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Mesenchymal Stem Cell Therapy
of Pulmonary Fibrosis: Improvement
with Target Combination
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Abstract
Although the clinical application of new drugs has been shown to be effective in slowing disease progression and improving the
quality of life in patients with pulmonary fibrosis, the damaged lung tissue does not recover with these drugs. Thus, there is an
urgent need to establish regenerative therapy, such as stem cell therapy or tissue engineering. Moreover, the clinical appli-
cation of mesenchymal stem cell (MSC) therapy has been shown to be safe in humans with idiopathic pulmonary fibrosis (IPF).
It seems that a combination of MSC transplantation and pharmaceutical therapy might have additional benefits; however, the
experimental design for its efficacy is still lacking. In this review, we provide an overview of the mechanisms that were
identified when IPF was treated with MSC transplantation or new drugs. To maximize the therapeutic effect, we suggest that
MSC transplantation is combined with drug application for synergistic effects. This review provides clinicians and scientists
with the most efficient medical options, in the hope that this will spur on future research and lead to an eventual cure for this
disease.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a specific form of

chronic and progressive fibrosing interstitial pneumonia of

unknown cause1. It occurs mainly in older adults (median

age at diagnosis 66 years, range 55–75 years)2, is limited to

the lungs, and is characterized by fibroblast proliferation

and extracellular matrix remodeling3, which results in pro-

gressively worsening dyspnea and pulmonary function,

usually with poor prognosis. The diagnosis of IPF requires

the histopathologic and/or radiologic pattern of usual

interstitial pneumonitis on high-resolution computed

tomography. Other known causes of interstitial lung dis-

ease (ILD) (e.g. connective tissue diseases, drug toxicity,

and other environmental exposures) must be excluded

first. IPF is a fatal lung disease, with median survival

ranging from 3 to 5 years3. The majority of patients

demonstrate a slow and gradual progression over many

years, and some patients remain stable while others have

an accelerated decline4. A small minority of IPF patients

(approximately 5–10%) may suffer from acute exacerba-

tion annually1. The incidence of IPF is reported to be an

estimated 4.6 to 16.3 cases per 100,000 worldwide. Based

on healthcare claims data from the United States, an esti-

mated prevalence of between 14.0 and 42.7 per 100,000

persons was reported5.
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The antifibrotic drugs nintedanib and pirfenidone have been

shown to significantly reduce the decline in forced vital capac-

ity (FVC), decrease acute exacerbation, and improve mortality

rates in patients with IPF in several studies6–8. Recently, they

have been recommended conditionally in several guidelines

for the treatment of IPF9; however, current medication can

only slow the progression of IPF but does not reverse the

fibrosis process. There is still a lack of effective options for

treating IPF, although abundant possible targets from animal

studies have shown their potential. Even though some off label

drugs, such as inhaled NAC, could shorten the time of

investigation through meta-analysis, the response is relatively

limited compared with specific target therapy10. Previous

studies have provided results for both stem cell and pharmaco-

logical treatments, but data on a combination of these are still

lacking. In this review, we have summarized the experimental

and clinical evidence and possible mechanisms of action to

present the potential options for this intractable disease.

Treatment Strategies in IPF

Compared with other diseases of the respiratory system, IPF

is hard to predict and prognosticate. The main cause of IPF is

still unclear, but it may involve genetic, environmental, or

toxic components11. Bleomycin (BLM) is commonly used to

induce symptoms of IPF in animal models, as it produces an

oxidative stress specific to alveolar epithelial cells12. In these

models, the immune cells and fibroblasts gradually infiltrate

the lungs of BLM-treated mice. On the other hand,

differentiation and proliferation of myofibroblasts from

fibroblasts produce excessive extracellular matrix. Conse-

quently, anti-inflammatories have been commonly used as

a treatment option in previous studies; however, the treat-

ment was stopped in one trial due to an increasing risk of

death in IPF patients with no clinical benefit13. Other

inducers, such as transforming growth factor b (TGF-b) and

fibroblast growth factor (FGF), have been used as targets for

blockage by inhibitors or antibodies 14. In recent years, there

is evidence of an increasing trend on the use of stem cell

therapy in IPF; its use almost comparable to studies on new

drug development and compound studies (Fig 1). This trend

suggests the potential benefit of stem cell treatment in IPF.

The first successful stem cell transplantation was carried out

50 years ago15, but even now there are potential exciting

applications that deserve our attention.

