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Abstract: Mitochondria are subject to continuous oxidative stress stimuli that, over time, can impair
their genome and lead to several pathologies, like retinal degenerations. Our main purpose was the
identification of mtDNA variants that might be induced by intense oxidative stress determined by
N-retinylidene-N-retinylethanolamine (A2E), together with molecular pathways involving the genes
carrying them, possibly linked to retinal degeneration. We performed a variant analysis comparison
between transcriptome profiles of human retinal pigment epithelial (RPE) cells exposed to A2E
and untreated ones, hypothesizing that it might act as a mutagenic compound towards mtDNA.
To optimize analysis, we proposed an integrated approach that foresaw the complementary use of the
most recent algorithms applied to mtDNA data, characterized by a mixed output coming from several
tools and databases. An increased number of variants emerged following treatment. Variants mainly
occurred within mtDNA coding sequences, corresponding with either the polypeptide-encoding genes
or the RNA. Time-dependent impairments foresaw the involvement of all oxidative phosphorylation
complexes, suggesting a serious damage to adenosine triphosphate (ATP) biosynthesis, that can
result in cell death. The obtained results could be incorporated into clinical diagnostic settings,
as they are hypothesized to modulate the phenotypic expression of mtDNA pathogenic variants,
drastically improving the field of precision molecular medicine.
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1. Introduction

1.1. Mitochondria Represent the Most Intriguing Organelle of Eucaryotic Cell

Mitochondria represent one of the most crucial and interesting organelles of eukaryotic cells.
The major role of mitochondria consists of production of cellular adenosine triphosphate (ATP) and the
establishment of membrane potential by oxidative phosphorylation [1]. Such activities can be realized
thanks to the involvement of a huge number of proteins, most of which are encoded by the nuclear
genome and then translocated to mitochondria [2]. However, the most exciting aspect of mitochondria
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resides in the uniqueness of its own genome (mtDNA), a double-stranded circular molecule of about
16,600 nt encoding for only thirteen polypeptides of the oxidative phosphorylation complex (OXPHOS),
along with twenty-two tRNAs and two rRNAs (12S and 16S). The most polymorphic site of mtDNA
is the non-coding portion situated within a 1 kb noncoding region (NCR), which can regulate both
transcription and translation [3].

1.2. mtDNA Damage is Linked to Heterogeneous Clinical Phenotypes

Today, it is well known that a protracted accumulation of lower levels of mtDNA damage and
mtDNA copy reduction could be linked to the etiopathogenesis of neurodegenerative and metabolic
age-related diseases [4]. Mitochondrial damages, showing an incidence of about 1:4300, primarily affect
oxidative phosphorylation but, due to several mitochondrial proteins encoded by the nuclear genome,
the derived clinical phenotypes are significantly heterogeneous [5]. Despite the actual number of
about 15,000 variants reported in the constantly updated MITOMAP human mitochondrial genome
database [6], only a few hundred are confirmed as disease causing. These mutations are at the basis
of a wide spectrum of maternally inherited diseases, characterized by high heterogeneity of both
pathological phenotype and penetrance, primarily deriving from shifts and differences in the mutant
load, due to stochastic segregation of mtDNA during cellular divisions. Consequently, the mutation
load could range from 100% mutant load (homoplasmy) to the coexistence of both mutant and wildtype
molecules (heteroplasmy), also varying across different tissues and organs. An increase in the level of
heteroplasmy corresponds to a decrease in energy production to the minimum threshold needed for
cell physiological homeostasis, leading to the onset of symptoms [7].

1.3. Next Generation Sequencing Techniques could Reveal a Relevant Role of mtDNA Impairments in
Retinal Degenerations

Several reports highlighted mtDNA damage as an important contributing factor in retinal
degeneration-related pathologies [8,9]. It was stated that mtDNA is more disposed to damage than
nuclear DNA, and it seems that retinal mtDNA damage preferentially occurs in the macula rather
than in the periphery [10]. Another challenge is represented by mutagenesis of mtDNA related to the
efficacy of DNA repair enzymes, encoded by the nuclear genome but imported into the mitochondria
to exert their function [11]. Therefore, DNA damage response in mitochondria (mtDDR) in retinal
diseases presents many unknown molecular aspects that should be unveiled. Today, the advances in
next generation sequencing (NGS) techniques has permitted to perform reliable analysis of mtDNA,
improving sample output and sensitivity of variant detection [12], even if several limits remain.
Main challenge that will be faced working with mtDNA massive parallel sequencing regard variants
unrelated to exhibited phenotype, detection and interpretation of low heteroplasmy and homoplasmy
levels and identification of variants of unknown significance (VUS) [13].

1.4. Evaluating mtDNA Damage by Mitochondrial Transcript Analysis in Photo-Induced Oxidative Stressed
RPE Cells could Shed Light on the Role of Mitochondria in Retinal Dystrophies

To better understand how high ROS levels induced by oxidative stress can damage
mtDNA, influencing retinal degeneration onset and progress, we performed a variant analysis
comparison from transcriptome profiles of human RPE cells exposed to the oxidant agent
N-retinylidene-N-retinylethanolamine (A2E) and untreated ones. The RPE cells are highly susceptible
to oxidative/nitrosative stress, because they are frequently exposed to blue light and reside in an
environment with high oxygen tension [14]. The most reliable model depicting cellular causes of this
condition regards the blue light induced mitochondrial fusion/fission imbalance towards mitochondrial
fragmentation. This phenomenon correlated with the dysregulation of mitochondria-shaping and
mitochondria dynamics-related protein levels, together with up-regulation of mitochondrial mitotic
proteins and down-regulation of fusion proteins [15]. Moreover, blue light could destroy mitochondrial
calcium homeostasis, impairing the transmembrane potential (MPP) and increasing mitochondrial
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membrane permeability [16]. The first stages of RPE degeneration usually imply the accumulation of
metabolic waste between choroidal and RPE layers, called drusen. Drusen consist of mixtures of high
photo-sensitive lipofuscin, involved in the first photo-sensitive reactions, caused by the generation
of singlet oxygen and superoxide anion. A2E is one of the most abundant components of drusen,
and a direct transmittal of light to the retina by drusen determines its cleavage at the pyridinium
ring, inducing oxidative stress [17–19]. Thus, the main purpose of our study was the identification of
mtDNA variants that might be induced by intense oxidative stress, together with their possible related
molecular pathways most likely linked to retinal degeneration onset and/or progression. We tried
to reach this objective using an innovative pipeline, starting from RNA-Seq data and focusing on
mitochondrial transcripts.

