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Abstract

Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and

soil health in stressed environments. Research have included analysis-based cultivation of

soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was

to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under

stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the

plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria con-

sortia; (iii) develop an effective crop-microbial network, which improves soil and plant status.

The experimental design included non-inoculated treatments with peat and sand at ratios of

50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF)

and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment

with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ

increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant–1).

An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50

peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18–

34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total

leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase

activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat.

Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbi-

osis; the colonization rate was 78–89%. AMF + AZ accelerated K and Mg accumulation in

tomato leaves in treatments reflecting soil stress. To date, there has been no relevant infor-

mation regarding the successful AMF and Saccharothrix co-inoculation relationship. This

study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under

high organic C content conditions. The improved tomato growth and nutrient acquisition

demonstrated the potential of PGPM colonization under degraded soil conditions.
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Introduction

The predicted and persistent threat of soil degradation driven by climatic and anthropogenic

forces necessitates the development of strict directives for the protection of soils, as recently

promoted by the European Union [1]. Erosion, and the consequent decline in organic soil

matter, reduces overall soil biomass and biological activity. Ultimately, it profoundly affects

the diversity of microbes coexisting in the soil ecosystem [2,3]. Understanding the soil micro-

bial communities and their beneficial roles in agricultural land is crucial to maintaining plant

fitness and preventing soil degradation [4–8]. The rhizosphere is home to many interactions

that substantially affect soil, microorganisms, and plants. In agricultural practices, root-associ-

ated arbuscular mycorrhizal fungi AMF application is highly effective, ultimately resulting in

the improvement of crop growth, health, yield, and general fitness [9–11]. Nutrient availability,

especially phosphorus (P), is essential for multiple processes. P is delivered as phosphate to the

root through AMF specialized structures called arbuscules, formed within cortical cells [12].

Volatile compounds released by rhizosphere microorganisms are also reported to be signal

molecules stimulating lateral root development [13]. Fungi release carbolic acid, and low-

molecular-weight organic acids, that bind to metal ions in the soil solution, including Al, Ca,

Cu, Fe, Mg, Mn, and Zn ions, promoting mineral weathering and enabling their absorption by

hyphae and transport to plant roots [12]. Enhanced nutrient uptake, mainly that of N and P, is

rewarded with C compounds derived from host plant photosynthesis [14]. The second area of

AMF action is the increased tolerance of the host plant to biotic and abiotic stressors, more

effective nutrient and water absorption, higher photosynthetic activity, control of reactive oxy-

gen species by increased activity of antioxidant enzymes [15–17]. AMF covers some basic

(such as the alteration in root morphology, increased plant nutrition, and damage compensa-

tion) and secondary phenomena (competition between symbiotic and parasitic microorgan-

isms, changes in rhizosphere microbial populations, and the activation of plant defense

mechanisms) [18,19]. The phylum Actinobacteria represents a large group of non-mycorrhizal

plant growth promoting microorganisms (PGPM), among them Saccharothrix spp. are aero-

bic, gram-positive actinomycetes with branching vegetative mycelium, that fragments into

rod-shaped spores [20]. Merrouche et al. [21] have previously reported the intense activity of

Saccharothrix against fungi (e.g., Fusarium spp.) and moderate activity against bacteria. PGPM

and their positive impact on the plant have not been as broadly studied as AMF, although

some studies have reported their beneficial effects on crops [22]. PGPM can shape the relation-

ships in the rhizosphere microbiome through P solubilization, or induction of plant stress tol-

erance [23]. The significant beneficial effects of Azospirillum includes the capacity to fix

atmospheric N, synthesize phytohormones and plant regulators, and increase plant tolerance

to abiotic and biotic stresses [24]. Previous efforts to significantly change the indigenous

microflora of the soil by introducing single cultures of extrinsic microorganisms have not

always been successful. Thus, the probability of shifting the “microbiological equilibrium” of

the rhizosphere and controlling it to favor the growth, yield, and health of crops is much

greater if consortia of beneficial and effective microorganisms are introduced that are physio-

logically and ecologically compatible with one another [25–27]. When the consortia of AMF

and PGPM become established, their individual beneficial effects are often magnified in a syn-

ergistic manner [28–30], although the relationships are not always simple. Clearly, the direct

effects of PGPM on the trade-off among microbes and plants are still poorly understood

regarding soil and crop fitness.

According to Pedersen et al. [31], agriculturally fit crops are defined as the most useful to

humans in agricultural systems and the food industry. Tomato is a highly mycorrhizal species,

and PGPM can act as stimulants for the growth and development of tomato plants directly or
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indirectly via the availability of many essential nutrients and phytohormones, and the suppres-

sion/destruction of plant diseases, decreasing oxidative stress, and activation of pathogenesis-

related metabolites, as it had been reported for other crops [32–36]. Inui Kishi et al. [37] stated

that PGPM can be successfully applied to manage crop fitness in degradable areas, because

PGPM elicit so-called ‘induced systemic tolerance’ to salt, drought, and nutrient deficiency in

rhizosphere, so tomatoes will benefit from PGPM when cultivated under easily degradable

soil. The unresolved problem is that the PGPM-host relationships are highly dynamic and can

evolve from symbiosis to parasitism when net costs of the symbiosis exceed net benefits [38].

Moreover, the symbionts enhance their own fitness, not necessarily the fitness of their host

[32]. Thus, inoculation may result in a biotic stressor that triggers defense mechanisms in the

plants. The analysis of plant physiological status and biochemical stress biomarkers can explain

the nature of the reaction of the plant to inoculation under specific conditions of easily degrad-

able soil. An innovative approach uses bacteria and fungi isolates and their consortia to directly

link the effect to the microorganism species to understand the principles of the more complex

biotrophic interactions [39]. The goal of the study was to evaluate the symbiotic microorgan-

ism effects on plant development under stressful conditions of soil susceptible to degradation.

Specific goals include (i) evaluation of symbiotic microorganism effects on tomato seedling fit-

ness under stressful conditions simulating those of soil susceptible to degradation; (ii) compar-

ison of plant-microbial interaction after inoculation of microbial isolates and fungi-bacteria

consortia; and (iii) development of an effective crop-microbial network, for the improvement

of soil and plant status.

Materials and methods

Material and treatments

The experimental plant was the tomato Solanum lycopersicum L. cultivar Spencer F1 (Moravo-

seed Ltd., CZ). Tomato seedlings were cultivated in a growth chamber in pots filled with the

different types of autoclaved (120 ˚C for 60 min) substrates. Three mixtures of sowing peat

(Klasmann, DE) and sand (local source) were used, namely, peat:sand ratios of (v:v) (i) 100:0,

(ii) 70:30, and (iii) 50:50. The pH was maintained at 6.5 by the use of calcium carbonate in rele-

vant amounts. Selected substrate parameters are shown in Table 1. The substrates were inocu-

lated with beneficial microorganisms: (i) arbuscular mycorrhizal fungi mix (AMF), (ii) AMF

fungi and Azospirillum brasilense CCM 3862 (AMF + AZ), and (iii) Saccharothrix tamanrasse-
tensis SA 198 (AMF + S). AMF mix contained Claroideoglomus claroideum BEG 96, Claroideo-
glomus etunicatum BEG 92, Funneliformis geosporum BEG 199, Funneliformis mosseae BEG

95, and Rhizophagus irregularis BEG 140, and was applied as an AMF mixture containing 145

spores per g at a dose of 0.015 g cm3 of the substrate. The AMF + AZ treatment contained

AMF and A. brasilense (108 CFU in sterile 1XPBS). Seeds were soaked for 30 min. and were

used for tomato inoculation with A. brasilense. S. tamanrassetensis was grown in a yeast-malt

Table 1. Selected substrate parameters at the beginning of the experiment.