Developmental Drugs for Treatment of IPF

The two Food and Drug Administration (FDA)-approved

pharmacological targets for treatment of IPF are TGF-b (pir-

fenidone) and PDGF/VEGF/FGF (nintedanib). The efficacy

of pirfenidone is impressive, as it was found to significantly

lower the relative risk of death compared to the placebo

group at week 5216. The data collected from four phase III

trials showed that the mean life expectancy was 8.72 years

for patients given pirfenidone versus 6.24 years for those

receiving best supportive care17. On the other hand, in a

52-week phase III trial involving 1,061 subjects, nintedanib

was found to slow disease progression, but there was no

statistically significant difference for the primary endpoint18.

Although the preclinical studies are quite epromising, the

human trials did not show consistent results, not including

the cases waiting for FDA approval. Potential developmental

drugs provide additional possible targets for improving cur-

rent therapy. Pamrevlumab, an anti-connective tissue growth

factor antibody (FG3019), is under phase III trials

(NCT01890265). Another drug that targets alpha v beta 6

(avb6) integrin has also completed a phase II trial involving

IPF participants (NCT01371304). In short, new drug devel-

opment for IPF is a highly risky and ineffective business.
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Fig. 1. Publications of new drugs or stem cells development and each percentage of total IPF studies.
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Current Stem Cell Therapies for IPF

Despite the fact that MSC therapy has been used in the clinic

for approximately 10 years, more than 75% of studies are

still in phase II or earlier19. Lung diseases account for 23 of

the 493 transplantation studies, according to https://www.

clinicaltrials.gov/. More recently, an allogeneic bone mar-

row MSC (BMSC) transplantation study in IPF patients

assigned three cohorts to a single IV infusion of 20, 100,

or 200� 106 human BMSC20. There is also a case report of a

56-year-old man with IPF who received human umbilical

cord-derived mesenchymal stem cell (HUC-MSC) trans-

plantation with intravenous infusion21. Both studies,

observed over 1 year, did not register any adverse events.

The authors of a phase I trial of adipose-derived stem cell

(ADSC) treatment for IPF reported on their experiences of

acquiring FDA approval (NCT01385644). The protocol used

three rounds of endobronchial infusion with Stromal vascu-

lar fraction (SVF), totaling 1.5�106 cells, and the cell fate

was traced by 99mTc-HMPAO22. These reports suggest that

stem cell transplantation in IPF is initially safe and with

some benefits, and the standardized protocol might encour-

age scientists to explore the potential for MSC therapy in IPF

patients. Data from previous clinical studies suggest that

the transplanted cell type is important for IPF treatment.

Of the problems that may arise between the MSC source and

the receiver during allograft, placenta-derived MSCs such as

umbilical cord blood or amnion stem cell provides less com-

plications.23. It has been well-established that management

of host rejection through HLA typing in placenta-derived

MSCs can be performed easily in clinical applications.24.

The results with amniotic stem cells are the most abundant

results in clinical studies. Although their primary endpoints

were usually for safety and not efficacy, stem cells still hold

promise for better outcomes than most known drugs25.

Mechanisms of Stem Cell Therapy in IPF

The progression of IPF is a complex event consisting, at

minimum, of epithelial-dependent fibroblast-activated pro-

cesses and poor response to anti-inflammatories. These

effects involve downstream pathways of epithelial mesench-

ymal transition (EMT) and an immune response3, as shown

in Fig 2. Some EMT regulators like WISP-1 and BMP4 have

been found to have a role in fibroblast differentiation or

collagen production through Wnt and BMP pathways,

respectively26,27. In regard to an immune response, the PGE2

pathways can prevent Fas ligand-induced apoptosis in myofi-

broblasts and fibroblasts; however, due to the lower expression

of PGE2, alveolar type II cells are still sensitive to apoptosis28.

The differences in expression might explain the apoptosis in

alveolar epithelial cells but not in myofibroblasts or fibroblasts.