2. Materials and Methods

2.1. Cell Culture Samples

Human Retinal Pigment Epithelial Cells (H-RPE, Clonetics™, Lonza, Walkersville, MD, USA)
were cultivated and then grown for 24 h until confluence, as previously described [20]. Successively,
a group of cells was treated with A2E 20 µM for 3 h and 6 h before rinsing with medium, while a control
group was incubated without the oxidant compound. Lastly, confluent cultures were transferred
to PBS-CMG and then subjected to blue light delivered by a tungsten halogen source (470 ± 20 nm;
0.4 mW/mm2) for 30 min, in order to induce phototoxicity of A2E, and incubated at 37 ◦C for 24 h.
Each sample of cells foresaw three biological replicates.

2.2. MTT Assay

The cell viability was evaluated by the mitochondrial-dependent reduction of methylthiazolyldiphenyl-
tetrazolium bromide (MTT) (Sigma-Aldrich, St. Louis, MO, USA) to formazan insoluble crystals, following an
already defined protocol [20]. Ultimately, a Dynatech microplate reader allowed us to estimate absorbance
at 570 nm, and the results were expressed as a percentage of viable cells compared with control conditions in
the absence of A2E. Multiple t-tests were performed for statistical comparisons (p < 0.05), considering three
independent experiments, each one characterized by three replicates.

2.3. Whole RNA Extraction and RNA-Seq Profiling

Total RNA was isolated, checked for degradation and contamination, and quantified as previously
reported [20]. The RNA-seq samples were classified in 3 factor groups, made of human RPE cells before
A2E treatment and at the different time points of 3 h and 6 h, respectively. Each group was biologically
replicated three times, for a total of 9 samples. Both 3 h and 6 h time points were chosen considering
experiments previously realized by our research group (unpublished data), confirmed by outcomes
derived from MTT assay in this work. Such results highlighted that in wider time intervals the death
rate of oxidative stressed cells might be so high as to invalidate the following data analysis. Libraries
were generated using 1 µg of total RNA by the TruSeq Stranded Total RNA Sample Prep Kit with
Ribo-Zero H/M/R (Illumina, San Diego, CA, USA), following manufacturer’s protocols. The concluding
step foresaw the sequencing of the libraries on an HiSeq 2500 Sequencer (Illumina, San Diego, CA,
USA), using the HiSeq SBS Kit v4 (Illumina, San Diego, CA, USA).

2.4. Mitogenome Assembly/Mapping

To perform an accurate and reliable analysis of mtDNA variants produced by transcriptome
experiments, obtaining a higher quality output, we propose an integrated approach that foresees
the complementary use of the most recent algorithms applied to mtDNA data, adapting them to a
mitochondrial transcript source of data. A schematic workflow of the entire pipeline is reported in
Figure 1.
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Figure 1. Proposed pipeline of mtDNA variant analysis. Figure shows applied workflow of mtDNA
variant analysis, highlighting the single macro-steps with specific tools and explored databases.

Generated raw sequences were filtered for low-quality reads (average per base Phred score < 30)
and adaptor sequences. The quality of the analyzed data was assessed by FastQC (v.0.11.9) [21]
and QualiMap (v.2.2.1) [22], while trimming was performed by Trimmomatic (v.0.39). Filtered data
was, then, assembled/aligned by CLC Genomics Workbench v.20.0.4 [23], Multi-Sample Statistical
Mitogenome Assembly with Repeats (SMART2) [24] and an adapted version of TRIMITOMICS
pipeline [25]. Previously, data analyses were realized using the Revised Cambridge Reference Sequence
(rCRS), available as sequence number NC_012920 (formerly AC_000021.2) in GenBank’s RefSeq
database. This specific rCRS, made of 16,569 bp, is the most commonly used standard comparison
sequence for human mtDNA research (Figure 2). It is a single reference individual from haplogroup
H2a2 and has been used as a standard for reporting variants for over 30 years.
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Figure 2. Revised Cambridge Reference Sequence (rCRS) reference mtDNA sequence. Figure shows
main genomic features of Revised Cambridge Reference Sequence (rCRS), available as sequence number
NC_012920 in the GenBank RefSeq database.

Mapping analysis with the CLC platform was conducted using the following settings: quality trim
limit = 0.01, ambiguity trim maximum value = 2. The map to annotated reference was as follows:
mismatch cost = 2, insertion and deletion costs = 3, minimum length fraction and minimum similarity
fraction = 0.8, maximum number of hits for a read = 10, strand-specific = both.

SMART2, the most recent pipeline able to assemble de novo and annotate complete a circular
mitochondrial genome sequence from NGS sequencing data, was set as follows: automatic selection of
number of read pairs per bootstrap, with doubling strategy starting with 100 k; number of bootstrap
samples = 1; minimum seed kmer coverage = 20; coverage-based filtering method = intersection;
kmer size = 31; number of threads = 16; genetic code = 02-vertebrate.