Peat: sand

treat-ment

pH Dry

matter

N-NO3 N-NH4 N total K P Mg Na Ca Cation exchange

capacity

Soil weight

per pot

Substrate bulk

density

CaCl % mg kg–1 mg kg–1 mg kg–1 mg kg–1 mg kg–1 mg kg–1 mg kg–1 mg kg–1 mM kg–1 g kg m–3

50/50 6.53 93.0 5.2 1.9 7.0 505 61 596 92 4435 284 386 755

70/30 6.64 90.2 6.7 2.3 8.9 684 81 785 113 4741 319 311 606

100/0 6.47 86.1 8.9 2.9 11.8 953 111 1070 144 5200 372 163 259

https://doi.org/10.1371/journal.pone.0259380.t001
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extract liquid medium (ISP2) from the International Streptomyces Project [40] at 28 ˚C with

agitation at 90 rpm for 10 d. Next, the culture was homogenized using sterile ceramic beads

and the suspension was adjusted to 0.5 OD600 (concentration measured at 600 nm) in sterile

physiological saline. The control treatment (C) was a substrate without inoculation with AMF

or bacteria.

Cultivation conditions. Seeds were sterilized for 10 min in 3% sodium hypochlorite and

washed with sterile distilled water. Sowing was conducted on April 2, 2020 directly into Teku

V9 containers (square shape 9 × 9 cm, height 8 cm, volume 512 cm3). Cultivation was per-

formed in phytochamber Fytoscope 4400 (PSI, CZ) with the temperature at the germination

stage of 23/20 ˚C (day/night). At 5 d, the cotyledons stage began and the temperature was

reduced to 20/18 ˚C, followed by 22/19 ˚C. Relative air humidity was maintained at 85% for

germination, followed 75% for the subsequent experimental period. Light intensity was set to

140 μmol m-2 s-1 for the germination stage, then increased to 200 μmol m-2 s-1 for the subse-

quent period of the trial, with 16 h of daylight. Irrigation with tap water was applied equally to

all pots at a measured volume. Urea was used for fertilization (May 5, liquid 0.2% solution, 20

cm3 per pot in irrigation doses), later the fertilizer YaraTera Kristalon 20 + 5 + 10 + 2 Azur

was applied May 13 and 27 as a 0.1% liquid solution at a dose of 20 cm3 per pot.

Substrate sampling and analyses. After the end of the experiment (June 3, 2020), samples

of the substrate were taken to conduct laboratory analyses. A sample of approximately 150 g

was taken from each replicate. The collected samples were air-dried, and basic parameters

were determined, including pH (H2O and KCl) using the potentiometric method, level of

salinity using the conductometric method, and the capacity of the sorption complex by Kap-

pen method. The content of total N and organic C was determined by elemental analysis using

the Vario Max Cube apparatus (Elementar Analysensysteme GmbH, Langenselbold, Ger-

many). Available forms of macroelements (Ca, Mg, Na, S, K, P) and microelements (Mn, Fe,

Zn, Cu) were determined in the substrate samples by means of acetic acid after prior extraction

according to the Nowosielski method [41]. The elements were determined by inductively cou-

pled plasma atomic emission spectrometry using a Perkin Elmer Optima 7600 (PerkinElmer,

US) spectrometer.

Plant material sampling. Tomato samples were collected on June 3, 2020, when all leaves

were cut with scissors. Roots were completely extracted from the substrate and washed with

distilled H2O. Samples were stored immediately after harvest in a -80 ˚C deep freezer until

analyses. For colonization analysis, root subsampling was conducted by selecting 10–20 mm

randomly selected roots per container. These were fixed in a formaldehyde:ethanol:acetic acid

10%:50%:5% v/v solution (FAA) and stored in the dark at 4 ˚C before staining for microscopy

[42].

Total aboveground fresh leaf weight and root fresh weight (FW) per plant was measured in

five replicates per treatment.

Staining and microscopy. After fixation in FAA, roots were rinsed in distilled H2O, then

cleared in 2% KOH solution (1 h at 50 ˚C), and washed in distilled H2O (4 × 3 min). Roots

were stained with a 0.03% (w/v) solution of Uvitex2B for 45 min at 90 ˚C, rinsed in distilled

H2O, and incubated in H2O for 12 h. When the roots were placed on slides, a few drops of

Hoechst/DAPI were added and covered with cover slip [43]. For staining with Alexa Fluor

(AF) conjugates of wheat germ agglutinin (WGA), concanavalin A (Con A), and acid fuchsine,

the tissues were fixed and cleared using the method described above. Roots were stained in a

tube with a mixture consisting of WGA AF 594 conjugate (InvitrogenTM, USA) (50 μg mL–1),

Con A AF 647 (InvitrogenTM, USA) (50 μg mL–1), and acid fuchsine (3%) at a ratio of 1:1:1,

for 4–5 h at room temperature, rinsed in PBS (4 × 3 min) and incubated for 12 h in PBS to

remove all excess stain. Before mounting on the slide, few drops of Hoechst stain were added
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to the slides with roots [44]. Mycorrhizal colonization quantification was conducted according

to the grid-intersect method [45].

Confocal microscopy was completed using the LSM 800 (Carl Zeiss, Germany) microscope

at 405/420–480 and 488/500–550 nm excitation/emission for Uvitex2B, 590/617 nm (excita-

tion/emission) for WGA AF 594, 650/668 nm for Con A AF 647, and 350/461 nm for Hoechst

stain. Lens used was 20x/0.8 NA. Processing of pictures was conducted in Zen Blue 3.0 (Carl

Zeiss, Germany).

Physiological parameters. Plants at the stage of 30–40 cm height and having at least eight

developed leaves were evaluated. Analysis of Normalized Difference Vegetation Index (NDVI)

was performed on tomatoes before leaf harvest on May 25 by PlantPen model NDVI 310 (PSI,

Ltd, CZ), a 50 mm2 detector measuring at 635 and 750 nm. Seven fully developed leaves (the

fourth from the plant apex) were analyzed per treatment. Chlorophyll absorbs visible light

from 0.4 to 0.7 μm for photosynthesis, and cell structures strongly reflect near-infrared light

from 0.7 to 1.1 μm. The differences in reflectance in the visible and near-infrared wavelengths

were used to calculate the NDVI index.

On the same date (May 25), Quantum Yield (QY) was analyzed by the FluorPen model FP

110 (PSI Ltd, CZ) using seven tomato leaves per treatment (the same leaves as used for NDVI,

but different leaf blade position). QY reflects photosystem II efficiency. In a 20 min dark-

adapted leaf, this is equivalent to Fv/Fm.

Analyses of stress biomarkers. The antioxidant activity was determined in plant samples

following DPPH radical (2,2-diphenyl-1-picrylhydrazyl) scavenging method [46]). The absor-

bance at λ = 517 nm of the mixture containing 0.1 cm3 supernatant and 4.9 cm3 0.1 mM

DPPH in 80% methanol was measured after 15 min of incubation in darkness at 20–22 ˚C

with the UV-VIS Helios Beta spectrophotometer (Thermo Fisher Scientific, Inc., US). The

antioxidant activity was calculated with the following formula: DPPH (%) = ((A0 − A1)/A0) ×
100; where A0 is the absorbance of the reference solution and A1 is the absorbance of the test

solution [47].

