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Purpose: The computed tomography (CT)-derived ventilation imaging methodology employs
deformable image registration (DIR) to recover respiratory motion-induced volume changes from an
inhale/exhale CT image pair, as a surrogate for ventilation. The Integrated Jacobian Formulation
(IJF) and Mass Conserving Volume Change (MCVC) numerical methods for volume change estima-
tion represent two classes of ventilation methods, namely transformation based and intensity (Houns-
field Unit) based, respectively. Both the IJF and MCVC methods utilize subregional volume change
measurements that satisfy a specified uncertainty tolerance. In previous publications, the ventilation
images resulting from this numerical strategy demonstrated robustness to DIR variations. However,
the reduced measurement uncertainty comes at the expense of measurement resolution. The purpose
of this study was to examine the spatial correlation between robust CT-ventilation images and single
photon emission CT-ventilation (SPECT-V).
Methods: Previously described implementations of IJF and MCVC require the solution of a large
scale, constrained linear least squares problem defined by a series of robust subregional volume
change measurements. We introduce a simpler parameterized implementation that reduces the num-
ber of unknowns while increasing the number of data points in the resulting least squares problem. A
parameter sweep of the measurement uncertainty tolerance, τ, was conducted using the 4DCT and
SPECT-V images acquired for 15 non-small cell lung cancer patients prior to radiotherapy. For each
test case, MCVC and IJF CT-ventilation images were created for 30 different uncertainty parameter
values, uniformly sampled from the range 0:01, 0:25½ �. Voxel-wise Spearman correlation between
the SPECT-V and the resulting CT-ventilation images was computed.
Results: The median correlations between MCVC and SPECT-V ranged from 0.20 to 0.48 across the
parameter sweep, while the median correlations for IJF and SPECT-V ranged between 0.79 and 0.82.
For the optimal IJF tolerance τ¼ 0:07, the IJF and SPECT-V correlations across all 15 test cases ran-
ged between 0.12 and 0.90. For the optimal MCVC tolerance τ¼ 0:03, the MCVC and SPECT-V cor-
relations across all 15 test cases ranged between −0.06 and 0.84.
Conclusion: The reported correlations indicate that robust methods generate ventilation images that
are spatially consistent with SPECT-V, with the transformation-based IJF method yielding higher cor-
relations than those previously reported in the literature. For both methods, overall correlations were
found to marginally vary for τ∈ ½0:03, 0:15�, indicating that the clinical utility of both methods is
robust to both uncertainty tolerance and DIR solution. © 2020 The Authors. Medical Physics pub-
lished by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
[https://doi.org/10.1002/mp.14511]
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1. INTRODUCTION

Computed tomography (CT)-derived ventilation is an
image processing modality that quantifies the apparent
voxel volume changes within an inhale/exhale CT image
pair as a surrogate for pulmonary ventilation.1,2 With
the exception of newer deep learning methods3 and
methods based purely on image segmentation,4 there are
two primary classes of CT-ventilation methods: transfor-
mation based and intensity based. Both classes require,
as preprocessing steps, lung volume delineation and
deformable image registration (DIR). The DIR solution
approximates respiratory motion and provides a spatial
mapping between the inhale and exhale lung geometries.
Intensity-based methods estimate volume change using
the Hounsfield Unit values of spatially corresponding
inhale/exhale lung voxels.2,5 Transformation-based meth-
ods, in contrast, compute volume changes directly from
the DIR-defined spatial transformation via numerical
approximation of the Jacobian Factor.6 While the images
produced by transformation-based methods have been
shown to be highly variable with respect to numerical
implementation,7 intensity-based methods require key
heuristic steps, including smoothing and vasculature seg-
mentation. Taken together, these factors contribute to the
suboptimal reproducibility of previously proposed CT-
ventilation methods.8,9

We recently described two new CT-ventilation algo-
rithms designed to address reproducibility issues previ-
ously described in the literature7–9: the intensity-based
mass conserving volume change (MCVC) method10 and
the transformation-based Integrated Jacobian Formulation
(IJF) method.11 As opposed to traditional approaches,
MCVC and IJF estimate the Jacobian factor of the DIR
transformation from a series of spatially corresponding
lung subregions. The numerical uncertainty in the subre-
gional volume change measurements is modeled with
Gaussian statistics, which allows for their uncertainty to
be characterized and, consequently, controlled through the
definition of an uncertainty tolerance parameter. In this
context, the uncertainty tolerance is defined with respect
to the uncertainties associated with the DIR solution and
does not address uncertainties associated with CT acquisi-
tion. This strategy provides robustness to DIR variability
at the expense of measurement resolution. While IJF and
MCVC images were both shown to be robust to DIR vari-
ations, no comparisons to clinically accepted modalities
have been reported.