The most powerful pipeline we used was TRIMITOMICS, particularly interesting for the assembly
of mitochondrial gene cassettes and whole coding sequences from RNA-Seq reads. It is based
on free algorithms used stepwise, depending on the success of mitogenome assembly in the
preceding step. The first step foresaw the use of NOVOPlasty v.3.8.2 organelle assembler, set as
follows: Genome Range = 1–16,569; k-mer = 31; max memory = 16; extend seed directly = no;
variance detection = no. If a complete or partial mtDNA was not obtained, the RNA-Seq reads were
firstly mapped to their respective reference genome with Bowtie2 v.2.4.1 algorithm, using standard
settings, and then assembled with Trinity v.2.10.0, following a genome guided approach with default
presets, with the exception of the parameter “max intron length = 10,000”. If none of the previously
cited methods successfully produced mitogenome, the complete transcriptome would have been
assembled by Velvet v.1.2.10, considering a range of kmer sizes (31, 51, 71). Mitochondrial contigs were
then extracted from de novo generated transcriptome assemblies by BlastN, using the reference mtDNA.
If the complete genome was not retrieved by any of the described approaches, the obtained partial
results were joined or put together as a meta-assembly with MAFFT v.7.464 to improve the output.

2.5. Variant Detection by mtDNA-Server

Once obtained, assembled mtDNAs were firstly validated and then analyzed for variant calling
by mtDNA-Server, a highly scalable Hadoop-based server for mtDNA NGS data processing [26].
HadoopBAM split input into several chunks and, for each one, only reads with Phred score > 20 and
length > 25 were maintained, while reads marked as duplicates were filtered out. Afterwards, all passed
bases for each site were counted per strand (A, C, G, T, N – unknown - and d – deletion-). Heteroplasmy
detection was performed following different approaches: initially, sites presenting coverage < 10
bases per strand and mitochondrial hotspots around 309, 315 and 3107 were filtered out, according to
reference sequence. For survived sites with an allele coverage of 3 bp per strand and a variant allele
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frequency (VAF) ≥ 1% (strand independent), a machine learning model was applied, considering
sequencing errors per base in each strand. Then, all sites showing a log likelihood ratio (LLR) ≥ 5 were
marked as heteroplasmic sites. Moreover, the Wilson and the Agresti-Coull confidence intervals were
calculated for heteroplasmic variants, and the assigned heteroplasmy level was a weighted mean of
heteroplasmy of both strands. An important feature of the mtDNA-Server regards the intra-sample
contamination check, based on current phylogeny to avoid erroneous interpretations and conclusions.
In the case of contaminations caused by different mtDNA sequences, the two VAF-based profiles
generated by the mtDNA-Server (VAF < 50% for the minor, VAF > 50% for the major) led to different
valid haplogroups.

2.6. Variant Annotation and Prioritization

This critical step was performed following several practical rules: (1) particular attention to low
heteroplasmy levels, (2) evaluation of variant frequency both in the general population and in particular
haplogroups, (3) analysis of additional data supporting the modulation of clinical penetrance, such as
mitochondrial haplogroup, 4) consideration of inter-species nucleotide and/or amino acid conservation.

The most complete tool we used to realize these purposes was the MSeqDR mtDNA Variant
Tool set (mvTool), built upon the MSeqDR infrastructure [27]. It supports all mtDNA nomenclatures,
converts variants to standard rCRS- and HGVS-based nomenclatures, and annotates novel mtDNA
variants [28]. For already annotated mitogenome variants, mvTool extracted and provided updated
population data and pathogenetic classifications from MSeqDR Consortium members [29], the Human
Mitochondrial Database (HmtDB) [30], dbNSFP [31], ClinVar [32], Mitomap [33], the 1000 Genomes
Project data and GeneDx [34], with resources coming from around 50,000 germline mtDNAs. For
variants that had not been annotated before, mvTool conducted new predictions by calling Ensembl
Variant Effect Predictor (VEP) [35] and stored its genomic annotations in an internal database that
mvTool searched first. Additionally, for input including all mitogenome variants of a given sample,
exact mtDNA haplogroup assignment was obtained by PhyMer sub-tool.

Furthermore, we applied a de novo annotation pipeline to evaluate and improve existing
annotations, trying to reduce inconsistencies and errors, such as missing gene annotations, missing or
incorrect information of the reading direction (strand), mistaken identity of tRNAs, erroneous gene
designations and inconsistencies in gene names. To reach this purpose, the MITOchondrial genome
annotation Server 2 (MITOS2) was used [36]. It exploits a novel strategy based on aggregating BLAST
searches with previously annotated protein sequences to detect protein coding genes, tRNAs and
rRNA. Each structured RNA is then annotated using specific covariance models.

Nevertheless, to simplify variant frequency interpretation of a general population, frequently
challenging due to mtDNA genetics feature (heteroplasmy level, incomplete penetrance, influence of
mitochondrial haplogroup background), we enriched our analytic pipeline with tools and databases
focusing on haplogroup classification. The already cited Mitomap advised whether a variant was
identified at >1% in at least one of the macro-lineages or over 10% in the major haplogroups for tRNA
variants. Results from this step of prioritization were then corroborated by data coming from MToolBox,
which applied a computational strategy to realign already assembled mitochondrial genomes to detect
InDels and to assess the heteroplasmic fraction (HF) of each variant allele with the related confidence
interval (CI), before haplogroup assignment and variant prioritization [37]. This latter step was realized
by aligning each sample-specific reconstructed contig against the related macro-haplogroup-specific
consensus sequence. This process could detect private variants through a prioritization process,
justifying further clinical investigation. Prioritization also considered the pathogenicity of each
mutated allele, computed with different algorithms, and the nucleotide variability of each variant site,
while the amino acid variability was considered only if the variant site was codogenic.

Finally, to complete the variant data, we retrieved records from the MitoBreak database, focusing on
mtDNA rearrangements following breakpoints from linear mtDNAs, circular deleted mtDNAs
(deletions) and circular partially duplicated mtDNAs (duplications) [38].
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2.7. In Silico Predictions and Variant Consequences

Currently, massive mtDNA screening by NGS is showing a relevant number of novel variants
of unknown significance (VUS), whose clinical interpretation is more complicated than nuclear VUS,
due to the already cited challenging mitogenome characteristics and due to limited guidelines for
mtDNA compared to those provided for nuclear VUS.

