normal cell cycle, differentiation, apo-
ptosis, and expression of inflammatory cytokines and
chemokines. Studies have confirmed that high mobility
group box-1 (HMGB1) promotes the synthesis of pro-IL-1
and pro-IL-18 by activating p38 MAPK [90]. ASK1 can
increase the apoptosis of macrophages and inhibit AS
induced by hyperlipidemia, but the plaque vulnerability is
significantly increased by augmenting the area of plaque
necrosis [91]. The p38α MAPK is the most widely expressed
subtype in the p38 MAPK family that is closely related to the
occurrence and development of AS. Selective inhibition of
p38α MAPK produces multifaceted effects on foam cell for-
mation, apoptosis, and cytokine induction and prevents the
inflammatory cascade in AS [92].

4.1.2. JNK. During severe ER stress conditions, sustained
IRE1α oligomerization can recruit the adaptor protein
TRAF2, which serves as an activation platform for ASK1
and its downstream target JNK. Dominant-negative TRAF2
inhibits the activation of JNK by IRE1 [28, 93]. E3 ligase car-
boxyl terminus of HSC70-interacting protein- (CHIP-) regu-
lated IRE1α ubiquitination increases JNK signaling without
affecting XBP1 mRNA splicing [27]. As an IRE1-interac-
ting/modulator protein, N-Myc interactor (NMI) negatively
modulates IRE1-dependent activation of JNK and apoptosis
[94]. Additional experiments implicate the PERK/eIF-2α sig-
naling pathway as a contributor to JNK activation [95]. JNK
input is not limited to upstream of ER stress, but also down-
stream, as the abrogation of JNK attenuates ER stress [96,
97]. Hara et al. found that JNK is required for the activation
of caspase-1 via the NLRP3 inflammasome. Inhibition of
JNK abolishes the formation of ASC specks without affecting
the interaction of ASC with NLRP3, which suggests that JNK
acts upstream of ASC phosphorylation [98]. JNK inhibitors
decrease the activation of caspase-1 and reduce circulating
amounts of IL-1β. Moreover, JNK can phosphorylate B-cell
lymphoma-2 (Bcl-2) family proteins (such as Bcl-2 and Bcl-
XL) to regulate NLRP3 inflammasome activation [99]. Sev-
eral studies have identified that JNK2 knockout leads to
decreased incidence of AS in vivo compared to JNK1 knock-
out. Macrophages lacking JNK2 inhibit the phosphorylation
of scavenger receptor A (SR-A) and foam cell formation
[100]. However, the absence of JNK1 in macrophages can
prevent apoptosis and increase cell survival, which promotes
the formation of early AS [101].

4.1.3. XBP1. XBP1 is the downstream effector molecule of
IRE1 and ATF6 [25]. XBP1 can control the activation of
the NLRP3 inflammasome. For example, Robblee et al.
proved that XBP1 plays a mediating role in the process of
IRE1 regulation of saturated fatty acid (SFA) metabolism to
activate the NLRP3 inflammasome in macrophages. Interfer-
ence of XBP1 gene coding or transcription is a new method
by which the activation of the NLRP3 inflammasome may
be controlled [102]. XBP1 can inhibit NLRP3 activity and
caspase-1 and IL-1β release, as well as mRNA synthesis
[102–104]. Multiple studies have found that XBP1 is involved
in the development of AS, and excess amounts of XBP1
expression can be observed in the arterial branch points
and plaques of ApoE-/- mice. XBP1 regulates macrophage
death, foam cell formation, and IL-8 and TNFα release, as
well as inducing endothelial cell apoptosis, autophagy, prolif-
eration, and smooth muscle cell calcification. In addition,
XBP1 interferes with lipid metabolism and XBP1 deletion
significantly reduces plasma cholesterol levels in ApoE-/-

mice. In conclusion, the continuous activation of XBP1 pro-
motes the formation of AS [105–107].

4.1.4. CHOP. When the UPR fails to alleviate ER stress, apo-
ptosis occurs mainly via CHOP [108]. CHOP is a transcrip-
tion factor that promotes apoptosis. When the UPR is
activated, PERK promotes CHOP expression by increasing
the content of the downstream signaling protein ATF4 [32].
ATF6 can also directly regulate CHOP [109]. The IRE1-
XBP1 signaling pathway increases CHOP expression by acti-
vating JNK [110]. In addition to inducing apoptosis, CHOP
overexpression can also activate the NLRP3 inflammasome,
leading to pyroptosis, as well as the secretion of IL-1β, cas-
pase-1, and caspase-11 [108]. Many researchers have utilised
CHOP to investigate the relationship between apoptosis and
AS. What is more, previous experiments have confirmed that
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the ER stress effector CHOP is related to plaque necrosis
[111]. CHOP expressed in vascular cells contributes to the
progression of vascular remodeling and AS [112].