The total phenolics was estimated using the modified Folin-Ciocalteu colorimetric method

[48]. A 2.5 g sample of leaves was mixed with 10 cm3 of 80% methanol and centrifuged (3 492

× g, 15 min, 4 ˚C). The glass tubes were filled with 0.1 cm3 of the supernatant and 2 cm3 of

sodium carbonate, left for 5 min, and then 0.1 cm3 of Folin-Ciocalteu’s reagent, mixed with

deionized water (1:1 v/v) was added. After 45 min, phenols were determined by the colorimet-

ric method at 750 nm using UV-VIS spectrophotometer against a reference solution. The total

phenol value was expressed as gallic acid equivalents (mg GAE) per g FW.

To determine glutathione peroxidase (GPOX) activity, 2.5 g of leaves was grounded in an

ice bath with 20 cm3 of a 0.05 M potassium phosphate buffer and centrifuged (3 492 × g, 15

min, 4 ˚C). Then GPOX was assayed, according to Lück [49], with p-phenylenediamine as an

electron donor and hydrogen peroxide as an oxidant. The reaction mixture contained the

diluted supernatant, 0.05 M potassium phosphate buffer, p-phenylenediamine, and hydrogen

peroxide. The absorbance at 485 nm was recorded at 60 s intervals for 2 min using a UV-VIS

spectrophotometer. The GPOX activity was expressed in units (U) per g FW per min.

Element concentration in plant tissues. To determine the micro- and macroelement

concentrations in the dry tomato samples, roots and leaves were mineralized in a mixture of

HNO3 solution and H2O2 at 1:3 (v:v). The weight of an analytical sample was max. 0.5 g dry

weight (DW). Samples were acidified by adding 2 cm3 HNO3 per 100 cm3 distilled water. The

samples were concentrated 5-fold, and then the concentrations of elements (Ca, Mg, Na, S, K,

P, Mn, Fe, Zn, and Cu) in the prepared solutions were determined by atomic emission spec-

troscopy (ICP) with an Optima 7600 spectrophotometer (Perkin Elmer, US), using the method

described by Pasławski and Migaszewski [50].
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Statistical analysis. The experiment was designed in a randomized complete block with

seven replicates and two factors, representing different substrate compositions and different

inocula used and the non-inoculated control. The substrate and plant samples for stress bio-

markers and element concentrations were taken separately from every treatment and deter-

mined using three technical replicates. The samples for physiological parameters were

measured using seven biological replications. The data were tested for normality of distribu-

tion according to the Shapiro and Wilk method [51] and homogeneity of variances using the

Levene test [52]. A one- or two-way ANOVA was applied to test significance levels at P� 0.05

(�), P� 0.01 (��), or P� 0.001 (���) and non-significance (ns). Tukey’s HSD (honest signifi-

cant difference) test was used to separate means into homogenous groups. In the case of the

one-way ANOVA, the experimental treatments were the source of variation. In the case of

two-way ANOVA—plant parts (leaves and roots) were additional source of variation. The

results were also examined using Pearson’s correlation coefficient (r) between analyzed param-

eters. The principal component analysis (PCA), cluster (CA) analysis and heat maps were

performed to precisely demonstrate and analyze the data and relationships among them. Cor-

relations and PCA were used as supplementary statistical methods that enabled and expanded

the analysis of the presented data and made additional relationships visible between experi-

mental treatments and parameters. The results using raw data were presented for PCA analysis

because no substantial differences appeared between raw and standardized data. All analyses

were performed with the software Statistica 13.0 (Dell, Inc., USA).

Results

Substrate properties at the end of the experiment

The differences in the values characterizing the sorption complex in the substrate resulted

from the share of the organic fraction in the substrates used in the experiment. The organic

carbon content in the treatments C 100, AMF + AZ 100, and AMF + S 100 was approximately

50%, whereas, in the substrates of the remaining, this value ranged from approximately 3 to

7% of the DW of the substrate (Table 2). A statistically significant negative correlation

Table 2. Effects of soil microorganisms on substrate physical and chemical characteristics after tomato transplants cultivation.

Treatment Sum in the sorption complex

(mM Na+ kg–1)

S + H (mM

kg–1)

Cation exchange capacity with alkaline

cations (%)

Organic carbon

(%)

Total nitrogen

(%)

EC

(mS)

pH

alkaline cations

(S)

acid cations

(H)

H2O HCl

C 50� 320 44 364 87.9 2.94 0.312 0.32 7.48 7.01

C 70 512 56 568 90.1 6.82 0.649 1.45 7.08 6.70

C 100 1352 172 1524 88.7 51.77 4.869 1.36 6.27 5.92

AMF + AZ

50

396 52 448 88.4 2.91 0.303 0.99 7.06 6.86

AMF + AZ

70

516 48 564 91.5 5.90 0.612 1.37 7.05 6.76

AMF + AZ

100

1296 144 1440 90.0 49.18 4.682 1.48 6.55 6.17

AMF + S 100 1272 148 1420 89.6 50.72 4.882 2.06 6.50 6.15

�C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation;

AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat: sand ratio 70:30

(v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.t002
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occurred between the capacity of the sorption complex and the pH of the substrate (r = -0.985,

P� 0.01) and between the capacity of the sorption complex and the content of organic carbon

(r = -0.969, P� 0.01). A statistically significant positive correlation coefficient was found

between the capacity of the sorption complex and salinity (r = 0.675, P� 0.05). In the case of

the relationship between pH and salinity, the value of the correlation coefficient was r = -0.686,

P� 0.05. The research results indicated different amounts of trace element forms available for

plants in the substrates or treatment.

The greatest differentiation in the content of available forms of elements for plants was

found for sodium (Na), phosphorus (P), and sulfur (S). The relative standard deviation for

these elements was approximately 90%. The smallest variation occurred for calcium (Ca) and

iron (Fe), where the variability in individual treatments was approximately 20%. The content

of Ca and potassium (K) forms available to plants was similar, regardless of treatment. Potas-

sium content in substrates after plant cultivation was in a range of 21 to 147 mg kg-1 DW. In

contrast, substrates composed of peat, with the addition of beneficial microorganisms (AMF +

AZ 100 and AMF + S 100) contained the highest level of K after cultivation, and those com-

posed of peat:sand in the ratio of 50:50 (v:v) contained the lowest (C 50, AMF + AZ 50)

(Table 3). Calcium content in the substrate after tomato cultivation was the lowest in the con-

trol treatment composed of peat:sand at the ratio of 70:30 (v:v) (C 70), whereas it was signifi-

cantly higher in the C 50 treatment and all treatments composed of peat (C 100, AMF + AZ

100, and AMF + S 100). In general, treatments composed of peat:sand in the ratio of 50:50 (v:

v) and 70:30 (v:v), despite microorganism application, contained the lowest amounts of soluble

S, K, P, magnesium (Mg), zinc (Zn), and copper (Cu) after tomato cultivation, which was

opposite to that of substrates composed of peat (C 100, AMF + AZ 100, and AMF + S 100)

(Table 3). The highest Cu contents were found in the C 100, AMF 100, and AMF + S 100 treat-

ments. The content of this element in the substrates of these treatments was approximately

6-times higher than in the C 50 and AMF + AZ 50 treatments. A similar relationship was

Table 3. Effects of soil microorganisms on soluble minerals (mg kg-1 DW) in substrate after tomato transplants cultivation.