Thus, to obtain reliable results, we performed a combined approach made of complementary
in-silico prediction tools. These tools evaluated the variant functional impact by algorithms based on
interspecies sequence conservation and/or structure analysis.

The most complete and continuously updated tool we used in this step was MitImpact 3D
v.3.0.2, a collection of pre-computed pathogenicity prediction scores for all possible nucleotide changes
that determine non-synonymous substitution, in human mitochondrial protein coding genes [39].
We evaluated the following MitImpact 3D missense pathogenicity predictors and machine learning
based approach meta-predictors: SIFT (v.5.0.3) [40], PolyPhen2 (v.2.2.2) [41], MutationAssessor
(v.2.0) [42], PANTHER [43], FatHmm (v.2.2, “weighted” and “unweighted” setting) [44], PROVEAN
(v.1.3) [45], CADD (v.1.2) [46], EFIN [47], SNAP [48], PhD-SNP [49], MutationTaster v.2 [50],
COVEC (v.0.4) [51], SNPdryad [52], DEOGEN2 [53], Mitoclass.1 [54], CAROL [55], Meta-SNP [56],
Condel [57], APOGEE (v.1.0) [58], ClinVar, dbSNP (v.151) [59], PhyloP and PhastCons evolutionary
conservation indices (UCSC Gene Tables, group: Comparative Genomics; track: Conservation; tables:
phyloP100wayAll and PhastCons100way) [60], SiteVar human mtDNA site-specific variability [61],
MISTIC Mutual Information scores [62], COSMIC somatic variants (ver. 87) [63], TransFIC [64],
CHASM [65]. Additionally, the tool permitted the evaluation of compensated pathogenic deviations
(CPDs), amino acid substitutions described as pathogenic in human populations but that seem
wild-type residues in non-human ortholog proteins, as well as intra-protein sites that significantly
co-variate each other with two different algorithms, EV Mutation [66] and I-COMS [67].

The wide range of data output from MitImpact 3D was then enriched by HmtVAR [68], which hosts
variability and pathogenicity data on human mtDNA variants, integrated with records retrieved from
several online databases and in-house pathogenicity assessments, on the basis of various evaluation
criteria. HmtVAR also presents manually curated tRNA variant attributes, but the most relevant
resources dedicated to mitochondrial tRNAs that we explored were MITOTIP and PON-mt-tRNA.

MITOTIP mixed secondary structure information, structural analogies with other tRNA variants
and conservation scores, providing the best prediction performances regarding specificity and
sensitivity [69].

PON-mt-RNA, instead, is a posterior probability-based algorithm which computed a multifactorial
score associating various features, such as sequence context and evidence of segregation, RNA secondary
structure and tertiary interaction, functional assays, and evolutionary conservation [70].

2.8. Sub-Pathway Analysis

To emphasize the mitochondrial sub-pathways whose oxidative stress-induced alteration could
be involved in retinal degenerations, the GO term enrichment analysis for mutated mtDNA genes
was performed using the ClueGO (v. 2.5.7) (INSERM, Paris, France) [71] and CluePedia (v. 1.5.7)
(INSERM, Paris, France) [72] plugins in Cytoscape (ver. 3.8.0) (National Institute of General Medical
Sciences, Bethesda, MD, USA) [73]. ClueGO options have been set as follow: CLINVAR, GO (Biological
Process, Cellular Component, Molecular Function and Immune System Process), INTERPRO, KEGG,
REACTOME (Pathways and Reactions), WIKIPATHWAYS and CORUM 3.0 as selected ontologies; GO
Tree Interval Min Level = 2 and Max Level = 9; GO Term/Pathway Selection Min # Genes = 2 and %
Genes = 3.000; GO Term/Pathway Network Connectivity (Kappa Score) = 0.4; Statistics Options set on
Enrichment/Depletion (Two-Sided hypergeometric test), with pV correction = Bonferroni step-down.
CluePedia was used following default settings. Finally, only GO terms with p < 0.01 were selected.
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3. Results

3.1. A2E Treatment Determined a Substantial Negative Effect on RPE Cells Survival

The MTT assay highlighted a significant impact of A2E treatment on RPE cells viability in a
time-dependent manner. In contrast to the control group, the viability of treated RPE cells was
significantly decreased (p < 0.05), especially after 6 h from treatment (Figure 3).

Figure 3. Cell viability from methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay.
Retinal pigment epithelium (RPE) cell survival percentage is expressed as mean of replicates ± standard
error of mean, considering three replicates for each independent experiment (n = 3). Multiple t-tests were
performed for statistical comparisons (p < 0.05). Results were assessed at both treatment considered
time points (3 h and 6 h) compared to time zero untreated group.

3.2. Alignment and Assembly of mtDNAs

Once the quality of RNA (average RIN = 7.0) was assessed, the following sequencing globally
generated about 100 million quality reads (mean mapping quality = 28), with a relevant number
uniquely mapped to mtDNA, ranging from nearly two hundred reads generated from the 3 h treated
sample (3h_RPE) to about 450,000 reads produced by Illumina paired-end experiment on untreated
RPE cell transcriptome. Even if CLC Genomics Workbench and SMART2 were able to map mtDNA in
all samples, the best efficiency was achieved by Trimitomics adapted workflow. It benefited from its
ability to specifically work on RNA-Seq data and from the greater depth of initial raw data (not shown),
highlighting elevated requirements requested by Bowtie2, NOVOPlasty, Trinity and Velvet algorithms.
As is already known, gene expression profiling experiments that are looking for a quick snapshot
of highly expressed genes may need 5–25 million reads per sample but, in order to achieve more
detailed information such as alternative splicing, typically require 30–60 million reads per sample.
Thus, such ranges reached by all samples ensured the good quality of the output. A detailed report
of the alignment and assembly statistics is available in Table 1. Once produced, all partial or fully
assembled mitogenomes were merged to obtain only one meta-mitogenome for each sample, needed for
subsequent steps.

