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a b s t r a c t

Synthetic lethality (SL) is an emerging therapeutic paradigm in cancer. We introduced a different
approach to prioritize SL gene pairs through literature mining and RAS-mutant high-throughput screen-
ing (HTS) data. We matched essential genes from text-mining and mutant genes from the COSMIC and
CCLE HTS datasets to build a prediction model of SL gene pairs. CCLE gene expression data were used
to enrich the essential-mutant SL gene pairs using Spearman’s correlation coefficient and literature min-
ing. In total, 223 essential trigger terms were extracted and ranked. The threshold of the essential gene
score (Sg) was set to 10. We identified 586 genes essential for the SL prediction model of colon cancer.
Seven essential RAS-mutant SL gene pairs were identified in our model, including CD82-KRAS/NRAS,
PEBP1-NRAS, MT-CO2-HRAS, IFI27-NRAS/KRAS, and SUMO1-HRAS gene pairs. Using RAS-mutant HTS data
validation, we identified two potential SL gene pairs, including the CD82 (essential gene)–KRAS (mutant
gene) pair and CD82–NRAS pair in the DLD-1 colon cancer cell line (Spearman’s correlation p-val-
ues = 0.004786 and 0.00249, respectively). Based on further annotations by PubChem, we observed that
digitonin targeted the complex comprising CD82, especially in KRAS-mutated HCT116 cancer cells.
Moreover, we experimentally demonstrated that CD82 exhibited selective vulnerability in KRAS-
mutant colorectal cancer. We used literature mining and HTS data to identify candidates for SL targets
for RAS-mutant colon cancer.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

KRAS is the most frequently mutated oncogene in human can-
cers. Most KRAS-mutant cancers depend on the sustained expres-
sion and signaling of KRAS, making this gene a high-priority
therapeutic target. Nevertheless, developing small-molecule direct
inhibitors of the KRAS function remains an ongoing challenge [1].
An alternative therapeutic strategy for KRAS-mutant malignancies
involves targeting codependent vulnerabilities or synthetic lethal
partners essential for oncogenic KRAS [2]. Synthetic interactions
between mutations in two different genes were first identified in
Drosophila by Dobzhansky [3] in 1946. Synthetic lethality (SL) is
defined as the biological consequence for a pair of viable genes if
a cell with a mutation of either gene remains alive, but mutations
or malfunctions of both genes would lead to cell death. SL has
recently emerged as a novel strategy for the treatment of cancer.
The interpretation of SL stipulates the downstream effects of two
mutually expressed genes capable of performing the same essen-
tial function. In this regard, inhibiting a single gene is viable,
whereas inhibiting both is lethal. The first clinical trial of SL-
based treatment investigated BRCA1/2-deficient cancers, which
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Fig. 1. Overview of the synthetic lethality (SL) prediction model. A. Identification of
essential and mutant SL genes using text-mining and high-throughput screening
(HTS) data (COSMIC and CCLE). B. Matching and prediction of essential-mutant SL
gene pairs for cancer-specific types. C. Enrichment and filtering of SL gene pairs by
gene co-expression and co-occurrences. D. Selection of candidate (CD82-KRAS) SL
gene pairs using RAS-mutant HTS and PubChem bioassay data.
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have an SL interaction with poly (ADP-ribose) polymerase (PARP)
[4,5]. Small PARP inhibitors are currently being designed for breast
cancer treatment and are undergoing evaluation in clinical trials
for BRCA1/2-deficient cancers [6]. Another example is Werner syn-
drome helicase (WRN) and high microsatellite instability (MSI-H)
in cancer. Defects in DNA mismatch repair promote a hyper-
mutable state referred to as microsatellites, which are unstable.
Microsatellite instability contributes to the occurrence of several
cancers, including colon (15 %), gastric (22 %), endometrial
(20 %–30 %), and ovarian cancers [7]. WRN, a synthetic lethal part-
ner of MSI-H, was identified using the DepMap database [8] and in
an in vitro study [9].