Treatment Ca Mg Na S K

C 50� 2619 ± 114 bc 273 ± 11 a 230 ± 14 a 205 ± 15 a 21 ± 0.8 a

C 70 1979 ± 51 a 299 ± 12 a 271 ± 15 a 232 ± 55 a 33 ± 7.1 a

C 100 3105 ± 170 d 972 ± 62 c 1614 ± 179 c 1687 ± 168 c 86 ± 5.4 bc

AMF + AZ 50 2362 ± 70 a-c 255 ± 21 a 206 ± 16 a 209 ± 53 a 33 ± 4.1 a

AMF + AZ 70 2272 ± 127 ab 384 ± 28 a 317 ± 26 a 318 ± 22 a 52 ± 4.0 ab

AMF + AZ 100 2768 ± 298 c 865 ± 145 bc 1159 ± 329 b 1684 ± 40 c 147 ± 35.0 d

AMF + S 100 2526 ± 92 bc 740 ± 35 b 852 ± 113 b 1143 ± 116 b 104 ± 10.3 c

P Mn Fe Zn Cu

C 50 9.35 ± 0.4 a 11.5 ± 0.18 d 2.57 ± 0.17 b 0.56 ± 0.01 a 0.054 ± 0.01 a

C 70 15.63 ± 3.7 a 8.42 ± 0.02 c 2.48 ± 0.19 b 0.51 ± 0.00 a 0.087 ± 0.00 a

C 100 86.30 ± 12.8 c 5.58 ± 0.23 b 1.66 ± 0.02 a 1.14 ± 0.06 b 0.320 ± 0.03 c

AMF + AZ 50 11.42 ± 1.45 a 8.51 ± 0.04 c 1.74 ± 0.18 a 0.57 ± 0.09 a 0.046 ± 0.00 a

AMF + AZ 70 16.93 ± 0.4 a 8.94 ± 0.19 c 2.30 ± 0.03 b 0.58 ± 0.05 a 0.100 ± 0.01 a

AMF + AZ 100 70.19 ± 8.2 c 5.03 ± 0.55 b 2.27 ± 0.26 b 0.95 ± 0.15 b 0.291 ± 0.05 bc

AMF + S 100 46.69 ± 3.9 b 4.31 ± 0.04 a 1.74 ± 0.06 a 0.90 ± 0.14 b 0.247 ± 0.02 b

�C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation;

AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio 70:30

(v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.t003
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found in the case of S and P. The substrate composed with peat:sand in the ratio of 50:50 (v:v)

contained the highest amount of soluble manganese (Mn), whereas that formulated with peat

enriched with beneficial microorganisms consortium (AMF + S 100) was characterized by the

lowest Mn content after tomato cultivation. In the case of most of the examined elements, a

statistically significant correlation occurred between the content of their assimilable forms in

the media. The most common was a negative correlation between the reaction and the content

of elements in the media and a positive correlation between organic C and the amount of

assimilable forms of elements. The exceptions were Fe and Mn, where the relationships were

opposite. The values of the correlation coefficients of most elements were approximately 0.9

(Table 4).

Plant fresh weight

Fresh weight of leaves (mean 11.66 g) and roots (mean 3.44 g) was evaluated after extraction of

samples from containers and exhibited significant treatment effects dependent upon the differ-

ences in the parameters (Fig 1). Although the lowest leaf and root FW values were recorded at

C 50 and C 70, respectively, the highest leaf FW occurred in all treatments with peat media

only (AMF + AZ 100, AMF + S 100, and C 100) showing the significantly positive impact of

peat on plant growth. Treatment AMF + AZ 100 exhibited a significantly high root FW,

together with AMF + S 100. The ratio of shoot/root weight was recorded in the range of 3.10

(C 70) to 3.95 (AMF + AZ 100) and leaf weight was correlated with root weight (r = 0.4781).

Table 4. The value of the correlation coefficients between the individual substrate parameters after the end of the experiment.

Ca Mg Na S K P Mn Fe Zn Cu

pH −0.656 −0.972�� −0.950�� −0.950�� −0.832�� −0.956�� 0.923�� 0.583 −0.953�� −0.980��

Corg 0.702� 0.972�� 0.922�� 0.964�� 0.893�� 0.933�� −0.915�� −0.530 0.952�� 0.979��

�� Correlation coefficient significant at P� 0.01.

https://doi.org/10.1371/journal.pone.0259380.t004

Fig 1. Effects of soil microorganisms application on fresh weight of tomato shoots and leaves. Means followed by

different letters are significantly different at p� 0.05, with comparisons performed by Fisher’s LSD test, separately for

roots and shoots. C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without

inoculation; C 100 ––peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 50 –peat:sand ratio 50:50 (v:v)

inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 ––peat:sand

ratio 70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and

AZ; AMF + S–– 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g001
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Root colonization

Results of confocal microscopy confirmed successful root colonization of mycorrhizal fungi in

all treatments inoculated by AMF. Data in Fig 2A show the high mean level for root coloniza-

tion rate in AMF + AZ 50, AMF + AZ 70, AMF + AZ 100, and AMF + S 100 in the range from

78 to 89%. Root colonization in the control treatment was not detected.

Following root colonization rate, arbuscular abundance was analyzed. As Fig 2B shows,

the arbuscules were present from 45 to 76%. These levels indicated the intensive process of

mutual symbiosis. Mycorrhizal fungi also developed spores detected by microscopic observa-

tion (Fig 2D).

Their presence occurred in AMF + AZ 50, AMF + AZ 70, and AMF + AZ 100, but not in

AMF + S.

Supporting figures from microscopic observation demonstrate results. S1 and S2 Figs show

the interaction of mycorrhizal fungi in root tissue and bacterial colonies in the root hair area.

Root samples carefully extracted from the substrate revealed the development of dense myce-

lial structures surrounding root hairs of tomatoes (S1_1 Fig). Conditions with higher organic

matter content led to more abundant grid structures of fungi on roots. In most of the AMF

treatments, the development of spores was detected. This situation was also found in the low

organic matter content treatment (AMF + AZ 50) and confirmed the ability of AMF to colo-

nize plant roots and form propagative structures (S1_2 Fig).

S1_3A and S1_3B Fig show effective symbiosis between mycorrhizal fungi and tomato

plants. Arbuscular structures in root tissues correspond to positive interactions of host and

fungi in water/nutrient exchange. Treatments with 100% peat showed higher levels of arbus-

cules abundance, although symbiosis functioned in the peat:sand substrate (50:50) as well.

Treatments containing the bacterial inoculant Azospirillum brasilense were observed for the

determination of bacterial colonies on roots. In all treatments with this inoculation, the bacte-

rial colonies were abundant, as shown by the specific probe for A. brasilense (S2 and S3 Figs).

Fig 2. Effects of soil microorganisms application mycorrhization parameters of tomato roots: Colonization rate

(A), arbuscule abundance (B), vesicules abundance (C), and spores abundance (D). Means followed by different

letters are significantly different at P� 0.05, with comparisons performed by Fisher’s LSD test, only for mycorrhized

objects. C 50—peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C

100 –peat:sand ratio 100:0 (v:v) without inoculation; AMF +AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with

arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio 70:30 (v:v)

inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S–

100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g002
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Physiological parameters

The NDVI as a parameter corresponding to the physiological status of plants was 0.77 (mean

for all treatments), according to the evaluation of tomato leaf fluorescence activity. The higher

NDVI levels occurred in AMF + AZ 50,70 and AMF + S. The NDVI of control treatments was

lower, especially in C 50, but differences were not significant statistically (Fig 3).

Quantum yield expressed by the Ft value exhibited a non-significant correlation with

NDVI, where Qy = 0.76718–0.0055�NDVI corresponding to the tight link among both physio-

logical parameters (Fig 4). There was no significant difference in this value among control

treatments. The values ranged from 70 AMF + AZ and 100 to the AMF + S with the lowest

value.

Analyses of stress biomarkers

The antioxidant activity was considered in roots and shoots of tomato seedlings affected by dif-

ferent growth conditions followed by physiological acclimatization processes. Generally, the

antioxidant activity measured as DPPH scavenging activity was approximately 2-times higher

in tomato leaves than in roots for each treatment, except AMF + AZ 100 (Fig 5A). In general,

Fig 3. Effects of soil microorganisms application to substrates of different organic matter content on Quantum

Yield (QY) (A) and Normalized Difference Vegetation Index (NDVI) (B) in tomato leaves transplants. Means

followed by different letters are significantly different at P� 0.05, with comparisons performed by Fisher’s LSD test.