The purpose of this study is to (a) introduce a parameter-
ized numerical implementation of the MCVC and IJF meth-
ods and (b) characterize the spatial correlation between the
resulting CT-ventilation images and single photon emission
computed tomography ventilation (SPECT-V). Using a
straightforward parameter sweep of the uncertainty tolerance,
we examine the effect of the tolerance on the correlation
between the resulting CT-ventilation images and the SPECT
ventilation images.

2. MATERIALS AND METHODS

2.A. Subregional volume change estimation

Computed tomography-ventilation methods employ DIR
to compute a spatial transformation ϕ :3 !3 which maps
a reference image lung volume ΩðRÞ onto a target image lung
volume ΩðTÞ. For a general subregion Ω∈ΩðRÞ, the volume
scaling factor under ϕ is described by the Jacobian factor:

vol ϕðΩÞð Þ¼
Z
Ω

det JðxÞð Þ dx, (1)

assuming ϕ is diffeomorphic. The transformation-based IJF
ventilation method11 numerically approximates Eq. (1)
directly from the DIR solution as the sample mean of the
membership oracle functionZ

Ω

det JðxÞð Þ dx≈ fh iΩM¼H, (2)

where

f x; Ω,ϕð Þ¼ 1, if ϕ�1ðxÞ∈Ω,
0, otherwise;

(
(3)

and M¼ ΩðTÞ�� ��. Equation (2) is a “hit-or-miss” volume
approximation12 and H represents the number of “hits” that
land within Ω. The MCVC method,10 in contrast, represents
an intensity-based approach and requires the inhale/exhale
CT image pair to be converted into two corresponding HU-
defined density functions, which we denote here as the refer-
ence image RðxÞ, and the target image TðxÞ: Assuming mass
is conserved, the MCVC estimate is defined asZ

Ω

det JðxÞð Þ dx ≈
Rh iΩ

Th iϕðΩÞ
� Ωj j (4)

where Rh iΩ and Th iϕðΩÞ represent the sample mean densities
within Ω and ϕ Ωð Þ, respectively. As previously described in
detail, the uncertainties in the Eqs. (2) and (4) measurements
can be characterized using the standard errors of the corre-
sponding sample means.10,11 For IJF, it was shown that with
95% probability

vol ϕ Ωð Þð Þ �Hj j
H

≤ τ, 8H≥H∗, (5)

where the minimum hit count, H∗, depends on M and τ is a
specified tolerance. For MCVC, it was shown that with 95%
probability

�R� Rh iΩ
�� ��≤τ, if jΩj ≥ β2

τ2
, (6)

and

�T� Th iϕðΩÞ
��� ���≤τ, if H ≥

β2

τ2
, (7)

for β¼ 1:96. Equations (5), (6), (7) essentially state that the
amount of uncertainty in the volume change estimates goes
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down as the size of Ω goes up. Thus, the improved robustness
of MCVC and IJF comes at the expense of measurement res-
olution.

2.B. Moving least squares ventilation image

A CT-ventilation image, VðxÞ, requires computing the dis-
cretized variables.

VðxiÞ¼ vi ¼ det JðxiÞð Þ, 8xi∈ΩðRÞ, (8)

where vi>0 represents the volume change of the undeformed
unit volume voxel centered on xi. Because both IJF and MCVC
obtain volume change estimates for a series of subregions
Ωk∈ΩðRÞ, k¼ 1,2, :::,K, their resulting mathematical formula-
tions are equivalent. Specifically, for jΩðRÞj ¼ N, the subdo-
main data acquisition process results in a linear system of
equations that relates the unknown vi to the subdomain data:

Av¼ b,

A∈K�N , b∈K�1, v∈N�1,
(9)

where

Aki ¼
1 if xi∈Ωk

0 otherwise

�
, (10)

and the elements of b contain the corresponding subregional
estimates [Eq. (2) for IJF and Eq. (4) for MCVC]. Previous
IJF and MCVC implementations solve a computationally
intensive, large-scale linear least squares problems defined by
Eq. (9). In order to facilitate broader accessibility of the
established methods and improve overall method robustness,
we instead parameterize VðxÞ with moving least squares
(MLS) to reduce the number of unknowns and, consequently,
the overall computational and memory storage requirements.
This approach also allows for the definition of an overdeter-
mined data fitting problem.