KRAS activates numerous effector pathways that contribute to
many potential synthetic lethal partners. A major challenge is the
selection of appropriate candidate targets from thousands of SL
gene pairs to determine the mechanism and potency of anti-
cancer drugs. Many public SL databases have been employed to
identify appropriate SL gene pairs. The dominant method, high-
throughput screening (HTS) data surveys [10], enables the identifi-
cation of many SL interactions in human cancer. However, the
screening-based approach in human cancer is fraught with techni-
cal issues, including inconsistent cell lines and mechanistic inter-
pretations, leading to false-positive SL candidates. In addition to
these obstacles, most known SL cases have been discovered in
yeast cells, but only a few SL gene pairs have been identified in
humans. Indeed, it is challenging to select drug target candidates
from these HTS-derived SL gene pairs simply based on their prior-
ity by ranking the score or signal of a reporter gene. Although more
than 12 000 HTS-derived human SL gene pairs have been listed in
the SynLethDB database [11], very few cases have become drug
targets for cancer therapeutic discovery. Instead of identifying
new SL gene pairs, we adopted a different approach by translating
HTS-derived SL gene pairs into potential anti-cancer drug targets at
the cellular level.

In this study, we aimed to identify novel therapeutic targets of
essential genes for RAS-mutant colon cancer based on the concept
of SL. We designed and implemented a text-mining model and
experimental biological data to predict the critical SL gene pairs
for specific cancer types. Moreover, we validated the anti-cancer
potential of SL-based therapeutic targets through RAS-mutant
colon cell line testing and a bioassay database [12,13].
2. Materials and methods

2.1. Study design and workflow

Our study comprised four main themes based on literature min-
ing and HTS data. We designed an SL prediction model based on a
text-mining method, which was modified in our previous study
[14]. Fig. 1 depicts the proposed model architecture, which consists
of four parts. (A) Essential genes were first identified by text-
mining and HTS. We extracted a candidate list of essential genes
using databases and biomedical literature mining from PubMed.
(B) Essential SL gene pairs for cancer-specific types were matched
and predicted. Since SL was identified by linking phenotype with
genotype [10], we hypothesized that cell death could be mediated
by an essential gene that was dysregulated at conduction, whereby
another gene was mutated. Therefore, an SL gene pair could be
modeled by building an association between an essential gene
and a particular mutant gene. Cell lines were selected in the SL
experimental screening approach based on whether they had one
mutated gene (gene X). Next, the importance of other genes in
these cell lines was tested. A potential SL (gene X and gene Y) gene
pair could be predicted if one gene (gene Y) was essential in the
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cancer cell lines that had mutations in a specific gene (gene X)
but was not essential in other cell lines. (C) SL gene pairs were
enriched and filtered using CCLE data and literature. (D) Appropri-
ate candidate (i.e., CD82-KRAS) SL gene pairs were selected using
RAS-mutant HTS and PubChem bioassay data [13].

2.2. Trigger term mining and ranking

To extract the biological relationships between genes and dis-
eases from the literature, we identified essential genes using trig-
ger terms as the main concept behind our text-mining method.
First, we extracted trigger terms regarding ‘‘essentiality.” A word
was considered a trigger term if it was a common ancestor of
two entities (referring to gene and disease herewith) in the depen-
dency parse tree. We used the Stanford natural language process-
ing (NLP) tool [15] to parse the dependency tree in the present
study. COLT-Cancer [16], including breast, ovarian, and pancreatic
cancers, was used as our initial essential gene database.

To rank the trigger terms, we divided sentences containing one
gene name and one disease name into two sets: (i) essential rela-
tions, comprising sentences in which the gene was annotated as
an essential gene in the disease; and (ii) other relations, comprising
sentences in which the gene was not annotated as an essential
gene in the disease. Subsequently, we used the following equation
to compute the reliability score of each trigger term (St):
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St tð Þ ¼
X

d2D

E t; dð Þ
MaxEðdÞ �

MaxOðdÞ þ 1
O t; dð Þ þ 1

D represents the set of all cancer types in the essential database,
Eðt;dÞ is the number of co-occurrences of trigger term t and cancer
type d in essential relations, Oðt;dÞ is the number of co-occurrences
of trigger term t and cancer type d in other relations, MaxEðdÞ is the
maximum number of co-occurrences in essential relations for dis-
ease d, and MaxOðdÞ is the maximum number of co-occurrences in
other relations for disease d.

2.3. Essential gene extraction and scoring

After extracting the essential trigger terms, we extracted poten-
tial essential genes with the essential trigger terms. Each potential
essential gene had a common essential trigger term with other dis-
eases. To filter out false essential genes, we computed and assigned
a score (Sg) to each essential gene candidate using the following
equation:

Sg g; dð Þ ¼
X

t2T
St tð Þ � Cðt; g;dÞ

where Sg g; dð Þ denotes the score of the essential gene candidate g in
disease d, T denotes the set of trigger terms, St tð Þ is the score of trig-
ger term t, and Cðt; g; dÞ is the number of co-occurrences when trig-
ger term t is the common ancestor of gene g and disease d.