Error bars represent the standard deviation (± SD) for interaction. C 50 –peat:sand ratio 50:50 (v:v) without

inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without

inoculation; AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and

Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio 70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100

–peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g003
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AM fungi and Azospirillum brasilense (AMF + AZ) applied to the substrate reduced tomato

seedling antioxidant activity. Tomato seedlings, grown in the substrate composed of peat and

inoculated with AMF and Saccharothrix tamanrassetensis (AMF + S), showed the highest anti-

oxidant activity. The roots of plants cultivated in a substrate composed of peat:sand at the ratio

50:50 (v:v) and inoculated with AMF + AZ. The lowest DPPH scavenging activity in roots was

recorded in treatment AMF + AZ in substrate with 50:50 peat:sand ratio, while the highest

DPPH activity in the leaves at AMF + S treatment was found. Antioxidant activity of tomato

leaf extracts was positively correlated with total phenolics in leaves (Table 1), a similar relation

was observed for roots. These dependences are illustrated (Fig 6A) by the distance of the eigen-

vectors of antioxidant activity and total phenolics and narrow angles between the eigenvectors.

The total phenolics (TP) content was significantly higher in tomato seedling leaves than

roots, considering the main effects analysis (Fig 5B). Tomato roots contained a similar pheno-

lics level, and significant differences were noted for C 70, AMF + AZ 50, and AMF + AZ 70

treatments, whereas the AMF + S 100 treatment had a higher level. Analysis of the TP in

tomato leaves shoved its higher level in samples from plants of C 50 and C 70 treatments, with-

out microbiota inoculation. Total phenolics in tomato leaves were positively correlated with

Ca Mg, Na, and Mn contents in leaves and roots, Fe in roots, and Cu in leaves. The correlations

of TP and mineral elements in tomato roots were positive for S and Zn, whereas a negative

relationship was noted for Ca, Mn, and Fe. The correlations of TP in tomato roots and mineral

elements in tomato leaves were positive only for Fe, but negative for K, Ca, Mg, Na, and Mn

(Table 2).

The tomato seedling roots showed a higher GPOX activity than leaves, except for the plants

grown in peat:sand at a ratio of 50:50 (v:v), without microbiota inoculation (Fig 5C). The most

notable differences were for roots (the lowest GPOX activity) and the roots (the highest GPOX

activity) of tomato seedlings sampled from the substrate with peat:sand ratio 70:30 (v:v), inoc-

ulated with AMF + AZ. GPOX activity in roots was 2-times higher than in leaves of the seed-

lings of this treatment. The conversely directed eigenvectors of GPOX activity and total

phenolics in roots of tomato seedlings in Fig 4a illustrated the negative correlation between

these parameters, with a correlation coefficient of r = -0.514, P� 0.05. However, the correla-

tion between the aforementioned parameters in tomato leaves was positive. Correlation coeffi-

cients between GPOX activity of tomato seedlings roots and shoots are presented in Table 2.

Fig 4. Bi-plot presenting the correlation between the tested fluorescence parameters of tomato transplant leaves

(A) and ordination illustrating differences between substrates tested towards the fluorescence parameters of

tomato transplant leaves (B). C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v)

without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 50 –peat:sand ratio 50:50 (v:v)

inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio

70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ;

AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g004
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PCA analysis illustrated that the C 50 treatment contributed significantly and negatively to

PC1 and PC2, whereas AMF + AZ 100 contributed positively to PC1 and PC2 (Fig 6B).

Elements concentration in plant tissues

The mineral content in substrates and tomato seedlings was significantly affected by substrate

composition and microbial inoculation. The lowest potassium root:shoot ratio occurred in

plants collected from C 50 and AMF + AZ 50 treatments and was equal to 0.56 and 0.55,

respectively, whereas the highest was determined for plants in the C 70 substrate (0.82) (Fig 7).

Potassium was accumulated in tomato leaves in significantly higher amounts than in the roots,

which was visually confirmed with the use of heat maps (Fig 8A). Leaves of plants collected

Fig 5. Effects of soil microorganisms application to substrates of different organic matter content on antioxidant

activity (A), total phenols (B), and glutathione peroxidase (GPOX) (C) activity in leaves and roots of tomato

transplants. Means followed by different letters are significantly different at P� 0.05, with comparisons performed by

Fisher’s LSD test. Error bars represent the standard deviation (± SD) for interaction. C 50 –peat:sand ratio 50:50 (v:v)

without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without

inoculation; AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and

Azospirillum brasilense (AZ), AMF + AZ 70 –peat: sand ratio 70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100

–peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g005

PLOS ONE Growth promoting microorganisms on tomato

PLOS ONE | https://doi.org/10.1371/journal.pone.0259380 November 3, 2021 12 / 26

https://doi.org/10.1371/journal.pone.0259380.g005
https://doi.org/10.1371/journal.pone.0259380


from AMF + AZ 50 and AMF + AZ 70 treatments contained the highest total K level, whereas

roots of plants grown in the C 50 treatment had the lowest (Table 4). The correlation coeffi-

cients between elements in plants and soil are presented in Table 1.

The leaves sampled from plants grown in C 50, C 70, AMF + AZ 50, and AMF + AZ 70

treatments contained the highest amounts of Ca, whereas the lowest was determined in plant

roots in AMF + AZ 100 and AMF + S 100 treatments (Table 4, Fig 8B). The Ca root:shoot

ratio was 0.30 for the C 70 treatment (the lowest value) and 0.43 for the AMF + AZ 100 treat-

ment (the highest value) (Fig 7).

The distribution of Mg was different among plant parts and treatments, and the root:shoot

ratios were in the range from 0.69 (C 70) to 1.27 (AMF + AZ 100) (Fig 7). Roots of tomato

seedlings from the control treatments contained higher Mg levels than leaves, whereas an

inverse relationship was noted for the AMF + AZ 70 treatment. In the remaining treatments,

differences between roots and leaves concerning Mg content were not significant. The highest

Fig 6. Bi-plot presenting the correlation between the tested antioxidant parameters of tomato transplants (A) and

ordination illustrating differences between substrates tested towards the antioxidant parameters of tomato

transplants (B). C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without

inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 50 –peat:sand ratio 50:50 (v:v)

inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio

70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ;

AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g006

Fig 7. Effects of soil microorganisms application to substrates of different organic matter content on root: Shoot

ratio of mineral elements in tomato transplants. C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:

sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 50 –peat:

sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF +

AZ 70 –peat:sand ratio 70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v)

inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix
tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g007
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Mg amount was in roots of plants grown in C 50 and AMF + AZ 50 substrates (Table 4,

Fig 8C).

The sulfur root:shoot ratio was the highest in plants collected from the C 70 treatment

(2.09) followed by the AMF + AZ 100 and AMF + AZ 50 (1.89 and 1.80, respectively) (Fig 7).

Tomato leaves collected from all substrates contained a higher amount of sulfur than roots,

Fig 8. Heat map plots of elements content in soil/plant system under different substrate treatments: Potassium

(A), magnesium (B), calcium (C), sulfur (D), sodium (E), phosphorus (F), manganese (G), iron (H), zinc (I), and

copper (J). Green colors indicate that element contents were less than the means, while red colors indicate that

element contents were higher than the means. C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand

ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 50 –peat:sand

ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70

–peat:sand ratio 70:30 (v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with

AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and Saccharothrix tamanrassetensis (S).

https://doi.org/10.1371/journal.pone.0259380.g008
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especially those sampled from the AMF + AZ 70 and AMF + S 100 treatments (Table 4,

Fig 8D).