Given a set of L knot locations z j∈Ω with corresponding
scalar parameter values qj, the Shepard’s class of moving
least squares approximation is defined as:

Vðxi;qÞ¼ vi ¼
∑
L

j¼1
w jjxi� z jjj
� �

qj

� �
∑
L

j¼1
w jjxi� z jjj
� � , (11)

where the proximal weighting function is of the form

wðrÞ¼ e�σr2 : (12)

The Eq. (11) parameterization reduces the number of
unknowns required to generate the volume change (ventila-
tion) image from N (the total number of voxels in the refer-
ence lung region of interest) down to L (the number of knots
used for the discretization).

2.C. Image Computation

A ventilation image, as defined by Eq. (11), can be recov-
ered from the Eq. (9) subregional volume change estimates

by solving the following constrained least squares problem:

min
q

k Âq�b k2þ ∑
L

k¼1
qk�h=Nð Þ2

s:t: ∑
N

i¼1
vi ¼ h,

qi ≥ ɛ, i¼ 1,2, . . .,L,

(13)

where

Â¼AC,

A ∈K�L, C∈N�L,
(14)

and

Cij ¼
w jjxi� z jjj
� �

∑
L

l¼1
w jjxi� zljjð Þ

: (15)

We point out that the data matrix Â can be constructed
without explicitly constructing A, thereby reducing the over-
all memory requirements.

The Eq. (13) inequality constraints prevent physically
impermissible negative volumes. Requiring qi>0 is enough
to guarantee that the resulting vi (Jacobian estimates) are
strictly positive since the Eq. (11) MLS parameterization is
simply a moving average operator applied to the qi. The
equality constraint represents consistency with the global vol-
ume change, as measured on the full ΩðRÞ and ΩðTÞ lung vol-
umes, which is often used as a validation metric for proposed
ventilation methods.1,2,5,13,14 However, the constraint con-
stant, h, depends on the choice of method. For transforma-
tion-based IJF,

hIJF ¼ ΩðTÞ�� ��, (16)

and for intensity-based MCVC

hMCVC ¼ Rh iΩðRÞ

Th iΩðTÞ
ΩðRÞ�� ��� �

: (17)

The Eq. (13) problem structure is equivalent to the one
first presented in Ref. [11] with two exceptions. First, the
number of subregional estimates can be chosen such that the
problem is highly overdetermined N ≥ K≫L, while the
reduced number of total unknowns allows for the application
of standard solvers (as opposed to the customized augmented
Lagrangian method presented in Refs. [10,11]), including the
MATLAB lsqlin interior-point method (release R2019a, The
Mathworks Inc, Natick, Massachusetts, USA). Second,
whereas previous implementations regularized the problem
by penalizing the norm of the spatial gradient of V , the pro-
posed regularization model [second term in the Eq. (13)
objective function] penalizes the variance of the moving least
squares parameters with the mean defined as the average
voxel volume change enforced by the equality constraint. This
choice of regularization is derived from the recommendations
of the AAPM Radiation Therapy Task Groupe No. 132,
which state that large variations in the Jacobian are poten-
tially indicative of error.15
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The original approaches described in Refs. [10,11] both
defined an underdetermined data fitting matrix and relied on
spatially smoothing regularization to ensure a well-posed prob-
lem. This approach, when applied to the MLS parameterization,
had the potential to induce over-smoothing in the resulting
images. In contrast, the Eq. (13) formulation defines an overde-
termined data fitting matrix, A, and penalizes overall variance
in the MLS recovered function, as opposed to local smoothness
which is already inherent to MLS functions.