2.4. Matching essential-mutant SL gene pairs for colon cancer

We matched essential-mutant SL gene pairs in colon cancer
after identifying cancer-specific essential genes using the text-
mining method. We derived our mutant gene data from the well-
known COSMIC [17] and CCLE datasets [18]. Using the COSMIC
dataset, we selected gene names and tumor locations (e.g., the
large intestine). We then identified each tumor location corre-
sponding to the cancer type (e.g., colon cancer). Using the CCLE
dataset, we obtained the pre-processed dataset containing mutant
genes in specific cells using the cell line named entity recognition
tool [19]. We then identified each cell line name corresponding to
the cancer type and matched the essential-mutant SL gene pairs.

2.5. Enrichment and filtering of SL gene pairs

To extract more reliable predicted SL gene pairs, we used three
criteria to rank the predicted SL gene pairs: (i) essential gene can-
didate score (Sg), (ii) gene co-expression, and (iii) number of co-
occurrences (Fig. 2). We ranked each SL gene pair according to its
essential gene candidate score (Sg) for the first criterion. We
enriched each SL gene pair for the second criterion according to
the gene co-expression obtained from the CCLE gene expression
data; Spearman’s correlation coefficient and p-value were used.
For the third criterion, we filtered each SL gene pair according to
the number of co-occurrences of two genes in one article.

2.6. RAS-mutant HTS database

Two RAS-mutant HTS datasets, including the HCT-116 cell line
(KRAS mutation) with the NAE1 gene study [20] and the DLD-1 cell
line with RAS genes (HRAS, NRAS, and KRAS) study [21], were used
to validate the SL gene pairs. The DLD-1 cell line is a genome-wide
RNAi screen that permits the identification of multiple synthetic
lethal interactions with the RAS oncogene. HTS experimental scores
with log2 ratio differences were calculated to determine the corre-
lation with RAS gene status [22].
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2.7. PubChem bioassay database

PubChem is an open database of chemical and biological func-
tional assays maintained by the National Institute of Health
(NIH) that allows users to search for chemicals by name and iden-
tify chemical and physical properties biological activities safety
and toxicity information. The literature search identified com-
pounds targeting proteins (reporters) of the pathway or phenotype
in a cell line under a particular culture condition. We annotated the
compounds for SL (i.e. CD82-KRAS) candidate targets in the Pub-
Chem database [13] using the search keywords ‘‘digitonin” and
‘‘colon cancer.” Using the COSMIC database we further identified
the type of mutations in the KRAS gene in colon cancer cell lines.
2.8. Cell culture and cell viability assay

The isogenic colon cancer cell lines DLD-1 W/� (W: RAS wild-
type, HD 105–002) and DLD-1 W/M (M: KRAS p.Gly13Asp muta-
tion, HD PAR-086) [22] were obtained from Horizon Discovery
Ltd. (Cambridge, UK). Cells were seeded in 96-well plates at a den-
sity of 100 cells/well in a complete medium and incubated over-
night. A series of 5-FU concentrations (0 lM, 0.5 lM, 1 lM, and
10 lM) was added to the cultures, and the cells were incubated
for a further 72 h. Cell viability was analyzed using the MTT assay
and ATP bioluminescence assay kit (Promega, Madison, WI, USA).
3. Results

3.1. Identification of essential genes by trigger term mining in colon
cancer

For the literature collection, we first downloaded literature
published before 1 February 2016 from PubMed using Entrez Pro-
gramming Utilities (E-utilities). We identified 783 975 articles that
mentioned genes and 637 932 articles that mentioned specific
cancers.

Our approach involved mining essential genes with trigger
terms and parsing the dependency tree using the Stanford NLP tool
[15]. Supplementary Fig. S1A presents an example sentence, ‘‘Her-
2/neu gene amplification in familial vs sporadic breast cancer”
(PMID: 14671981). In this example, ‘‘neu” is an essential gene in
‘‘breast cancer,” and ‘‘amplification” is the common ancestor in
the dependency parse tree. A total of 223 essential trigger terms
were extracted and ranked (Supplementary Table S1). In total,
57, 52, and 99 essential trigger terms were extracted and ranked
for breast, ovarian, and pancreatic cancers, respectively (Supple-
mentary Tables S2, S3, and S4, respectively). Supplementary
Fig. S1B presents the top seven trigger terms for breast, ovarian,
and pancreatic cancers.