3.3. Mitogenome Annotations

The annotation of protein coding genes reached the best results in the untreated sample, in two
genes with high quality score (~102 for LAGLI and ~106 for COX1) and the origin of heavy strand
synthesis (OH) was detected. Curiously, in both time-related treated samples, the only protein
coding gene identified with high quality was NAD1. The complete protein plots are shown in
Figure 4. Furthermore, both treated samples were the most reliable in rRNA computation (e-values ~
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10−14–10−12.5), while the untreated one showed the highest number of annotated tRNAs, as well as the
widest positions covered among mitogenomes. Interestingly, data annotation highlighted the longest
tRNAs in both untreated and 3h_treated samples, even if with a good but not optimal significance
(e-values ~ 10−7). Details on rRNA and tRNA annotations are shown in the non-coding plots of Figure 5.
Intriguingly, we were also able to compute the secondary structure of several rRNAs and tRNAs for
each sample, the most significant of which are represented in Figure 6. It is clear, especially for rRNAs,
how changes in several nucleotides led to different RNA folding.

Table 1. Alignment and assembly statistics of RNA-Seq analyzed samples. Table shows main
features related to mitochondrial transcripts shared in overall RNA, as well as mapping and assembly
steps performed on RNA-Seq samples by CLC Genomics Workbench, SMART2 and TRIMITOMICS
algorithms. Values are reported as the mean of the three algorithms and of all three biological replicates
for each sample.

Statistics Feature 0h_RPE 3h_RPE 6h_RPE

Overall Passed Reads 52,752,353 26,262,324 19,520,749
Passed FWD Reads 51,913,969 16,056,486 19,301,263
Passed REV Reads 838,384 205,838 219,486

Mapping Quality OK 440,014 132,054 162,126
Mapping Quality BAD 29,372 10,603 15,517

Unmapped Reads 0 0 0
Base Read Quality OK 52,752,353 16,262,324 19,520,749

Base Read Quality BAD 15,127,187 3,805,671 4,905,387
Bad Alignment 0 0 0

Duplicates 0 0 0
Short Reads (<25 bp) 0 0 0

Mitochondrial Transcripts 29,123 27,095 25,471

Figure 4. Protein coding gene plots. Figure shows annotated protein coding genes after congruences
detection from BLASTX. The protein plot highlights the quality value (on a log scale) for each gene and
each position if it is above the threshold. Different genes are evidenced by distinctive colors, with the
initial hits corresponding to the represented “mountains”. The lines shown on the top represent the
reported annotation. Annotation of protein coding genes reached the best results in untreated sample
(a) while, in both time-related treated samples, the only protein coding gene identified with high quality
was NAD1 (b,c).
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Figure 5. Non-coding RNA plots. The non-coding RNA plots show the hits from computation of
rRNAs and tRNAs, differentiating between the hits from the global and local (if present) search by line
type. The hits are prioritized: “1” refers to features set in the first round when tools take the prediction
hit of each feature, while “2” refers to all other features set afterwards in the remaining unassigned
regions. Reverse log scale for the e-value was considered. The untreated sample (a) showed the highest
number of annotated tRNAs, as well as the widest positions covered among mitogenomes, while both
treated samples (b,c) were the most reliable in rRNA.
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Figure 6. Non-coding RNA secondary structure computed by MITOS2. Figures represent main
secondary structures of tRNAs ((a) and right element of (c)) and rRNAs ((b) and left element of (c))
output by MITOS2 analyses on all RPE cell transcriptomes.
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3.4. MtDNA Variant Calling and Annotations

The mtDNA-Server highlighted excellent results from previous alignment/assembly steps,
reaching the highest coverage around the 7500 nt position in the untreated sample (Figure 7).
Both time-dependent treated samples showed elevated level of heteroplasmic sites, with the highest
peaks reached by MT-CO1 and MT-CO3 loci in 3 h treated, and by MT-CYB locus in 6 h treated
(Figure 8).

Figure 7. MtDNA-Server coverage plots. Figure shows coverage for each RNA-Seq sample, evaluated in
all time-related conditions (a = 0 h, b = 3 h, c = 6 h). Coverage analysis permitted the detection of issues
with incorrect concentration of polymerase chain reaction products for the used fragments. The highest
coverage was reached around the 7500 nt position in untreated sample (a).
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Figure 8. Results of heteroplasmic analyses by mtDNA-Server. The tool mtDNA-Server found
heteroplasmic significant results in all samples, evaluated in all time-related conditions (a = 0 h, b = 3 h,
c = 6 h), reaching the highest scores in 6 h treated sample. The highest peaks were reached by MT-CO1
and MT-CO3 loci in 3 h treated (b), and by MT-CYB locus in 6 h treatment (c).

RNA-seq analyses evidenced the highest number of heteroplasmic mtDNA variants in both
treated samples (n3h = 320, n6h = 195), with the highest peak of unique annotated variants at 6 h
(n = 45). Transitions were the most detected variants (only one T>G transversion was found), with an
overrepresentation of A>G (n = 48) and C>T (n = 21) (Table S1). This result is in line with what is
already known in literature [74]. VEP reached the highest number of annotated variants (n0h = 23,
n3h = 24 and n6h = 29), while MSeqDR, the most experimental data-rich database, identified just
one more variant in the treated than the untreated group (n0h = 20, n3h = 21 and n6h = 21), with 17
and 18 of them, respectively, in 3 h and 6 h treatment, also reported in the dbSNP database. These
variants were prevalently in protein coding genes (n~20) with, respectively, 5 and 12 missense in 3 h
and 6 h treated samples. Interestingly, the 6 h treatment resulted as the only showing a relevant variant
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in a rRNA coding gene. Regarding functional predicted consequences, four variants highlighted a
possible pathogenic effect (m.11467 A>G; m.12372 G>A; m.14766 C>T; m.15326 A>G), while eight
variants in untreated (m.73 A>G; m.150 C>T; m.263 A>G; m.456 C>T; m.2857 T>C; m.5656 A>G;
m.16270 C>T; m.16304 T>G), in 3 h treated (m.73 A>G; m.150 C>T; m.263 A>G; m.750 A>G; m.951 G>A;
m.5656 A>G; m.16270 C>T; m.16354 C>T) samples, and 13 (m.73 A>G; m.150 C>T; m.263 A>G;
m.497 C>T; m.1438 A>G; m.3197 T>C; m.5656 A>G; m.12196 C>T; m.12308 A>G; m.16224 T>C;
m.16270 C>T; m.16311 T>C; m.16519 T>C) and in the 6 h treatment one might exert a modifier role.
Variant annotation summaries for all RNA-Seq samples are available in Table 2, while advanced details
are available in Table S1.