4.1.5. NF-κB. Branches of characteristic sensor pathways
(IRE1, PERK, and ATF6) involved in the UPR have been
reported to regulate the NF-κB pathway [113]. ER stress
primes cells to promote the secretion of IL-1β by activating
NF-κB to express pro-IL-1β [114]. The ER stress inhibitor
4-phenylbutyric acid (4-PBA) reduces the release of proin-
flammatory factors such as IL-1β by inhibiting the NF-κB
signaling pathway [115]. NF-κB upregulates IL-1β and
NLRP3 in a TLR-independent pathway [116]. In addition,
studies have confirmed that NF-κB upregulates expression
of cyclooxygenase 2 (COX-2) which can activate the NLRP3
inflammasome to induce IL-1β secretion and pyroptosis
[117, 118]. NF-κB expression is increased in many inflamma-
tory diseases, and its activation can be used for both protec-
tive and destructive outcomes. A study has shown that NF-
κB plays an important regulatory role in AS and NLRP3
can affect NF-κB and its downstream signaling pathway,
leading to the occurrence of AS [71]. NF-κB can induce
endothelial dysfunction by stimulating the release of some
inflammatory mediators, including IL-6 and TNF-α [119].
Moreover, as the downstream gene of NF-κB, COX-2 plays
a role in promoting AS. Inhibiting COX-2 expression signif-
icantly reduces early atherosclerotic lesion formation [120].

4.1.6. Thioredoxin-Interacting Protein (TXNIP). TXNIP is
an important junction that links oxidative stress to inflam-
mation. In response to ROS, TXNIP dissociates from
thioredoxin (TRX) and binds to NLRP3, leading to the
activation of the NLRP3 inflammasome which results in
the maturation and release of IL-1β and IL-18 [121].
TRX80, a C-terminally truncated form of TRX-1, can also
activate the NLRP3 inflammasome and release potent ath-
erogenic cytokines IL-1β and IL-18 [122]. Previous studies
have shown that TXNIP is closely related to the activation
of the inflammasome under oxidative stress, but it has
recently been found that TXNIP is an important molecular
node linking ER stress to inflammation.

TXNIP can be induced by the IRE1 and PERK-eIF2α
pathway to induce transcription of IL-1β mRNA. In addi-
tion, it also activates the NLRP3 inflammasome to release
IL-1β and regulate ER stress-related cell death [123]. ER
stress-induced ROS activates the NLRP3 inflammasome
through TXNIP, leading to IL-1β secretion [114]. A study
has suggested that ER stress has an effect on inflammasome
activation and that TXNIP plays an important role in ER
stress-mediated promotion of IL-1β maturation [123]. Ler-
ner et al. found that TXNIP is a significant node of termina-
tive UPR. Hyperactivity of IRE1α increases the stability of
TXNIP mRNA by reducing the level of microRNA-17
(miR-17), which normally leads to translational suppression
of TXNIP, which in turn increases the expression of TXNIP
protein, thereby activating the NLRP3 inflammasome,
leading to the dissociation of caspase-1 and the secretion
of IL-1β [124]. It was found that caspase-2 activation takes
place via TXNIP, which results in mitochondrial dysfunc-
tion and cytochrome C release. After mitochondrial injury,
DAMP is released to activate the inflammasome and to
produce IL-1β. Furthermore, caspase-2 is able to activate
caspase-1 [125, 126].

Byon et al. showed that atherosclerotic plaques in the aor-
tic root decrease by 49% and abdominal aortic lesions
decrease by 71% in TXNIP-ApoE-double-knockout mice,
compared to control ApoE-knockout mice [127]. The data
show that TXNIP plays a key role in the oxidization, inflam-
mation, and the development of AS in mice. Intervention
against TXNIP expression may be a potential target for the
prevention and treatment of AS and of inflammatory vascu-
lar disease. In addition to oxidative injury and inflammation,
TXNIP can increase intimal thickness in the carotid artery
and lead to abnormal glucose metabolism. A study among
the Chinese Han population reported that TXNIP single-
nucleotide polymorphisms independently and gradually
increase the risk of coronary heart disease by regulating
TXNIP expression and gene-environment interactions [128].