The St was considered high if the trigger term appeared more in
essential relations than in other relations. The frequency of the
trigger term was considered higher in other relations than in
essential relations whenSt < 1. This study used St > 1 to reduce
any false-positive errors.

Our essential gene database consisted of three cancer types:
breast, pancreatic, and ovarian. We selected two cancers as the
training data and the third as the test data in this experiment. Sup-
plementary Fig. S1B presents the precision/recall/F-score results
for pancreatic, ovarian, and breast cancers. Supplementary
Fig. S1B depicts the results tested on breast cancer and trained
on two other cancers with different thresholds of the Sg , whereby
a higher threshold reflects higher precision but a substantially
lower recall. To reduce the number of false essential genes
extracted by trigger terms and remove nonsignificant genes, we
set the threshold of the Sg to 10 (Fig. 2).



Fig. 2. Workflow of enrichment and filtering of synthetic lethality (SL) gene pairs. To extract and rank more reliable SL gene pairs, we used three criteria: (i) Essential gene
candidate score (Sg), gene co-expression, and co-occurrences to enrich and filter SL gene pairs. In total, 586 essential genes were identified based on the threshold of the (ii)
essential gene candidate score (Sg) > 10. Subsequently, we enriched and set Spearman’s correlation (iv) p-value < 0.05 according to gene co-expression obtained from (iii)
CCLE gene expression data. Next, we filtered each SL gene pair by co-occurrences (v) in the literature. The threshold of (vi) co-occurrences of two genes in one article was > 0
or � 0. Sg , essential gene score.
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For colon cancer-specific text-mining, Fig. 3A presents the
dependency parse tree for ‘‘significance of the member of TM4SF
(MRP-1/CD9, KAI1/CD82, and CD151) in human colon cancer”
(PMID: 12838318). In this example, ‘‘KAI1/CD82” is an essential
gene in ‘‘colon cancer,” and ‘‘significance” is the common ancestor
in the dependency parse tree. Fig. 3B depicts the top seven trigger
terms in colon cancer, including amplification, testing, alpha, brca1,
evaluation, xenografts, and tumors. We identified 586 essential
genes for SL gene pairs with Sg > 10 in colon cancer (Supplemen-
tary Table S5).

3.2. Enrichment and filtering of matched essential-mutant SL gene
pairs by gene co-expression and co-occurrence in colon cancer

We selected the appropriate essential-mutant SL gene pairs
from our SL prediction model and matched the COSMIC/CCLE
genetic mutation datasets with specific cancer types (Fig. 1). After
selecting a suitable threshold, we used the CCLE dataset to enrich
the SL gene pairs by co-expression. The SL gene pairs were identi-
fied by a cutoff Spearman’s p-value < 0.05 (Fig. 2), and each SL pair
was ranked by co-occurrence in the literature. Fig. 4 presents the
number of gene pairs between our prediction model and the
screening data in Venn diagram format with different thresholds.
For colon cancer, we set a Spearman’s correlation p-value < 0.05
and the threshold of the number of co-occurrences of two genes
in one article � 0 (Fig. 2), as shown in Fig. 4A (left). Our SL model
predicted 16 SL pairs. However, we only set Spearman’s correlation
p-value < 0.05 and the threshold of the number of co-occurrences
of two genes in one article > 0, as shown in Fig. 4B. We identified
seven appropriate candidates for SL gene pairs in our model (Sup-
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plementary Table S6), including CD82-KRAS/NRAS, PEBP1-NRAS,
MT-CO2-HRAS, IFI27-NRAS/KRAS, and SUMO1-HRAS SL gene pairs.
The appropriate SL candidates were selected by enriching and
filtering.
3.3. Validation of CD82-KRAS/NRAS SL gene pairs using RAS-mutant
HTS data