Table 2. RNA-Seq sample variant annotation summary. Table reports a summary of detected variants,
together with key mitogenome variant annotations from examined databases by mvTool, MitoBreak
and MitoMaster.

0h_RPE 3h_RPE 6h_RPE

Heteroplasmic Variants (Global) 26 320 195

Unique annotated variants (Global) 34 29 45

m
vT

oo
l

MSeqDR Community
Data Population

N◦ Variants 20 21 21

Mitomap Disease 4 4 4

Mitomap Status 3 Reported,
1 Conflicting

3 Reported,
1 Conflicting

3 Reported,
1 Conflicting

HmtDB Pathogenicity 8 Pending,
4 Benign

8 Pending,
4 Benign

9 Pending,
4 Benign

Disease and
Phenotypes

dbSNP 17 17 18

MSeqDR Clinical
Significance

4 Likely
Pathogenic,

2 Not Provided

4 Likely
Pathogenic,

2 Not Provided

4 Likely
Pathogenic,

2 Not Provided

HmtDB Disease 4 4 4

COSMIC 1 1 1

ICGC 2 2 2

VEP

Impact
11 Low, 4
Moderate,
8 Modifier

11 Low, 5
Moderate,
8 Modifier

11 Low, 4
Moderate,

13 Modifier

Biotype 23 Protein
Coding

24 Protein
Coding

28 Protein
Coding,

1 mt_rRNA

Consequence Terms

16
Synonymous,

3 Missense,
4 Upstream

14
Synonymous,

5 Missense,
4 Upstream

11
Synonymous,
12 Missense,
4 Upstream,

1 Non-coding
Transcript Exon

CADD Raw Raknscore 1 1 1

HmtDB Patho Table
N◦ Variants 3 3 3

Pathogenicity 1 1 1

MitoBreak

N◦ Deletions 0 1 0

Healthy Tissue 0 Aged Tissues 0

Del of replication
origins 0 None 0

Location of the deleted
regions 0 Inside the

major arc 0

MitoMaster

N◦ Variants 20 Transitions 20 Transitions,
1 Transversion 21 Transitions

Mut Type 15 Coding,
5 Non-coding

17 Coding,
4 Non-coding

16 Coding,
5 Non-coding

Patient Report 4 4 4
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3.5. In Silico Functional Consequences and Pathogenicity Predictions

The next step of the performed pipeline foresaw the use of in-silico predictions, to clarify the
possible consequences of identified variants, especially ones which lack certain effects such as VUS.

Even if about 50 unique variants were detected by mvTool and MITIMPACT 3D throughout all
samples, only about half of them were evaluated as damaging in investigated databases. In particular,
the highest number of deleterious variants were identified by PROVEAN (18), Meta-SNP (20), PhD-SNP
and SNAP (21), CADD and MToolBox (25), and Condel (28). Interestingly, 19 variants were computed
by EVmutation, quantifying simultaneously the effects of multiple mutations by explicitly modeling
interactions between all the pairs of residues in proteins (and bases in RNAs). The impact of the latter
analysis was further corroborated by the total absence of CPD, which increased the probability that
hypothesized effects of detected variants were truly positive. Curiously, HmtVAR classified most of
the identified variants as coding sequence (29) and regulatory (11), providing important evidence
on the different kinds of impact probably determined by these variants. Furthermore, pathogenic or
likely pathogenic variants were detected in both treated samples, and two tRNA variants found in 6 h
treated samples were also found in the Pon-mt-tRNA database. The scenario could also represent an
important finding as the most of variants seem to be new mutations, as appeared from both dbSNP
and CLINVAR (Table 3).

Regarding haplogroup classification, RPE cell transcriptomes showed a putative assignment to
U5b1b1+@16192 haplogroup, as outputted by the mtDNA-Server.

3.6. Sub-Pathways Analysis of mtDNA Mutated Genes Suggested a Positive Regulation of ATP Metabolism

All the 25 clustered sub-pathways obtained from enrichment of mtDNA mutated genes,
derived from transcript analysis, thanks to Cytoscape and its plugins ClueGO and CluePedia
gave statistically significant results (Figure 9). Among them, seven pathways showed the highest
probability of association (Bonferroni step-down corrected p < 0.001), highlighting the most altered
functions of mitochondria of RPE stressed cells: “Positive regulation of hydrogen peroxide metabolic
process” (p = 1.45 × 10−3), “Regulation of hydrogen peroxide biosynthetic process” (p = 1.80 × 10−3),
“positive regulation of hydrogen peroxide biosynthetic process” (p = 1.03 × 10−3), “positive regulation
of necrotic cell death” (p = 1.80 × 10−3), “regulation of nucleotide biosynthetic process” (p = 1.55 × 10−3),
“positive regulation of cofactor metabolic process” (p = 1.80 × 10−3) and “positive regulation of ATP
metabolic process”, that represented the hub-pathway with the highest significance (p = 8.10 × 10−11).
Further details on significant pathways are available in Table S2.
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Table 3. In-silico functional prediction analyses report. Table shows principal results on pathogenicity prediction of identified variants through all samples. The main
macro-resources used are highlighted in red.