4.1.7. The Mammalian/Mechanistic Target of Rapamycin
Complex 1 (mTORC1). The mTOR protein is a master
manipulator of cell growth and metabolism. This kinase con-
tains two protein complexes, mTORC1 and mTORC2, which
execute distinct cellular responses. Multiple studies have
found that uncontrolled mTORC1 signaling is intertwined
with ER stress [129, 130]. Uncontrolled mTORC1 signaling
is known to promote dysregulated ER stress-UPR [129, 131,
132] and may mediate ER stress and lipogenesis by regulating
SREBP signaling [54, 133, 134]. Besides, ER stress also plays a
role in regulating mTORC1. A study found that ATF6
induces Ras homologue enriched in brain (RHEB) which is
an activator of mTORC1, thus activating mTORC1 [135].
The PERK-ATF4 pathway induces the expression of regu-
lated in development and DNA damage 1 (REDD1) and trib-
bles homolog 3 (TRB3), both of which lead to mTORC1
suppression [131, 136–139]. In addition, the PERK signaling
pathway can induce sestrin-2, thus inhibiting mTORC1 to
maintain ER homeostasis [140, 141].

Moon et al. demonstrated that mTORC1-induced hexo-
kinase 1- (HK1-) dependent glycolysis regulates NLRP3
inflammasome activation in macrophages, suggesting that
mTORC1 is a potent NLRP3 inflammasome inducer [142].
Additionally, mTOR activates the inflammasome partially
via ROS-induced NLRP3 expression [143]. The mTORC1
inhibitor REDD1 regulates the priming of the NLRP3 inflam-
masome through a NF-κB-dependent pathway [144].

Several mechanisms of mTORC1 inhibition are involved
in the early stages of atherogenesis [145]. First, mTORC1
activity contributes to SREBP-2-mediated cholesterol uptake,
which facilitates AS progression [146]. SREBP-2 is involved
in regulating cholesterol metabolism in macrophages, creat-
ing an immunometabolic circuit that links perturbations in
cholesterol biosynthesis with innate immune activation
[147], while mTORC1 may promote lipid uptake and foam
cell formation [148, 149]. Second, mTOR silencing induces
macrophage autophagy, which is a potential strategy for the
treatment of atherosclerotic plaques [150]. Third, the inhibi-
tion of mTORC1 leads to the release of large amounts of
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cytokines and the shift of macrophages to a hyperinflamma-
tory state [151–153]. However, in contrast to in vitro find-
ings, mTORC1 inhibition decreases monocyte migration
and reduces proinflammatory cytokines in plasma, both of
which are involved in plaque development [145, 154]. In
addition, mTORC1 may also participate in the AS process
by regulating vascular smooth muscle cell proliferation,
endothelial dysfunction, and neoangiogenesis [155–157].

4.2. Mediating Effect of ROS. ROS play a significant role in
oxidative stress, inflammation, apoptosis, cell growth, alter-
ation in vascular tone, and oxidation of low-density lipopro-
tein cholesterol (LDL-C) [158, 159]. Previously, ROS have
been considered to be a type of marker of oxidative stress,
but more recently, researchers have found that ROS play a
dual role in ER stress signaling. During ER stress, NADPH
oxidase (NOX) located in the ER can induce ROS production
in order to coordinate the UPR and to restore ER homeosta-
sis [48]. NOX is composed of seven subtypes (NOX1-5 and
dioxygenase 1-2) and is a type of cellular enzyme that special-
izes in the production of ROS [160]. IRE1 phosphorylates
JNK, which partially triggers the activation of the down-
stream activator protein 1 (AP1), while the IRE1-JNK-AP1
signaling pathway facilitates NOX4 expression. Small inter-
fering RNA (siRNA) silencing of IRE1 or inhibition of JNK
activity can reduce their gene expression. Another study
found that JNK may be a catalyst for NOX2 gene transcrip-
tion [161, 162]. In the event that ER stress is not relieved over
time, ER oxidase 1 (ERO1) partly induces an ROS increase
[163]. Excessive ROS production in ER will cause calcium
deposition in the mitochondria and further aggravate mito-
chondrial damage [164]. In addition, calcium transfer across
ER-mitochondria protein tether sites appears to further con-
tribute to the release of ROS [48] (see Figure 2).