Focusing on RAS mutations, we investigated SL in colon cancer
using HTS screening data from the HCT116 cell line (KRAS muta-
tion) with the NAE1 gene study [20] and the DLD-1 cell line with
RAS genes (HRAS, NRAS, and KRAS) study [20]. We validated notable
cases in the intersection between our prediction model and the
RAS-mutant HTS data. We identified two potential SL gene pairs,
including the CD82 (essential gene)–KRAS (mutation gene) and
CD82 (essential gene)–NRAS (mutation gene) pairs in colon cancer
(Spearman correlation p-values = 0.004786 and 0.00249, respec-
tively) (Fig. 4C and Supplementary Table S6). For gene co-
expression, Spearman’s correlation coefficients between CD82
and KRAS mutations and between CD82 and NRAS mutations were
�0.329 and �0.355, respectively. The HTS experimental score for
CD82 and KRAS/NRAS was �1.23 in RAS-mutant HTS data [21].
The data revealed negative co-expression of CD82 and KRAS/NRAS
mutation genes (Fig. 4C and Supplementary Table S6). As KRAS
and NRAS are oncogenes and CD82 is a tumor suppressor gene,
the results imply that the CD82-KRAS/NRAS mutation is a synthetic
dosage-lethality pair. In this regard, the CD82-KRAS/NRAS genetic
interaction, involving an under-expression of CD82 combined with
KRAS/NRAS mutations, could lead to cancer cell death.



Fig. 3. Dependency parse tree of an example sentence and trigger term extraction. A. The dependency parse tree for ‘‘significance of the member of TM4SF (MRP-1/CD9, KAI1/
CD82, and CD151) in human colon cancer.” ‘‘KAI1/CD82” is an essential gene in ‘‘colon cancer,” and ‘‘significance” is the common ancestor in the dependency parse tree. B. The
top seven trigger terms in colon cancer. The nmod, dep, and conj. are Universal Stanford Dependencies representing grammatical relations between words. Abbreviations.
nomd, nominal modifier; the nmod relation is used for nominal dependents of another noun or noun phrase and functionally corresponds to an attribute or genitive
complement. Dep, unspecified dependency; a dependency can be labeled as dep when it is impossible to determine a more precise relation. Conj, conjunct; a conjunct is a
relation between two elements connected by a coordinating conjunction, such as and, or, etc. The links for the main organizing principles of the Universal Dependencies
taxonomy were as follows: https://universaldependencies.org/u/dep/all.html (accessed on 2 Feb 2022). St , trigger term score.
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Our approach enabled matching essential-mutant SL gene pairs
from the biomedical literature and COSMIC and CCLE datasets. For
instance, KRAS is a mutant gene in colon cancer, and CD82 is an
essential gene extracted using the text-mining method. Thus, we
predicted and verified that KRAS and CD82 constituted an SL pair
in colon cancer. Various unknown SLs were extracted in screening
experiments. We selected key SLs from the screening data, and our
prediction system permitted the selection of the most important SL
gene pairs.

3.4. Identification of KRAS mutation drug candidates using a bioassay
database

To investigate whether CD82-KRAS SL gene pairs had previously
been reported in bioassay studies, we searched the bioassay data-
base in PubChem (Fig. 5A), with CD82 as the target. The search
revealed a tetraspanin-cholesterol interaction via digitonin [12].
‘‘Digitonin” was identified as an active substance in three bioas-
says, in which HT29 (AID: 417513, IC50 (half maximal inhibitory
concentration) = 5.6 lM), CC20 (AID: 417511, IC50 = 9.6 lM),
and HCT116 (AID: 417512, IC50 = 8.7 lM) were the target cell lines
[13,23] (Fig. 5B). Among the cell lines, HCT116 carries the KRAS-
mutant (G13D) gene (reported in the COSMIC database) (Fig. 5B),
and HT29 carries the BRAF mutation (V600E), a downstream gene
of KRAS within the same pathway. These results implied that
depletion of tetraspanin family members (such as CD9, CD82, and
CD151) by digitonin suppressed KRAS/BRAF-mutant colon cancer
cell lines and that CD82 was a target of digitonin, especially in
KRAS-mutated HCT116 cancer cells.
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3.5. Knockdown of CD82 expression in KRAS-mutant isogenic cell lines