MitImpact 3D 0h_RPE 3h_RPE 6h_RPE MitImpact 3D 0h_RPE 3h_RPE 6h_RPE MitImpact 3D 0h_RPE 3h_RPE 6h_RPE

N◦ Variants 34 29 45 N◦ Variants 34 29 45 N◦ Variants 34 29 45

PolyPhen 2
Benign 9 7 8

FatHmm
Neutral 9 8 10

Mutation
Assessor

Neutral Impact 5 3 4

Probably damaging 5 5 8 Deleterious 5 4 6 Low impact 3 2 4

SIFT
Neutral 12 9 13

PROVEAN
Neutral 9 8 10 Medium impact 2 2 4

Deleterious 2 3 3 Deleterious 5 4 9 High impact 3 3 3

EFIN_SP
Neutral 12 10 13

CADD
Neutral 7 4 6

PhD-SNP
Neutral 7 4 10

Damaging 2 2 3 Deleterious 7 8 10 Disease 7 8 6

EFIN_HD
Neutral 11 9 12

PANTHER
Neutral 10 7 10

SNAP
Neutral 8 5 8

Damaging 3 3 4 Disease 4 3 6 Disease 6 7 8

Meta-SNP
Neutral 8 6 8

Condel
Neutral 4 4 6

MToolBox
Neutral 6 5 6

Disease 6 6 8 Deleterious 10 8 10 Deleterious 8 7 10

CAROL
Neutral 10 8 10

COVEC_WMV
Neutral 10 8 10

APOGEE
N 11 10 11

Deleterious 4 4 6 Deleterious 4 4 6 P 3 2 5

Mutation
Taster

Polymorphism 10 9 13
CLINVAR

Yes 2 2 2
Mitoclass1

Neutral 10 7 9

Disease Causing 2 3 2 No 12 10 14 Damaging 4 5 7

dbSNP
SNP 4 4 6

Mitomap
Yes 0 0 2

DDG_Intra
Yes 8 6 8

New Mutation 10 8 10 No 14 12 14 No 6 6 8

DDG_Inter
Yes 2 1 1

EV_Mutation
Yes 8 5 10

Pon-mt-tRNA
N◦ Variants 0 0 2

No 12 11 17 No 6 7 6 Neutral or Likely
Neutral / / 2

HmtVAR

N◦ Variants 13 19 14

HmtVAR

N◦

Variants 13 19 14

HmtVAR

N◦ Variants 13 19 14

CDS 7 14 8 rRNA 3 1 1 Polymorphic 2 2 0

Regulatory 3 4 4 tRNA 0 0 2 Likely
Polymorphic 1 0 1

Likely Pathogenic 1 0 2 Pathogenic 0 1 0 Unavailable 9 16 12
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Figure 9. Pathway analysis by Cytoscape and its plugins. The spherical graph represents the significant
pathways computed by Cytoscape, ClueGO and CluePedia. It is clear that regulation of adenosine
triphosphate (ATP) biosynthesis represents the most altered pathway following the oxidative treatment
with A2E.

4. Discussion

The advent of “omics” sciences and the development of specific bioinformatics algorithms gave
systematics to analyses involving mtDNA and its linkage to related diseases [75]. Among disorders
already known to be determined by mtDNA variants [76], the best characterized are oxidative stress
induced ones, such as Alzheimer’s, Parkinson’s and other neurodegenerative disorders [77].

One of the not totally explored field of neurodegenerative pathologies associated to mtDNA
impairments regards the inherited retinal dystrophies (IRDs) [78–80]. The only available data are related
to Leber Hereditary Optic Neuropathy (LHON) and to age-related degenerations, like AMD [81], even if
clear molecular mechanisms linking mtDNA alterations to these pathologies are already not clear.

In order to shed light on such molecular aspects, we evaluated the possible mutagenic effects of
blue light photoactivated A2E on RPE cells in a time-dependent experiment. We analyzed mitochondrial
transcripts and, with an innovative bioinformatic pipeline, we derived mtDNA information, permitting
a comparison of the possible mtDNA damage after 3 and 6 h from treatment versus untreated cells.

It is well known that blue-violet light (415–455 nm) within the solar spectrum exerts a toxic
effect to the retina, generating the highest amount of ROS and the highest level of mitochondrial
dysfunction [82]. Moreover, the exposure of cells to A2E determines an increased production of ROS
and NOS, determining a mitochondria-related oxidative stress [83].

Such effects were confirmed by our A2E treatment, showing a huge decrease in cell viability
within the time range of six hours. The most challenging aspect of this scenario is represented by
molecular mechanisms able to induce such mitochondrial impairments. We hypothesized that A2E
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might act as a mutagenic compound towards mtDNA, as supposed by the increased number of variants
that emerged after 3 h and 6 h from treatment compared to untreated RPE cells. This hypothesis is
supported by intrinsic characteristics of both interacting protagonists, mtDNA and A2E. The mtDNA
is greatly susceptible to damage, due to the absence of histones, localization within the matrix,
high rate of transcription with the lack of intron and DNA damage response (DDR), less efficient
than in the nucleus [84,85]. The A2E presents an aldehydic component within its chemical structure,
which can cross-link with different chemical moieties on DNA, forming adducts to deoxyguanosine,
deoxyadenosine and deoxycytidine, leading to many toxic consequences such as mutagenesis [85–87].

The mitochondrial assembly pipeline was able to compute entirely both cox1 and lagli encoding
genes only in untreated cells, while in both time-related treated RPE cells only the nad1 gene (absent in
untreated samples). A2E can act as proapoptotic molecule, specifically targeting cytochrome oxidase
(COX) and inhibiting oxygen consumption synergistically with light [88], probably explaining the lack
of full cox1 sequence, and the wealth of variants in computed portion, as observed after 3 h of treatment.
The lagli, instead, is a maturase domain of enzymes promoting RNA splicing and intron homing [89],
two fundamental cellular activities probably impaired during treatment, denoting the progress of
apoptotic process. The detection of the nad1 gene sequence in both 3 h and 6 h treated samples could
reflect the abundance of mutant forms of NAD+, following the oxidative stress condition of RPE
cells. Even if the de novo pathway of NAD+ biosynthesis seems to be unaffected in retinal aging and
various conditions of retinal degenerations, the salvage pathway was found to be significantly altered,
determining a significant decline in oxidative phosphorylation and an up-regulation of glycolytic
respiration [90,91]. The final effect of these impairments is the mitochondrial ATP production decrease
in the presence of A2E [92].