2.D. Numerical implementation

The maximum inhale and exhale phases from 4DCTs were
used for this study. Lung masks were generated using a semi-
automated histogram segmentation (as done in Ref. [2]). A
dart-throwing algorithm16 was applied to ΩðRÞ in order to
generate MLS knot locations, z j∈ΩðRÞ, with approximately
30 mm uniform spacing. Similar to the number of cubic
spline knots used for lung CT DIR,17 this procedure results in
approximately 250–300 knots. An additional point cloud was
similarly acquired with approximately 7 mm uniform spacing
to serve as the subdomain locations for Eq. (9). This resulted
in approximately 20 000 to 30 000 subdomain measurement
points. Each initial Ωk subdomain was defined as a single
voxel and then morphologically dilated with a 7 × 7 × 3
voxel structuring element until the tolerance criteria [Eq. (5)
for IJF and Eqs. (6) and (7) for MCVC] were satisfied.

The spatial transformation ϕ�1 is computed by applying
the Quadratic Penalty DIR (QPDIR) algorithm to the inhale
and exhale images. Briefly, QPDIR is an intensity-based
algorithm designed around a gradient-free block coordinate
descent strategy that essentially iterates between simple block
matching and linear least squares operations to minimize the
structural similarity index between an image pair. The imple-
mentation follows the description in Ref. [18], with the excep-
tion that an additional sum-of-squared difference term was
included in the QPDIR objective function to improve lung
mask alignment (as done in Ref. [19]).

Equation (13) is solved using the interior-point method
implemented in the MATLAB (release R2019a, The Math-
works Inc, Natick, Massachusetts, USA) optimization routine
lsqlin.

2.E. Image data

Avalidation of the MLS IJF and MCVC methods was con-
ducted using the simulation (treatment planning) 4DCT and
single photon emission tomography (SPECT) ventilation
images for 15 NSCLC patients who received radiotherapy at
our institution. Data were retrospectively evaluated according
to an IRB approved study (IRB 2016-037, clinicalTrials.gov
#NCT02528942). Patients received definitive radiotherapy
(defined as prescription doses of 45 to 75 Gy) and a planned
concurrent chemotherapy regimen. The majority of enrolled
patients had stage III disease. Single photon emission tomog-
raphy imaging was acquired prior to delivery of the first

radiotherapy fraction, ensuring no clinical lung function
changes occurred due to treatment between the simulation
4DCT and SPECT acquisitions.

A Philips Brilliance Big Bore CT (version 3.6.7) with a
bellows system was used for respiratory correlated imaging.
The 4DCT images were acquired with x-ray tube settings of
120 kVp and 599 mAs, and reconstructed using phase bin-
ning to produce an average CT image and 10 phase indexed
CT images. The phase images were indexed from 0% to 90%
in steps of 10% where 0% indicates full inhalation and 50%
indicates full exhalation on the breathing curve. Final images
were then exported into the DICOM (Digital Imaging and
Communications in Medicine) standard (512 x 512 pixels per
2D slice image, voxel dimensions of 1.27 mm × 1.27 mm ×
3 mm).
SPECT ventilation images were acquired on a dual head

Siemens Symbia SPECT/CT scanner (Siemens Medical Solu-
tions, USA), using a parallel hole, high-resolution collimator
and an energy window of 15% at a centerline of 140 keV.
1 mCi Tc99m diethylenetriaminepentaacetic acid aerosol
inhalation was used for the ventilation scan. SPECT acquisi-
tion was performed in steps of 6° for the entire 360° of rota-
tion, with a 25 s collection time for each step. Total scan
acquisition time, for most patients, was under 30 min. Free
breathing, attenuation-corrected CT images were subse-
quently recorded with 130 kVp, and 75–100 mAs (weight
dependent) during continuous tidal respiration. The final
reconstructed SPECT ventilation images were then exported
into DICOM (64 × 64 pixel per 2D slice image, voxel
dimensions 6.00 mm × 6.00 mm × 2.00 mm).