The root:shoot accumulation ratios were 0.26, 0.28, and 0.40 for C 70, AMF + AZ 50, and

AMF + AZ 100, respectively, whereas its value was close to 3 for the remaining treatments (Fig

7). Tomato seedlings accumulated Na in roots, especially those from the C 70 treatment

(Table 4, Fig 8E).

P accumulated in leaves, especially in seedlings collected from the AMF + S 100 treatment,

followed by the AMF + AZ 50 and C 70 treatments. The P content was lower in the roots than

leaves. Moreover, differences between treatments were not statistically significant, with the

root:shoot ratio below 1 (Table 5, Figs 7 and 8F).

The leaf samples collected from the C 70 and C 50 treatments contained the highest P

amount, as well as the root samples collected from the AMF + AZ 50 and C 70 treatments

(Table 5, Fig 7). Similar to P, Mn content was higher in tomato leaves than roots, with the root:

shoot accumulation ratio in the range from 0.37 (C 100) to 0.76 (C 50) (Fig 8F).

The substrates of control treatments, composed of peat:sand at the ratio 50:50 (v:v) and

70:50 (v:v), as well as the AMF + AZ 70 and AMF + AZ 100 treatments, contained significantly

higher levels of soluble Fe compared to the remaining treatments (Table 3). Fe content was the

highest in tomato seedling roots sampled in the treatments C 50, AMF + AZ 100, and AMF +

AZ 70, followed by C 70. In general, roots and leaves of tomatoes collected from the remaining

Table 5. Effects of soil microorganisms application to substrates of different organic matter content on potassium, calcium, manganese, sulphur, and sodium con-

tent in leaves and roots of tomato transplants.

Treatment Plant part K Ca Mg S Na

(mg kg–1 DW)

C 50� Leaves 17413 ± 462 fg�� 17752 ± 94 ef 5825 f-g 5566 ± 95 c 2228 ± 63 d

Roots 9725 ± 346 a 6806 ± 112 b 7180 h 3027 ± 274 b 6822 ± 40 h

C 70 Leaves 16206 ± 436 ef 18436 ± 215 f 4952 a-d 6331 ± 217 de 1787 ± 35 bc

Roots 13337 ± 296 cd 5500 ± 393 ab 5712 e-g 3182 ± 393 b 6199 ± 119 g

C 100 Leaves 18245 ± 2120 fg 14532 ± 406 d 4537 ab 5735 ± 406 c 1737 ± 109 bc

Roots 11935 ± 985 a-c 5359 ± 443 a 5655 c-g 3154 ± 443 b 5134 ± 424 f

AMF + AZ 50 Leaves 18646 ± 602 g 18720 ± 767 f 5626 e-h 5974 ± 769 c 2028 ± 35 cd

Roots 10267 ± 859 ab 6358 ± 58 ab 7168 h 3251 ± 71 b 5297 ± 71 f

AMF + AZ 70 Leaves 18891 ± 292 g 16609 ± 1355 e 5958 g 6509 ± 1357 e 1834 ± 150 b-d

Roots 13216 ± 987 cd 5563 ± 85 ab 5138 b-e 2440 ± 85 a 3955 ± 29 f

AMF + AZ 100 Leaves 14635 ± 234 de 11865 ± 97 c 4293 a 5656 ± 97 c 1489 ± 80 ab

Roots 10242 ± 769 ab 5122 ± 324 a 5021 a-e 3293 ± 324 b 4318 ± 106 f

AMF + S 100 Leaves 16075 ± 234 ef 15050 ± 173 d 4872 a-c 7029 ± 173 f 1156 ± 90.0 a

Roots 12378 ± 570 b-d 5025 ± 286 a 5470 c-g 3513 ± 286 b 5305 ± 23.0 f

Source of variation

Treatment (T) ��� ��� ��� ��� ���

Plant part (P) ��� ��� ��� ��� ���

T×P ��� ��� ��� ��� ���

�C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation;

AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio 70:30

(v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

��Means within a column, followed by different letters are significantly different, with comparisons performed using Tukey’s HSD test. Levels of significance:

��� P� 0.001.

https://doi.org/10.1371/journal.pone.0259380.t005
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substrates contained significantly lower amounts of Fe, which were primarily not differenti-

ated between treatments or plant parts (Table 6, Fig 7). The root:shoot Fe ratio was also distin-

guished among treatments and was in the range from 0.27 (C 70) to 3.86 (C 50) (Fig 8H).

Roots of plants grown in the AMF + AZ 100 substrate contained the highest level of Zn, fol-

lowed by AMF + S 100, with a root:shoot ratio of 0.51 and 1.72, respectively. Analysis of the

chemical composition of leaves shoved significantly higher Zn content in leaves of plants col-

lected from the treatments C 50 –C 70 compared to those collected from the microbiota appli-

cation treatments (Table 6, Figs 7 and 8I).

Leaves of tomatoes from all treatments did not differ in Cu content, which was generally

lower than that found in roots. Different concentrations of Cu characterized roots of investi-

gated treatments, with the highest values in plant roots from the C 70 treatment and the lowest

from the AMF + AZ 100 treatment (Table 6, Fig 8J). The root:shoot accumulation ratio was

0.33, 0.42, and 0.43 for plants cultivated in the substrate AMF + AZ 50, and AMF + AZ 100,

and C 70, respectively, whereas its value was close to 2.5 for the remaining treatments (Fig 7).

Discussion

Substrate characteristics

Substrate analysis after tomato cultivation in the present research confirmed the crucial signifi-

cance of organic matter content for its physical and chemical characteristics. The highest total

Table 6. Effects of soil microorganisms application to substrates of different organic matter on phosphorus, manganese, iron, zinc, and copper content in leaves

and roots of tomato transplants.

Treatment Plant part P Mn Fe Zn Cu

(mg kg–1 DW)

C 50� Leaves 2382 ± 99 e–g�� 174.29 ± 3.51 h 50.49 ± 0.31 a 24.57 ± 1.11 bc 5.65 ± 0.02 a

Roots 1826 ± 101 a–c 132.42 ± 1.93 fg 194.86 ± 9.14 f 37.05 ± 1.29 f 14.66 ± 0.43 cd

C 70 Leaves 2592 ± 14 f–h 206.46 ± 3.89 i 53.32 ± 1.42 ab 27.17 ± 1.13 cd 6.29 ± 0.13 a

Roots 1876 ± 213 a–d 99.21 ± 1.11 e 151.68 ± 19.8 e 30.61 ± 1.98 de 16.97 ± 0.20 e

C 100 Leaves 2146 ± 106 c–e 137.24 ± 6.83 g 54.38 ± 2.32 ab 29.97 ± 1.62 de 5.64 ± 1.13 a

Roots 1851 ± 153 a–c 50.46 ± 4.17 a 52.62 ± 4.34 ab 38.33 ± 3.16 f 14.83 ± 1.22 cd

AMF + AZ 50 Leaves 2652 ± 95 gh 142.01 ± 5.48 g 62.05 ± 1.24 b–d 19.57 ± 1.30 a 6.28 ± 0.13 a

Roots 1886 ± 7 a–d 102.84 ± 1.80 e 82.01 ± 2.12 d 33.8 ± 1.737 ef 14.79 ± 0.41 cd

AMF + AZ 70 Leaves 2225 ± 240 de 134.73 ± 0.74 g 58.68 ± 2.03 a–c 18.20 ± 0.60 a 4.76 ± 0.22 a