Targeting of cell cycle-related proteins has also been reported

as a potential treatment for IPF. S-phase kinase-associated pro-

tein 2 (Skp2) is an effector protein that enhances degradation of

p2729 and is essential for the progression of IPF. Increased

expression of p27 with an antagonist for Skp2, SZL-P1-41,

could inhibit BLM-induced pulmonary fibrosis30. Addition-

ally, treatment with BLM in fibroblasts also induces ER

stress-related proteins, such as GRP78, CHOP, and ATF4,

and enhances proliferation of fibroblasts through a PI3K/

Akt pathway31. The activation of the PI3K/Akt pathway is

another upstream regulator of EMT32 and makes the

response more unpredictable and irreversible. Although

there are few connections between each signaling pathway,

the evidence has shown that the use of each inhibitor, such as

LY294002 and Tauroursodeoxycholic acid (TUDCA), is

efficient at ameliorating pulmonary fibrosis.

Regulation of Immune Response or Secretome

Bone marrow (BM)-derived MSCs are used more often in

mechanism studies than in clinical studies33, perhaps

because the source is easier to obtain. It is thought that

the injected cells could repair lung tissue with its immuno-

modulatory effects. From the immunological perspective,

the BM-derived MSCs had lower levels of expression of the

immunosuppressive molecules PDL-1 and CD1a than

placenta-derived MSCs, and IFN-g induction also showed

lower potential to stimulate T cell proliferation in BM-

derived MSCs34. However, placenta-derived MSCs had a

suppressive effect in cytokine-stimulated natural killer lym-

phocytes35, though the cell type is still hard to ascertain.

Furthermore, the process of IPF is usually accompanied by

inflammation and profibrotic cytokinesis. To produce an

Fig. 2. Mechanism assuming that the fibrogenesis consists of alveo-
lar cell apoptosis and immune cell infiltration (left). The trans-
planted stem cells circulate through the pulmonary artery
(bottom) and act through immunomodulation, secretion of growth
factor, and differentiation into alveolar-like cells (right).
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anti-inflammatory effect, MSCs reduce IL-1b, IL-6, TNF-a,

TGF-b, and vascular endothelial growth factor (VEGF) in

BLM-induced lung injury36. Although these studies did not

find leftover stem cells in injured lungs, the secreted circu-

lating mediators were taken into account to benefit the ther-

apeutic effects for IPF37.

Stem cell therapy also benefits from secretion of isolated

exosomes that contain proteins and RNA from their own cell

origin38. These extracellular vesicles of between 10 and

100 nm in size, called exosomes, allow communication

between distal cells and their cargos39. The effects induced

by exosomes may be associated with the modulation of the

immune response and suppression of macrophage pheno-

type40. To confirm this theory of stem cell secretion, Tan

et al. purified exosomes from amniotic stem cells and admi-

nistered them intranasally. They found that pulmonary

capacity was recovered in the exosome-treated groups in

BLM-induced pulmonary fibrosis41. Moreover, the specific

delivery potential of exosomes has been reported to be due to

the presence of membrane proteins42, making the use of

exosomes instead of MSCs alone a better proposition. How-

ever, a contradictory result suggested that MSC-isolated

microvesicles (MV) reduced pulmonary fibrosis, and that

MSCs have a better treatment effect than MV43. Unfortu-

nately, these authors did not reveal the amount of MSCs used

for isolating the MV, and the result is also lacking in dosage

effectiveness. Nevertheless, these studies suggest that the

treatment potential of MSC therapy is positive regardless of

its presence in the lung tissue.

Evidence for Differentiation into
Functional Alveolar Cells

The injected MSCs were found in the lung epithelium and

expressed an epithelium-like phenotype44; but researchers

also found that their presence is not necessary for an effect,

since the condition medium could also inhibit the effect

of inflammatory cytokines and macrophage-produced

TNF-a45. The anti-inflammatory molecule TSG-6 can be

secreted and homed to the injury site of myocardiocytes by

the embolized-MSCs in the lung46. Evidence of MSC differ-

entiation into lung epithelial cells was found in nude mice

engrafted with amnion-derived stem cells47, and the

CXCR4/SDF1 axis is thought to be involved in stem cell

plasticity. However, in immunocompetent mice, injection

of allogenic amnion-derived stem cells did not find labeled

cells in lung, brain, heart, spleen, liver, and kidney37. It

seems that the ability to engraft is determined by the innate

immune responses. Although the cost is higher and time-

scale longer, autogenic MSC transplantation is still consid-

ered better than allogenic MSC transplantation in IPF.