2.F. Uncertainty tolerance parameter sweep

A parameter sweep was conducted for both the MCVC
and IJF methods in order to assess the effect of the uncer-
tainty tolerance τ on the spatial correlation between SPECT
ventilation and the resulting robust CT-derived ventilation
images. For each of the 15 test cases, a series of 30 MCVC
and IJF CT-ventilation images were computed using a uni-
formly sampled set of uncertainty tolerances ranging between
τ∈ ½0:01, 0:25� and converted to absolute volume difference6:

1�Vðx; qÞj j: (18)

Each resulting image was spatially aligned with the
SPECT ventilation image by first using affine registration to
align the exhale 4DCT phase (on which the CT-ventilation is
computed) and the SPECT attenuation correction CT. The
resulting affine transformation was then applied to the CT-
ventilation image and the voxel-wise Spearman correlation
was computed at the resolution of the SPECT ventilation,
after applying a median filter with 3�3 structuring element
to the SPECT image (as done in Ref. [20]).

3. RESULTS

The median Spearman correlations taken across all 15 test
cases for each uncertainty parameter value are presented in
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Figs. 1 and 2. The median SPECT-V and MCVC correlation
values ranged between 0.20 and 0.48 across the parameter
sweep, with the higher median values being achieved for
τ∈ ½0:03, 0:06�: The median SPECT-V and IJF correlation
values ranged between 0.79 and 0.82 across the parameter
sweep and were relatively consistent, though the highest val-
ues were achieved for τ∈ ½0:05, 0:15�:

As summarized in Table I, the IJF and SPECT-V Spear-
man correlations across the 15 test cases for the optimal
τ¼ 0:07 ranged between 0.12 and 0.90. For MCVC, an opti-
mal τ¼ 0:03 generated Spearman correlations that ranged
between −0.06 and 0.84 across the 15 test cases. Wilcoxon
signed-rank test applied to the optimal IJF and MCVC corre-
lations in Table I indicate that the IJF method outperforms

MCVC with high statistical significance (P = 0.0062). Fig-
ure 3 illustrates the case with overall highest correlation
between the two methods (Case 9).

4. DISCUSSION

Integrated Jacobian Method and MCVC represent a new
class of robust CT-ventilation methods that seek to reduce the
uncertainty associated with DIR variability. Mass conserving
volume change has the added benefit of not requiring the
advanced pulmonary vasculature mask needed by previous
intensity-based methods.2 However, the previous numerical
implementations of robust methods required the solution of a
constrained, large scale, linear least squares problem defined

FIG. 1. The maximum, 75th percentile, median, 25th percentile, and minimum Spearman correlations across all 15 cases as a function of the uncertainty parame-
ter τ for the IJF method. The correlation values remain relatively constant across the parameter sweep. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. The maximum, 75th percentile, median, 25th percentile, and minimum Spearman correlations across all 15 cases as a function of the uncertainty parame-
ter τ for the MCVC method. After variations for smaller τ, the correlation values remain relatively constant between 0.05 and 0.15. [Color figure can be viewed at
wileyonlinelibrary.com]
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by an underdetermined data fidelity term and a spatial
smoothness inducing regularization. In this work, we intro-
duce a parameterized variant of the original IJF and MCVC
methods that allows for overdetermined data fitting and the
use of common optimization solvers. In addition, robust CT-
ventilation methods require the definition of an uncertainty
tolerance parameter. The uncertainty tolerance reflects the
methodology’s general property that robustness is gained at
the expense of measurement resolution. As such, the parame-
ter’s selection represents the trade-off between data fidelity
and numerical stability. Previous work provided general
bounds on parameters values that maintained DIR robustness.
In this study, we characterize the effect the parameter has on
the resulting correlation between robust CT-ventilation and
SPECT-V.

Across the parameter sweep, the IJF method demonstrated
less variability than MCVC. This reflects the inherent charac-
teristics of intensity- and transformation-based methods.
Whereas, intensity-based methods operate on nonhomoge-
neous image data, transformation-based methods operate on
the DIR displacement field, which is often optimized for spa-
tial smoothness. This is the case for the QPDIR method uti-
lized in this study.18 As indicated by the Fig. 1 results,
accurate estimates for the subregional IJF sample means can,
in practice, be acquired with fewer data points than required
by the Eq. (5) bound. As such, the IJF median correlation

appears to be more stable with respect to τ when compared to
those of the MCVC method. Moreover, IJF demonstrated a
significantly higher correlation with SPECT-V than MCVC
(P = 0.0062). This result is not altogether surprising consid-
ering the underlying mathematical formulations on which the
two methods are based. Integrated Jacobian formulation
recovers the DIR Jacobian values from the geometric infor-
mation captured by the DIR solution. The MCVC method
also approximates the Jacobian. But similar to other HU-
based methods, MCVC is derived under the assumption that
the density variations observed between inhale and exhale
CT are caused solely by changes in air content. This assump-
tion is known to be invalid due to variations in pulmonary
blood mass that occur throughout the breath cycle21 and is a
potential source of error for MCVC.