ROS stimulation under oxidative stress and ER stress is
essential for the activation of the NLRP3 inflammasome in
macrophages, where NOX and mitochondrial ROS (mtROS)
may exert an impact on the inflammasome activation [165,
166]. ROS can control the assembly and activation of the
NLRP3 inflammasome as well as the secretion of IL-1β,
which ultimately induces endothelial cell pyroptosis [167].
NIMA-related kinase 7 (NEK7) acts as an upstream ROS
sensor for the detection of increasing ROS level and for trig-
gering inflammasome assembly [168, 169]. SREBP-2 induces
NOX2 transcription and NLRP3 expression, leading to IL-1β
expression and endothelial inflammatory response [62].
NOX4 not only activates NF-κB through ROS but also acti-
vates MAPK to induce the secretion of proinflammatory fac-
tors [160]. In addition, NOX2 regulates the expression of
dsRNA-activated protein kinase R (PKR) under ER stress
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[162]. In a cell-free system, PKR autophosphorylation leads
to the de novo association of NLRP3, ASC, and pro-cas-
pase-1, resulting in inflammasome activity. PKR deficiency
significantly inhibits the secretion of IL-1β, IL-18, and
HMGB1 [170].

Among the seven subtypes of NOX, NOX1, NOX2,
NOX4, and NOX5 are expressed in the vascular system.
NOX1 and NOX2 can induce atherogenesis by promoting
both intrinsic and extrinsic vessel wall cellular inflammation
[171]. Notably, in multiple atherosclerotic mouse models, the
deletion of NOX4 accelerates atherogenesis, emphasizing the
diverse signaling roles served by NOX [172]. NOX4 is widely
expressed in vascular smooth muscle cells and is critical for
maintaining vascular homeostasis. The overexpression of
this gene leads to the increase in the ROS level, senescence,
and susceptibility to apoptosis which are closely related to
the severity of AS [171]. NOX4 directs homeostatic UPR
responses and subsequent autophagic activity, as well as pre-
serving vascular endothelium function in response to
proatherogenic ER stress, which serves primarily atheropro-
tective effects [48].

4.3. ER Stress Induced the Ca2+ Signaling Pathway. As a ubiq-
uitous second messenger of signal transduction, calcium
drives complicated molecular pathways including gene
expression, protein biosynthesis and secretion, cell metabo-
lism, and apoptosis [173, 174]. The ER is the major calcium
storage organelle, and ER dysfunction induces the release of
calcium from the ER, which ultimately leads to cellular dys-
function. For example, a high cytosolic level of calcium acti-
vates CAMKII which then induces apoptosis through Fas
signaling [175]. Ca2+ is released from the ER via several chan-
nels, in particular ryanodine receptors (RYRs) and inositol
1,4,5-trisphosphate receptors (IP3R) [176]. These channels
tend to facilitate accumulated Ca2+ moving into the mito-
chondrial matrix via the mitochondrial calcium uniporter
(MCU), leading to mitochondrial dysfunction, apoptosis,
inflammasome activation, and IL-1β secretion [177] (see
Figure 3). The ER and mitochondria are closely related
in physiology and function, and they can affect the metab-
olism of mitochondria jointly.

Mitochondria are far more than passive Ca2+ sinks. Spe-
cial Ca2+ transport mechanisms, such as the MCU, have been
found to coordinate the balance between Ca2+ influx and
efflux across the mitochondrial inner membrane in order to
establish Ca2+ homeostasis within the cell [177]. Several find-
ings clearly indicate that excessive ER-released Ca2+ results in
mitochondrial calcium overload and mitochondrial injury,
leading to mtROS production, cardiolipin externalization,
and mtDNA release, leading to the further activation of the
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inflammasome and the production of IL-1β [178–182]. How
does cytoplasmic Ca2+ find the balance between causing
mitochondrial stress and NLRP3 activation is a question
worth considering. It is possible that intracellular Ca2+ con-
centration does not reach the threshold for mitochondrial
damage and NLRP3 activation under many conditions. In
addition to damaging the mitochondria, Ca2+ mobilization
directly regulates the activation of the NLRP3 inflamma-
some. Studies have proven that Ca2+ can promote spontane-
ous NLRP3-ASC association in cell-free lysates from LPS-
stimulated macrophages [183]. In conclusion, ER-released
Ca2+ may be a kind of common trigger for the activation of
the NLRP3 inflammasome.