Influential Factors for Clinical Outcome

Data from a large-scale meta-analysis indicate that the most

important factors for stem cell therapies are dosage and time

points48. A double dosage of autologous stem cell transplan-

tation produced a two-fold better outcome (10% vs 20%) in a

study on humans49. Ghadiri et al. summarized five clinical

studies in IPF patients involving autogenic or allogenic MSC

therapy; however, four of them are still under patient recruit-

ment50. The route of transplantation is also conflicting, since

animal studies did not compare the efficiency between intra-

venous and intranasal transplantation. Interestingly, MSC

transplantation via the intraperitoneal route is also effective

for treating IPF, which suggests that direct contact of stem

cells with lung tissue is not necessary51.

Comparison of Drugs and Stem Cells
in Clinical Potential

Intravenous injection of ADSC on day 3, 6, and 9 after BLM-

induction in mice has comparable therapeutic effects with

the approved drug pirfenidone52. However, there are no ben-

eficial effects when injected on day 14, 17, and 20, due to its

diminished response of anti-inflammation and inhibited

profibrotic genes53. In current pharmacological studies, the

targeting of drugs to specific organs or tissues is still under

investigation. In the case of stem cell transplantation, tissue

repair from migrating stem cells is a natural characteristic of

MSCs19, which is also found in bleomycin-induced lung

injury or infarcted myocardium44,54,55. On the other hand,

pharmacological applications have more detailed studies for

absorption, distribution, metabolism, and excretion, and the

mechanisms are clear in most clinical drugs. The manufac-

turing process of MSCs is determined by the donor and

source (i.e. autogenic transplantation of MSCs is more

expensive than allogenic). But the effect of engraftment in

autogenic transplantation is more impressive than other

known drugs and might apply to regenerative medicine.

Advancements in MSC purification and modification might

be a future goal when the limits of current medication

are reached.

Problems and Future Breakthroughs

The ethical issues in stem cell transplantation include the

potential of these cells to develop into a human being56.

However, MSCs lack such potential, so this issue is not

relevant here. Other concerns that arise are the promotion

of tumor growth and metastasis, and overestimating thera-

peutic potential57. One of the problems we encountered in

this review was characterizaton of the culturing method or

media, since little is known about which characteristics

would be changed from their original niche58. Autologous

transplantation is performed once a culture and expansion

method, which is as similar to the natural niche as possible,

is formalized59. Considering the economic concerns, HLA-

matched banking for allogenic transplantation and mass pro-

duction is rational60. Although it is not necessary to evaluate

the effects of graft-versus-host disease, cases with
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immunosuppressive agents should be evaluated with the

total adding effect.

Conclusion

Recently, a convincing new drug has been discovered that

slows the decline of Forced Vital Capacity (FVC) as well as

prolonging survival, but it does not rebuild the normal struc-

ture of lung tissue. The final goal of therapy should be the

recovery of pulmonary histological structure or retainment

of the cellular functions of each cell type. While there is no

evidence suggesting MSC differentiates into alveolar epithe-

lial cells, the theory that supplies remaining lung progenitor

cell proliferation is still expectable. MSC transplantation is

as effective as pharmaceutical therapies, but has relatively

unclear mechanisms of action.

Here we have listed mechanisms sufficient for treating

IPF, such as immunomodulatory effect, secretion of cyto-

kines, and suppression of myofibroblast differentiation;

however, MSCs neither act as an inhibitor of signaling path-

ways, nor as an agonist of receptors. To counter this disad-

vantage, a combination of drugs and MSCs might be of

benefit. MSC treatment lacks the ability to improve myofi-

broblast apoptosis61, re-epithelization of mesenchymal type

cells (or mesenchymal to epithelial transition, MET)62, and

TGF-b inhibition63. MSC-derived MV or exosomes might

provide another option. Neutralizing antibodies or drugs

approved for marketing can support such limitations. Rather

than applying for new drug development trial approval at the

Institutional Review Board (IRB), which can be both time-

consuming and cost inefficient, use of approved drugs

proves to be a better strategy. These suggestions provide

more options for physicians and patients.

In summary, we concluded that current MSC therapies

have observed positive results in clinical and animal stud-

ies. Moreover, molecular targets involved in the process of

fibrogenesis, such as cytokines or growth factors, can work

alongside MSCs with synergistic effect. Here we discussed

some of the known mechanisms involved and studies based

on these mechanisms. Exploring possible combinations for

making the best therapeutic strategies should be the next

step in the pursuit of better outcomes in the treatment of

IPF, bearing in mind that both a molecular approach and

cell therapy have their own disadvantages. However, two

heads are better than one as they say, so selecting the pos-

itive features from each approach might be the best way

forward.
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