Differences in the assembly of mtDNA between untreated and treated RPE cells were also
evidenced in 16S (rrnL) and tRNA genes. Mitochondrially encoded 16S rRNA is required for the
biosynthesis of mitochondrial-derived peptide humanin, exerting cytoprotective and neuroprotective
activities [85]. Thus, its detection in both time-dependent treated samples could represent a final
attempt to avoid the advancing cell death, also represented by the almost total absence of tRNAs (in the
6 h treated sample only the L2 connector of tRNAs was computed).

As already cited, the effects of A2E on RPE are also time-dependent, and its accumulation
exacerbates the effects of mitochondrial dysfunction [93]. Cells do not die immediately but suffer
genotoxic damages with the formation and accumulation of mutagenic DNA lesions (double strand
breaks and FPG sensitive lesions) [94–96]. Failure in repair of damaged mtDNA may turn into mutation,
which can be maternally inherited. For example, if base excision repair (BER) fails in removing 8-oxoG,
a major oxidative modification of mtDNA, this one can be further oxidized to produce its more stable
and mutagenic forms, which may interfere with mtDNA replication [84].

As we demonstrated, it is very likely that the damage induced in mtDNA will be localized
in a coding sequence corresponding with either the polypeptide-encoding genes or the RNA,
thereby limiting the biosynthesis of fully functional proteins [8]. Generally, mtDNA mutations
determine a clinically observable phenotype only if the proportion of mutant mtDNA exceeds a high
threshold value, often 80–90%. Most of homoplasmic mtDNA mutations are neutral polymorphisms,
but several of them or combinations of them in mtDNA haplogroups could be associated with the
onset or progression of retinal diseases [8]. Nevertheless, most mtDNA mutation-related pathologies
are heteroplasmic, with heteroplasmic subjects with high percentage of mutant mtDNA manifesting
the increasing risk of vision loss [97].

Untreated samples showed the highest frequency of heteroplasmic variants in MT-TL1, encoding for
the tRNAleucine1, belonging to no protein complexes, but known to present the most frequent mutations
which cause many mitochondria-related diseases, except retinal ones [98]. After treatment, the damage
sites reached all oxidative phosphorylation system (OXPHOS) complexes. The complex IV of
cytochrome c oxidase evidenced the highest heteroplasmic variant frequency in MT-CO1 and MT-CO3
genes after 3 h from treatment. Subsequently, at the end of the experiment (6 h), all the other complexes
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presented the highest rate of heteroplasmic variants in several protein encoding genes. In detail,
they were the NADH dehydrogenase subunit 5 (MT-ND5) encoding gene belonging to the first complex,
the cytochrome b (MT-CYB) encoding gene involved in the third complex, and the ATP synthetase
subunit 6 (MT-ATP6) constituting a part of the fifth complex.

As evidenced by pathway analysis, mutated mtDNA genes play a pivotal role in the positive
regulation of ATP metabolic process, suggesting a huge impairment in the energetic balance of the cell.
It is very probable that mtDNA damage affects genes encoding the mitochondrial electron transport
chain at various levels, resulting in ROS overproduction, which leads to more damage to mtDNA.
Such injuries, as already cited, could be worsened by A2E or other radical species such as hydrogen
peroxide, whose biosynthesis resulted from pathway analysis, and whose role was already linked
to decreased redox function in RPE cells [84]. Thus, when antioxidants enzymes or DNA repair
systems fail, accumulated damage to mtDNA can result in mitochondrial dysfunctions, energy crisis,
cell degeneration and death, as observed in many retinal diseases [8].

5. Conclusions

The continuously updated next generation sequencing technologies allowed researchers to access
to the entire mtDNA sequencing data, which is constantly being increased. We used, for the first time,
an integrated approach starting from RNA rather from DNA, trying to maximize the innovation of
our work.

However, sequencing the whole cell transcriptome instead of mtDNA could determine several
limitations: (1) RNA-Seq would result in a much lower coverage with the same amount of sequencing
mtDNA data; (2) it is more difficult to cover the full-length mtDNA, including all regulatory regions;
(3) deletions and rearrangements could be lost from the transcriptomics data.

Furthermore, there are several critical restrictions that should be evaluated during mtDNA
damage analysis interpretation, such as DNA fragmentation, greater diversity in both the number
of mitochondria per cell as well as the number of mtDNA copies per mitochondria, mitochondrial
haplogroups, identification of helper or synergistic mutations and co-occurrences of variants.

Taking into account such critical issues, we highlighted how a high oxidant environment can
alter the physiological activities of mitochondria, acting on its own mtDNA. Thus, trying to clarify
how a frequently retinal produced compound such as A2E could exert mutagenic effects on RPE
mtDNA, we hypothesized new scenarios that might link unknown molecular aspects of the cell to the
onset/progress of eye-related neurodegenerative pathologies.

These powerful results, along with further pathway analyses to decrypt the biological role of
the involved genes, should be incorporated into clinical diagnostic settings, as they are hypothesized
to modulate the phenotypic expression of mtDNA pathogenic variants. In this way, an integrative
analysis of mitochondrial genome, together with the nuclear genome, could drastically improve the
field of precision molecular medicine, with the final goal being to improve patients’ healthcare.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/11/1158/s1,
Table S1: MtDNA Variant Calling and Annotations details; Table S2: Details of Sub-Pathways Analysis of mtDNA
Mutated Genes.
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