Previous research has established that intracellular
Ca2+ is involved in several atherogenesis-associated pro-
cesses, including abnormal contraction, differentiation and
proliferation of vascular smooth muscle cells, oversecretion
of extracellular matrix proteins, excessive production of che-
moattractants and growth factors, platelet aggregation, and
foam cell formation, as well as vascular inflammation [184,
185]. Calcium mineralization in the atherosclerotic artery
lumen promotes and solidifies plaque formation, leading to
vascular stenosis [174]. However, coronary calcification is
associated with plaque burden but not luminal stenosis
[186]. The multiethnic study of atherosclerosis (MESA) sug-
gested that coronary artery calcium is associated closely in a
graded fashion with 10-year risk of atherosclerotic cardiovas-
cular disease (ASCVD) incident [187]. In addition, the
increasing number of coronary arteries with calcified plaques
indicates an enhancive incidence of “diffuse”multivessel sub-
clinical AS [188].

4.4. Sterol Metabolic Pathway. The ER hosts metabolic path-
ways that regulate cholesterol synthesis and is the location in
which cholesterol can be reesterified, allowing for cytoplas-
mic storage in the form of lipid droplets [3, 189]. During
ER stress, the SREBP pathway is activated to maintain lipid
homeostasis. As an important element of ER stress, BiP over-
expression strongly reduces the expression of SREBP-2 and
target genes, leading to greatly decreased hepatic cholesterol
concentration. A study has shown that the suppression of
insulin-induced SREBP cleavage is caused by overexpression
of BiP and that the SREBP-1c complex is able to bind BiP
[190]. IRE1-dependent activation of XBP1 contributes to
both ER gene expression and lipid biosynthesis [191, 192].
As a potent transcription factor, XBP1s can directly tran-
scribe lipid metabolism-related targets [193]. Ning et al.
found that there is a direct interaction between XBP1 and
the SREBP-1 promoter. Overexpression of the activated
XBP1 increases the promoter activity of SREBP-1, while
knockdown of either IRE1α or XBP1 prevents the insulin-
stimulated promoter activity [194]. ER stress-regulated
kinase, PERK, serves as an important regulator of lipid
metabolism via regulation of SREBP processing [195]. PERK
deletion perturbs SREBP1c Golgi processing, thereby reduc-
ing the expression of key lipogenic enzymes. PERK activation
is sufficient for the activation of lipogenesis in the liver, and
there is an active role for the PERK-eIF2α signaling pathway
in the regulation of hepatic lipogenesis [51]. Furthermore,
S1P and S2P enzymes that cleave ATF6 can also process
SREBPs in response to cholesterol deprivation [196]. In sum-
mary, these findings indicate that the UPR is an important
regulator of the SREBP pathway.

In addition to controlling cholesterol biosynthesis, the
SCAP-SREBP-2 complex serves as a signaling hub inte-
grating cholesterol metabolism with NLRP3 inflammasome
activation (see Figure 4). Mechanistically, NLRP3 associ-
ates with SCAP-SREBP-2 to form a ternary complex trans-
located from the ER to the Golgi apparatus, which is
required for optimal NLRP3 inflammasome assembly and
activation [197]. In addition, NLRP3 promotes the expres-
sion of SREBP-1 and downstream proteins, as siRNA silenc-
ing of NLRP3 decreases the SERBP-1 level [61]. This finding
clearly indicates that acute cholesterol depletion in ER by
statins decreases IL-1β secretion, abrogates caspase-1 acti-
vation, and ablates NLRP3 inflammasome assembly, further
solidifying the fact that ER sterol synthesis and distribution
are principal determining factors for the activation of the
NLRP3 inflammasome [189]. Cholesterol-dependent cyto-
lysins induce mature IL-1 release from macrophages rapidly
in a NLRP3 inflammasome- and cathepsin B-dependent
manner [198].

Cholesterol crystals can activate the NLRP3 inflamma-
some and increase the production of IL-1β in monocytes/-
macrophages, as well as employing the complement system
to induce cytokines and activate the inflammasome/cas-
pase-1. It is noteworthy that the interaction between cho-
lesterol crystals and the NLRP3 inflammasome is closely
associated with AS [62, 79, 81, 199–205]. The involvement
of the SREBP pathway in lipid synthesis plays a noticeable
role in coordinating the relationship between the NLRP3
inflammasome-induced inflammatory response, lipid metab-
olism, and AS. Results from in vitro and in vivo studies sug-
gest that SREBP-2 can aggravate endothelial dysfunction
which is an important factor in AS [60]. Several studies
reported that atheroprone flow induces marked proinflam-
matory response and oxidative stress in endothelial cells
mediated through the SREBP-2-elicited NLRP3 inflamma-
some [62, 206]. This innate immune enhancement of the
endothelium synergizes with hyperlipidemia, which leads to
the topographic distribution of atherosclerotic lesions [62].
In conclusion, the SREBP-induced NLRP3 inflammasome
and the innate immunity it stimulates are important contrib-
utors to AS and targeting SREBP-inflammasome pathways
may be a therapeutic strategy for AS treatment [60].