Roots 1529 ± 12 a 69.31 ± 2.21 c 187.31 ± 7.64 f 31.15 ± 1.92 de 10.47 ± 0.74 b

AMF + AZ 100 Leaves 2279 ± 13 e–g 83.61 ± 3.24 d 72.38 ± 0.92 b–d 22.33 ± 1.74 ab 4.64 ± 0.14 a

Roots 1782 ± 63 ab 60.55 ± 1.37 bc 187.84 ± 5.58 f 60.66 ± 0.90 h 15.19 ± 0.66 d

AMF + S 100 Leaves 2934 ± 17 h 123.25 ± 0.26 f 80.43 ± 0.26 d 19.69 ± 0.20 a 5.22 ± 0.17 a

Roots 1917 ± 174 b–d 58.37 ± 2.02 ab 78.44 ± 4.65 cd 44.21 ± 1.30 g 13.42 ± 0.35 c

Source of variation

Treatment (T) ��� ��� ��� ��� ���

Plant part (P) ��� ��� ��� ��� ���

T×P ��� ��� ��� ��� ���

�C 50 –peat:sand ratio 50:50 (v:v) without inoculation; C 70 –peat:sand ratio 70:30 (v:v) without inoculation; C 100 –peat:sand ratio 100:0 (v:v) without inoculation;

AMF + AZ 50 –peat:sand ratio 50:50 (v:v) inoculated with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ), AMF + AZ 70 –peat:sand ratio 70:30

(v:v) inoculated with AMF and AZ, AMF + AZ 100 –peat:sand ratio 100:0 (v:v) inoculated with AMF and AZ; AMF + S– 100 peat:sand ratio 100:0 (v:v) inoculated with

AMF and Saccharothrix tamanrassetensis (S).

��Means within a column, followed by different letters are significantly different, with comparisons performed using Tukey’s HSD test. Levels of significance:

��� P� 0.001.

https://doi.org/10.1371/journal.pone.0259380.t006
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N, C-organic, sum of alkaline cations, and salinity, and the lowest pH was in substrates com-

posed of peat, and the inoculation with AMF and bacteria had slight effect on these parame-

ters. The substrates exhibited significantly different mineral composition after tomato

cultivation. Even under conditions of high salinity, the mineral soluble forms were not

reduced, especially in inoculated treatments. The uptake of N, P, Mg, Ca, Mn, and Fe were

enhanced in inoculated tomato [53]. The chemical properties of the substrate influenced the

amount of biomass produced [54,55].

The substrate composition affects the bioavailability of elements, both necessary and poten-

tially toxic for plants. The capacity of the sorption complex plays a key role in the release of

ions into the soil solution, associated with changes in the salinity level and soil pH. The capac-

ity of the sorption complex in the tested substrates ranged from 364 to 1524 mM kg-1, and was

proportional to the share of the organic component in the substrate. The lowest values were

found in treatments C 50, C 70, AMF + AZ 50, and AMF + AZ 70, while the highest values in

all treatments with peat only. Despite significant differences in this parameter from individual

treatments, it was not reflected in the level of saturation of the sorption complex with alkaline

cations, which ranged from 87.9% to 91.5%. Under conditions of maintaining the optimal fer-

tilization and irrigation, the capacity of the sorption complex does not influence the develop-

ment of plants [56]. A more important parameter is the saturation of the sorption complex

with alkaline cations, which indicates the potential negative impact of hydrogen ions on plant

growth. The pH reaction is related to the level of saturation of the sorption complex. Despite

the large differences in the content of organic fraction in the substrates and the capacity of the

sorption complex, slight differences in the substrate pH occurred after the experiment. No

translation was found between the amount of organic materials in the substrate and its strate-

gic properties. This could be caused by the short duration of the experiment. The content of

elements was low and in the treatments with a small amount of organic component in the sub-

strate, they could be assessed as deficient for plants [54]. This is especially true of P and K. The

content of micronutrients and potentially toxic elements in no case indicated a threat to plants

[57]. A negative correlation was found between the reaction and the content of most elements

in the medium, and a positive correlation between the content of organic C and the amount of

assimilable forms of the elements. The exceptions were Fe and Mn with opposite relationships.

Plant weight

Shoot and root DW and leaf area of tomatoes grown in a low P soil-sand mix were higher in

mycorrhizal than in nonmycorrhizal plants [58]. Ribaudo et al. [59] determined that tomato

inoculation with Azospirillum brasilense FT326 significantly enhanced the root and shoot

weight. Increase in biomass weight was correlated with increased absorption of mineral ele-

ments, such as N, P, K, Ca, and Mg which was noticed under inoculation with single and com-

bined bacterial strains, i.e., Azotobacter or Azospirillum. Similar dependence was found in the

present research.

Root colonization

The mycorrhizosphere and sporosphere bacteria can boos germination and/or improving the

growth of extraradical mycelium, the fine absorbing network of hyphae extend around the

roots [60]. Colonization was confirmed in all treatments inoculated by AMF or A. brasilense.
The colonization rate was increased in peat (100%), which showed a higher ability of AMF to

develop symbiosis, contrary to the sand. Paranavithana et al. [61] found the higher C soil con-

tent corresponded to the higher AMF colonization in rice. The results showed the same corre-

lation in the rate of colonization and C content. AMF colonizing plants could support
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rhizodeposition in soil, and as a result mycorrhiza increased plant C sequestration [62]. This

effect improves soil amelioration of degraded soils by higher organic matter deposition and

sorption of water and nutrients.

Saccharothrix spp. is producing dithiolopyrolone derivates with antifungal activity [21].

Such studies were background for our goal of confirming whether Saccharothrix could nega-

tively affect formation of mycorrhizal symbiosis. Results have shown good development of

AMF in co-inoculation with S. tamanrassetensis and other positive effects on some others ana-

lytical parameters.

Physiological parameters

NDVI relates to the chlorophyll content in leaves and provides information on the photosyn-

thetic activity [63,64]. The positive impact of microorganism was not documented in our

study. However, this data was in line with Nogales et al. [65] results on F. mosseae-inoculated

grapevine plants, which showed the decrease in NDVI after 3 months growth in Cu-contami-

nated soil. The Cu-contamination created stressful soil conditions, which could develop a sim-

ilar chain of basic physiological reactions. The quantum yield of photosynthesis is a widely

used measurement in many studies [66]. Quantum yield and NDVI values represent better

nitrogen plant management. Many studies [67] have shown a positive correlation to the

increased N fertilization in tomatoes. However, we did not confirm this effect in AMF or AZ

treatments. Although in AMF it could be expected because most AMF are phosphorus plant

uptake enhancers, Azospirillum is a typical N-fixing bacterium. The possibility of quantitative

and time-dependent limitation of microbial colony formation [68] in mutual AMF and Azos-
pirillum presence in the substrate could lead to this result.

Analyses of stress biomarkers

Plants grown in substrate reflecting degraded soil conditions are under stress conditions modi-

fying root system growth, functioning, and mineral absorption effectiveness. PGPM can par-

tially compensate the chemical fertilizers, especially in tomatoes, a highly mycorrhizal-

dependent crop [69]. The present study showed the new aspect of this relationship because

tomato grown in substrate with AMF and Azospirillum brasilense showed the lowest antioxi-

dant activity. In contrast, those inoculated with AMF and S. tamanrassetensis showed the high-

est antioxidant activity in both roots and leaves. The present study confirmed the organ-

dependent polyphenol concentration. Inculet et al. [70] showed long-term effects of PGPM

inoculation on tomato growth, yield, and fruit polyphenol content and antioxidant activity. In

general, plants exhibit an increased synthesis of polyphenols under abiotic stress, including

suboptimal soil conditions [71]. Abiotic stresses create osmotic stress [72], oxidative damage

[73], and reactive oxygen species (ROS) [74], that lead to numerous physio-molecular changes,

including a decrease in photosynthetic activities [75], DNA, protein and membrane damages,

and nutritional imbalance in plants [76] and ultimately affect plant growth and productivity

[77]. Nevertheless, to adjust stress, stress-induced plant evolved mechanisms to enhance the

concentration of the majority of polyphenols [78,79] and detoxify the ROS. Phenolic com-

pounds have high antioxidant activity [80] that can scavenge reactive oxygen species [81], and

this observation lies behind the high level of total phenols in the C 50 treatment, reflecting the

eroded soil without microorganisms amendment. Soil microbes transform phenolics into

compounds, which help in element mineralization [9]. Phenolic compounds improve nutrient

uptake through chelation of metallic ions, enhanced active absorption sites, and soil porosity

with accelerated mobilization of many elements [82]. This observation can explain a positive
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correlation between antioxidant activity, total phenolics, and some elements mentioned in the

present study which were corroborative to the previous findings [83].