The RAS-mutant DLD-1 isogenic cell line was used to validate
the biological relevance of CD82 in SL. CD82, a tetraspanin family
member, contributes to the chemoresistant phenotype of cancers
[24]. To experimentally corroborate the CD82 dependency of KRAS-
mutant cancer cells, we applied siRNA-mediated knockdown of
CD82 and assessed the interaction of CD82 and KRAS based on
MEK activation in CRC cell lines (Fig. 6). Knockdown of CD82
resulted in a modest reduction in MEK phosphorylation in KRAS-
mutant cells compared to that in KRAS wild-type and control cells.
CRC cell lines were transfected with specific siRNA targeting CD82,
and the impact on cell viability following 5-FU chemotherapy was
determined using the MTT assay. Treatment with CD82 siRNA sig-
nificantly reduced the level of p-MEK in DLD-1 W/M cells com-
pared to that in cells treated with scrambled siRNA (Fig. 6A).
DLD-1 W/� cells transfected with CD82 siRNA exhibited a signifi-
cant increase in p-MEK levels. A greater reduction in cell viability
was observed in CD82 siRNA-treated DLD-1 W/M cells than in
DLD-1 W/� cells (Fig. 6B and Supplementary Table S7). In the
bar graph, siRNA targeting CD82 affects the viability of isogenic
CRC cells following 5-FU chemotherapy using the MTT assay. A ser-
ies of doses of 5-FU was administered to cancer cells (0.5 lM,
1 lM, and 10 lM). The viability of DLD-1 W/M cells treated with
CD82 siRNA was significantly lower than that of scrambled
siRNA-treated cells. The p-values for 5FU concentrations of
0.5 lM and 1 lM are 1.06E-07 and 1.63E-05, respectively (Supple-
mentary Table S7). There was no significant difference in cell via-
bility at high doses of 5-FU (10 lM). CD82 depletion by siRNA

https://universaldependencies.org/u/dep/all.html


Fig. 4. Identification of KRAS-mutant synthetic lethality (SL) gene pairs. The synthetic lethal relationships of these genes were identified using RAS-mutant high-throughput
screening (HTS) data and text-mining analysis. Predicted SL gene pairs were compared with HTS data using a Venn diagram with the threshold of gene co-expression and co-
occurrences in colon cancer (A and B). The left circle (red) denotes the number of predicted SL gene pairs; the right circle (blue) represents the number of SL gene pairs
recorded in the screening data. A. Stricter thresholds were set for gene co-expression (Spearman correlation p-value < 0.05) and co-occurrence (number of co-occurrences of
two genes in the literature � 0). B. Stricter thresholds were set for gene co-expression (Spearman correlation p-value < 0.05) and co-occurrence (number of co-occurrences of
two genes in the literature > 0). C. Two potential SL gene pairs in colon cancer, including CD82 (essential)-KRAS (mutant) and CD82 (essential)-NRAS (mutant) gene pairs, were
identified. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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selectively impaired the viability of KRAS-mutant cancer cell lines.
These results indicated that CD82 dependency was associated with
KRAS mutation status in cancer cells.
4. Discussion

We conducted a comprehensive SL prediction model and iden-
tified CD82-KRAS SL gene pairs in colon cancer. Our results high-
lighted the following important points: (i) We designed and
implemented a text-mining model to predict more potential SL
gene pairs in cancer-specific types. (ii) We compared potential SL
gene pairs with screening data and identified the CD82 gene as a
novel target for colon cancer with KRAS/NRAS mutation by syn-
thetic lethality. (iii) We demonstrated digitonin as a potential ther-
apeutic agent via the bioassay database for KRAS-mutant colon
cancer cell lines. (iv) Finally, the CD82-KRAS is an essential SL gene
pair validated in vivo.

KRAS and NRAS are well-known mutated genes in most cancers,
including leukemia and colon, pancreatic, and lung cancers. How-
ever, no studies to date have provided direct evidence that these
CD82 mutations constitute SL gene pairs. Functional genetic
screening approaches, including RNAi or CRISPR-Cas9, have been
used for KRAS synthetic lethal targets [2]. Previous studies used
this approach to identify therapeutic targets for a cancer type with
a specific mutant gene using HTS, resulting in SL databases and
information resources. Several screening technologies have been
developed to detect SL interactions in yeast cells [25], human cell
lines [26,27], and malignant tissues [28]. Several published algo-
rithms use cancer genomic and multiomic data to predict SL inter-
actions [29,30]. However, their scope remains insufficient to
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include the comprehensive functional and experimental studies
of genetic interactions that need to be evaluated. In this regard, a
literature-based translation from SL screening to therapeutic tar-
gets may provide more functional and experimental data for SL
candidates.

In order to identify and find relationships between essential
genes and specific cancers, we used text-mining to analyze their
co-occurrence frequency in biomedical literature.