What we need to emphasize here is that the nuclear respi-
ratory factor-1 (NRF-1) which is targeted to the ER mem-
brane and the UPR sensor proteins may regulate similar
cellular processes [207]. Through a defined domain, NRF-1
directly binds to and specifically senses cholesterol in the
ER, defending against cholesterol accumulation [208]. There-
fore, it is an appealing notion that SREBP-2 and NRF-1 may
be involved in a yin-yang counterbalance to stabilize choles-
terol homeostasis in the ER. In addition, NRF-1 is a major
transcriptional regulator that plays an essential role in inte-
grating the transcription of nuclear-encoded mitochondrial
genes involved in the mitochondrial respiratory chain and
mitochondrial biogenesis [209–212]. Since NRF-1 plays an
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antioxidative role and the UPR is closely related to oxidative
stress, it seems worthwhile to explore both roles in balancing
the oxidative stress response [213, 214]. Several studies have
indicated that proteasome disruption leads to ER stress and
NRF-1 may mediate the proteasome recovery pathway after
proteasome inhibition [215, 216]. The proteasome, UPR,
and ERAD are transcriptionally integrated into the ER
homeostasis pathway. NRF-1 regulates protein homeostasis
in the ER through transcriptional regulation of ATF6, which
regulates ERAD-associated gene expression, reducing the
flow of protein substrates to the proteasome [207]. A
NRF1-dependent increase in proteasome levels serves to
influence the rate of new protein synthesis due to the increase
in the intracellular pool of amino acids [217]. Together,
NRF-1 can promote cholesterol removal and proteasome
recovery, as well as antioxidant stress, all of which are benefi-
cial to reducing ER stress. In other words, NRF-1 can coun-
teract the adverse effects of the UPR. Although ER stress
activates NRF-1, its specific mechanism has not been clarified
[207, 214]. Given the possible beneficial effects of NRF-1 on
ER stress and the subsequent inflammatory response, we
need to further explore its possible role in alleviating inflam-
masome activation.
5. Conclusion and Perspectives

The ER maintains cellular functions through multiple path-
ways. Likewise, ER can produce a variety of adverse effects
under stress. Although the UPR has long been recognized
as a major effector mechanism of ER stress, it cannot be
ignored that the ER, as an important site of intracellular
calcium storage and lipid synthesis, is essential for main-
taining calcium and lipid homeostasis. Therefore, ER stress
inevitably disturbs calcium and lipid metabolism through
downstream signaling pathways, resulting in a series of
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adverse effects. However, the mechanistic effects are not
fully appreciated.

There have been many studies that have elucidated the
mechanism of NLRP3 inflammasome activation. However,
we need to be clear that the stimulatory signals required for
NLRP3 inflammasome activation act at different stages of
activation and the effects they produce are diverse. Although
ER stress can activate the inflammasome, it is noteworthy
that Menu et al. demonstrated that this effect is not directly
affected by IRE1, PERK, ATF6, and its downstream TRAF2
and ASK1 in the classical UPR pathway but by other mecha-
nisms [218]. As we reviewed above, ER stress has multiple
effects on the activation of the NLRP3 inflammasome.
Namely, it can directly affect the expression of terminal sig-
naling in the UPR or stimulate activation through calcium
or lipid metabolism or take effect through the production of
ROS. ER stress seems to be underestimated in the signifi-
cance of its contribution toward NLRP3 inflammasome
activation. By summarizing the multiple mechanisms of
ER stress-induced activation of the inflammasome, we
clarify the important potential of this organelle in regulat-
ing the inflammasome-induced inflammatory response,
which lays a foundation for further investigations. Finally,
we conclude that the cross talk between ER stress and the
NLRP3 inflammasome is related to AS. This review offers
a fresh perspective where not only ER stress and the
NLRP3 inflammasome but also the signaling hubs between
them are potential intervention targets against AS worthy
of further research.
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