The 0.48 median correlation generated by the optimal tol-
erance value for MCVC (Table I) across the 15 test cases is
consistent with the results from the Ventilation and Medical
Pulmonary Image Registration Evaluation (VAMPIRE) study,
where the highest performing method achieved a median of
0.49.20 However, the 0.82 median correlation generated by
IJF represents a significant improvement over previously
reported results, though the comparison with VAMPIRE is
not directly applicable since its analysis included Galligas
PET and Xenon CT.20 Validation based on nuclear medicine
imaging is in general challenging due to the lower spatial

TABLE I. Spearman correlations for optimal τ.

Case # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Median

IJF
τ = 0.07

0.12 0.86 0.73 0.90 0.87 0.64 0.82 0.79 0.84 0.44 0.83 0.90 0.37 0.25 0.82 0.82

MCVC
τ = 0.03

0.05 0.48 0.62 0.10 0.75 0.50 0.52 0.08 0.77 0.84 −0.06 0.33 0.20 0.06 0.54 0.48

The Spearman correlations between SPECT ventilation and both IJF and MCVC across all 15 test cases are listed, using the optimal uncertainty tolerances, as determined
by the parameter sweep (Figs. 1 and 2), for each method. In all cases, the correlation is significantly different from zero (P < 0.001).

FIG. 3. The MCVC (top row) and IJF (bottom row) ventilation images computed using τ¼ 0:05 (left column) and τ¼ 0:25 (right column) for the test case with
the overall highest correlation (Case 9, Table I) with the corresponding SPECT-V (far right). The images were converted to percentile images for direct visual
comparison. All images denote decreased function in the left upper lung. The Spearman correlation between SPECT-V and MCVC for τ¼ 0:05 and τ¼ 0:25 are
0.79 and 0.77, respectively. For IJF, the correlations are both 0.85.
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resolution and aerosol deposition artifacts common to
SPECT ventilation. Future work includes conducting further
validation with other functional imaging modalities, includ-
ing PET Galligas, hyperpolarized gas MRI (as done in Refs.
[22,23]), and data from the VAMPIRE study.

The mathematical framework governing the IJF and
MCVC methods guarantee that similar DIR solutions will
generate similar ventilation images. This property was
derived and demonstrated numerically in our previous stud-
ies.10,11 Considering the correlations reported in Table I,
robust ventilation algorithms provide a numerical framework
that (a) is reproducible with respect to image processing pipe-
line and (b) generates results consistent with SPECT ventila-
tion. However, the framework does not guard against 4DCT
acquisition artifacts, which can lead to substantial differences
between DIR solutions generated from competing methods.
As illustrated in Fig. 4, phase-binning 4DCT artifacts intro-
duce erroneous geometric and intensity information into the
Eq. (13) calculation, which can corrupt the resulting IJF and
MCVC ventilation images. CT-ventilation computed from
breathhold CT acquisitions, which do not require phase bin-
ning, should therefore be expected to produce higher quality
results. However, for 4DCT, an area of future work is in
extending the IJF mathematical framework to be incorporated
into both the DIR and segmentation algorithm, with the goal
of reducing the effect of phase-binning artifacts.

5. CONCLUSION

We have assessed the spatial correlation between SPECT-
V and two robust CT-ventilation methods that are dependent

on the definition of an uncertainty parameter τ. Results
demonstrate that the proposed numerical implementation
yields consistent results for uncertainty parameter values
ranging between τ∈ ½0:03, 0:15�, with the highest correlations
being achieved with τ¼ 0:07 for IJF and τ¼ 0:03 for MCVC.
While MCVC demonstrated correlations consistent with
those previously reported in the literature, the IJF method’s
SPECT-V correlations represent a significant improvement
over previous results, despite known issues with SPECT vali-
dation. Immediate future work involves comparisons with
other ventilation modalities, such as PET Galligas and Hyper-
polarized gas MRI, that are generally considered to be supe-
rior to SPECT.
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