Another aspect of the present research is the translocation of mineral elements to shoots.

POX catalyzes lignin formation and establishes structural barriers by producing reactive oxy-

gen and nitrogen species [84]. This explains the high activity of GPOX in roots of tomato seed-

lings, confirmed for all treatments, except for C 50, where stress conditions could interrupt

this line of defense. Species of Rhizobacteria, Azospirillum, and Pseudomonas play a significant

role in tomato competition for nutrients or space [85]. Thus, inoculation of tomato with A.

brasilense could cause increased GPOX activity in inoculated treatments with the substrate

with a low amount of organic matter (AMF + AZ 50 and AMF + AZ 70). Accordingly, Islam

et al. [86] stated that PGPB could activate plant antioxidant defense by regulating the activity

of superoxide dismutase, catalase, and peroxidase, the key enzymes that deactivate over pro-

duced reactive oxygen species.

Element concentration in plant tissues

We analyzed the substrate content of available forms of nutrients and the uptake by tomato

roots followed by translocation to shoots. Plants need to develop efficient strategies to enhance

K uptake from the soil, which includes association with soil microbiota [87].

According to Meena et al. [88] the most effective K, P, and Zn-solubilizing bacteria belong

to the genera Azospirillum, Azotobacter, and Bacillus. The results concerning potassium sub-

strate/root/shoot translocation showed an effective K collection from the peat:sand substrate,

accelerated by consortia AMF + AZ 50 and AMF + AZ 70. According to Singh et al. [89], K

acquisition from soils with low soluble K concentration can be enhanced by mycorrhizal sym-

biosis. In the present research, the negative correlation observed for K in the substrate and in

tomato leaves indicated the existence of microbial-assisted release and K uptake.

Positive effects of K on dry biomass are observed; however, increasing K application can

also decrease the economic benefit because excess K can reduce the mobility of calcium [90].

The negative antagonism was confirmed for K and Ca in the aboveground tomato tissues in

the presented research. Free Ca level in a plant tissue is a stress signaling factor, and Ca2+ plays

a vital role in many functions. AMF selectively uptake K+ and Ca2+, which act as osmotic

equivalents as they avoid the uptake of toxic Na+, especially in the saline soils [91]. However,

in the present research, inoculation did not have a significant effect on Ca2+ absorption, which

was dependent mainly on substrate composition. Root tissues accumulate a higher level of Na+

than shoots; moreover, in mycorrhizal roots Na+ may be compartmentalized in cell vacuoles

and in AMF hyphae to prevent translocation to the shoots [92]. Indeed, tomato seedlings accu-

mulated Na in roots in the conditions of the present experiment.

PGPM inoculation improved P, Mg, and Ca contents in plants. Several studies have shown

that AMF helps in the P nutrition of plants to the extent of saving NPK fertilizer application

with no adverse effect on growth and yield of tomatoes [93]. AMF and phosphate solubilizing

bacteria (PSB) could interact synergistically because PSB solubilizes sparingly available P into

orthophosphate such that AMF can absorb and transport it to the host plant [94]. Bacteria

help to mineralize organic P in the soil by the synthesis of enzymes (phytases, phosphonoace-

tate hydrolases) [95]. Although there is some evidence concerning the effect of PGPM on P

and K plant nutrition, the knowledge regarding the other elements is limited. PGPM also

improved Fe concentration in tomato across all conditions, concerning low and high P avail-

ability and Mg under low P availability to plants [96]. Mg is involved in a wide range of physio-

logical activities, including pigment synthesis, energy metabolism, and photosynthetic carbon

fixation [97]. An interesting result was the higher Mg accumulation in roots and leaves of
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tomato in substrate composed of peat:sand 50:50 and 50:70 (v:v) inoculated with AMF + AZ,

as compared to the other inoculants applied. AMF + S inoculation significantly increased Fe

and S accumulation in tomato leaves. According to available references, total accumulation of

Zn, Cu, and Fe was higher, but Na was lower in mycorrhizal tomatoes grown in low-P soil (Al-

Karaki, 2000). Azcón et al. [98] determined in lettuce, that with high substrate availability of P,

the other nutrients level decreased. However, with a low level of P, macro- and micronutrients

increased. This observation can explain negative correlations between substrates P and Ca,

Mg, and Mn in roots and leaves, and Fe in roots of tomato in the present research.

Conclusion

The improved growth and nutrient acquisition in tomatoes demonstrated the potential of

AMF and bacteria colonization for protecting plants cultivated in degraded soil conditions.

The establishment of the symbiosis, observed with confocal microscopy, modified the sub-

strate conditions and involved a continuous cellular and molecular dialogue between AMF,

AMF + bacteria, and plants, which included the activation of different metabolic pathways.

The most spectacular effects of microorganisms in supporting the plant fitness in the condi-

tions reflecting degrading soil covered decreased antioxidant activity and phenolic compound

level as compared to the non-mycorrhizal control. This finding corresponded to the higher tol-

erance to stressful conditions and enhanced uptake of some nutrients followed by DW

increase. However, the consortia of plant growth promoting microorganisms acted the most

effectively in substrate rich in organic matter, positively shaping the parameters characterizing

tomato seedling fitness. The application pro-ecological methods to improve growth and nutri-

tional quality of tomatoes definitely include the beneficial microorganisms dedicated to posi-

tively affect plant performance.

Supporting information

S1 Fig. Mycelial structures (m) of fungi are mutually surrounding root hairs (rh) of tomato

showing development of „interface”for the mutual flow of water and nutrients through

the fungal and root grid. The soil with higher organic matter has showed better netting.

Figure was taken in sample at AMF + AZ 100 treatment. 1_2. Development of AMF spores

(s) in root hairs (rh) area was also detected after inoculation in the treatment with low

organic matter content (AMF + AZ 50). This confirms ability of AMF to colonize plant roots

and form the propagative structures for further substrate colonizing. 1_3 A, 1_3B. Set up of

symbiosis between AMF and tomato plants was described on arbuscules (a) structures

found in root tissues. The treatments with peat showed higher levels of arbuscules abundance.

Both figures show the symbiosis created in sand:peat substrate 50:50, also (AMF + AZ 50).

Bar = 20 μm.

(TIF)

S2 Fig. Bacterial colonies (b) on tomato root hairs (rh) were found in all treatments with

inoculation by Azospirillum brasilense. In sterile conditions of substrate were found only

these bacterial colonies as abundant (treatment AMF + AZ 70). Bar = 20 μm.

(TIF)

S3 Fig. Bacterial colonies (b) on tomato root hairs (rh) were found in all treatments with

inoculation by Azospirillum brasilense. In sterile conditions of substrate were found only

these bacterial colonies as abundant (treatment: AMF + AZ 100). Bar = 20 μm.

(TIF)
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