The literature mining and screening-based approach for identi-
fying SL gene pairs in human cancer have several issues that should
be addressed, such as false-positive results and inconsistencies for
different cancer cell types. Many SL gene pairs in HTS experimental
data have been identified and ranked; however, there is a paucity
of appropriate SL candidates for cancer therapeutic discovery. As
an alternative to the HTS experimental score, we introduced liter-
ature mining as a distinct approach to prioritize SL candidates and
identified three SL gene pairs. With further annotations based on
public data sources of gene expression and bioactivity, a CD82-
KRAS SL gene pair in colon cancer was identified. This permitted
the selection of novel SL gene pairs, although they were not
included in the top-ranking candidates in the HTS experimental
data. Moreover, we experimentally demonstrated that the knock-
down of CD82 increased the sensitivity of KRAS-mutant colon cells
in response to regular cancer drug treatment with 5-FU. Our
approach will enable researchers to narrow the size of notable SL
pairs. Indeed, our literature-based identification of anti-cancer tar-
gets from HTS data and bioassays provides an alternative method
to unveil novel modes of action for modern cancer therapeutics.

Compared with the data mining SL identification pipeline
(DAISY), another data-driven SL prediction system [31], our
approach permitted the identification of more SL gene pairs in



Fig. 5. PubChem bioassay of the CD82-KRAS synthetic lethality (SL) gene pair in colon cancer. A. A PubChem database search revealed that a chemical compound screen assay
(fluorometric microculture cytotoxicity assay (FMCA)) demonstrated that digitonin was used to precipitate tetraspanins (a protein complex including CD82) and significantly
suppressed the growth of a KRAS/BRAF-mutant colon cancer cell line (https://pubchem.ncbi.nlm.nih.gov/bioassay/471512). B. The half-maximal inhibitory concentration
(IC50) values for three cancer cell lines are presented.
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different cancers because we extended essential genes with dis-
eases using text-mining in the published literature. Limited exper-
imental data were available on essential genes (147 cell lines)
compared to mutant genes (approximately 1600 cell lines). We fil-
tered with a stricter threshold regarding co-occurrence in the liter-
ature to remove incorrect SL gene pairs and enriched with gene co-
expression using the CCLE database. With advances in treatable
KRAS mutations for cancer therapy, cancer-specific SL should be
considered in SL prediction [32]. DAISY predicted potential SL
using mutant genes, essential genes, and gene expression in non-
specific cancers. In addition to the quantity of experimental data,
only three cancer types (breast, ovarian, and pancreatic cancers)
have been examined in experiments on essential genes. Owing to
the lack of experimental data on essential genes in colon cancer,
we utilized the trigger term-based method to extend the quantity
of potential essential genes and identified two notable SL gene
pairs at the intersection of RAS-mutant screening data in colon can-
cer. Furthermore, this method used the co-occurrence of entities
and trigger terms to identify additional relationships between
essential genes and specific cancers.
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Recently, several drugs that directly target KRAS have been
investigated in clinical trials. Sotorasib can be used to treat
patients with non-small cell lung cancer with a particular KRAS
mutation subtype, referred to as the G12C mutation [33]. However,
a single-arm phase II trial reported a lack of efficacy in CRC patients
with the KRAS (G12C) mutation [34]. In this regard, the same muta-
tions in cancer cells in the colon or lung may lead to different ther-
apeutic outcomes. The spectrum and distribution of KRASmutation
subtypes also differ for different cancer types. Despite the clinical
success of targeting KRAS mutations in patients with lung cancer,
additional efforts are warranted to identify drugs to treat CRC
patients with KRAS mutations.

In this study, we identified seven appropriate candidates for
RAS-mutant SL gene pairs and verified that CD82-KRAS/NRAS gene
pairs had SL in a bioassay database of colon cancer cell lines. Digi-
tonin (CID: 25444), a cholesterol-precipitating reagent, can inhibit
tetraspanins CD9, CD81, and CD82 [11] and be used to verify CD82-
KRAS as an SL gene pair via bioassay. We searched the PubChem
database with the keywords ‘‘digitonin,” ‘‘KRAS,” and ‘‘colon
cancer,” leading to three digitalis glycosides candidate bioassays

https://pubchem.ncbi.nlm.nih.gov/bioassay/471512


Fig. 6. Effects of siRNA-mediated CD82 depletion on cell viability of KRAS-mutant
cancer cell lines. siRNA-mediated knockdown of CD82 resulted in the downregu-
lation of p-MEK and decreased cell viability following chemotherapy. A. Western
blot (WB) analysis of DLD-1 W/M (KRAS mutant) and DLD-1 W/� (KRAS wild-type).
CD82 expression was higher in DLD-1 W/M cells than in DLD-1 W/� cells. The colon
cancer cell lines were transiently transfected with control siRNA or CD82 siRNA. The
WB results of siRNA-CD82 in DLD-1 W/� and W/M cells. B. Results of the MTT assay
after CD82 knockdown and treatment with 5-FU for 72.
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as the output. The three digitalis glycosides include digitonin, dig-
itoxin (CID: 441207), and digoxin (CID: 2724385) (Fig. 5A)
[35,36]. Digitonin, digitoxin, and digoxin were identified as active
substances in HCT116 cancer cells (IC50 = 8.7 lM, 0.74 lM, and
0.27 lM, respectively). As the three digitalis glycosides share sim-
ilar 2D structures, they may be able to target CD82 leading to SL
in KRAS-mutant colon cancer cells. However, no literature reports
an association between CD82 and digitoxin or digoxin. Further-
more, digitonin is an active compound in RAS-mutant colon can-
cer cell lines [13]. Lower CD82 expression and high miR-633 are
biomarkers of a worse prognosis for melanoma combined with
CRC cancers [37]. The miR-633 molecule is another possible
CD82 target. According to bioinformatics analyses and in vitro
studies, miR-633 could target and regulate CD82 expression
[38]. Therefore, the inhibition of miR-633 results in decreased cell
viability and migration, indicating that it may be a potential tar-
get for CD82.

CD82, a tumor suppressor gene, is downregulated during tumor
progression in human cancers and can be activated by p53 [39].
CD82 functions with BCL2L12 via the AKT/STAT5 signaling pathway
in acute myelogenous leukemia cells [40]. CD82 may interact with
the KRAS gene through p53 or may be directly associated with
growth factors [41]. Except for bioassay data in PubChem [12],
no literature to date has directly demonstrated the CD82-KRAS SL
pair in colon cancer. To confirm our SL prediction model and test
the sensitivity of cancer cells to drug inhibition, we established iso-
genic mutation model cell lines, including DLD-1 KRAS wild-type
(W/�) as a positive control and DLD-1 KRASmutation (W/M) siRNA
for gene knockdown in stabilized cancer cell lines. We adminis-
tered a drug to inhibit receptor tyrosine kinase signaling in KRAS-
mutated cells and knocked down essential genes to identify the
proteins involved in downstream signaling pathways using west-
ern blotting. Finally, based on cell viability, we demonstrated
CD82-KRAS SL in DLD-1 colon cancer cells.
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This study aims to identify SL pairs through different angles to
prioritize the SL candidates. To demonstrate the co-dependency of
CD82 and KRAS mutation in colorectal cancer cells, we used iso-
genic DLD-1 cancer cell lines, including DLD-1 W/M and DLD-1
W/�, in our study. Fig. 5A compares baseline CD82 expression in
scrambled siRNA-treated DLD-1 W/M and DLD-1 W/� cancer cells.
When KRASmutations are knocked out in DLD-1W/� isogenic can-
cer cells, CD82 expression and p-MEK decrease compared to KRAS-
mutant colorectal cancer cells DLD-1 W/M. Using DLD-1 isogenic
cell lines, we demonstrated the co-dependency between CD82
and KRAS mutations. However, our study has several limitations.
Firstly, we did not use more cancer cell lines as positive or negative
controls to validate our findings. Through RNAi screening of differ-
ent cell lines, Barbie et al. demonstrate that TBK1 is required for
oncogenic KRAS-driven cancers [42]. We used the RAS-mutant
HTS database with a genome-wide RNA interference screen in
DLD-1 W/M to validate the SL gene pairs. Secondly, the perfor-
mance of our text-mining method may be improved using other
methods or data resources. Thirdly, some SL pairs are presented
comprehensively, such as the BCL2L1-KRAS-mutant SL pair in col-
orectal cancer [2]. However, we briefly introduced text-mining into
the literature rather than comprehensively; therefore, our study
may not have identified additional SL pairs. Lastly, in most cases,
automatically generated trigger terms were shown to yield higher
recalls but lower precisions.
5. Conclusions

This study developed an SL prediction system based on a text-
mining method. We identified and validated CD82-KRAS SL using
cell-based experiments. Our findings highlight CD82 as a novel tar-
get for KRASmutations in colon cancer and demonstrated digitonin
as a potential therapeutic agent via the bioassay database for KRAS-
mutant colon cancer cell lines. Accordingly, further studies using
digitonin are warranted.
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