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The Current State of Sudden Cardiac Arrest
Sudden cardiac arrest (SCA) in the US accounts for an estimated 180,000–
300,000 deaths per year.1 Autopsy studies show that about half of sudden 
cardiac death patients have no specific findings on autopsy, while the 
other half has specific findings, such as MI, heart failure, or pulmonary 
embolism.2 Although national educational and prevention campaigns 
have increased the awareness of SCA and out-of-hospital cardiac arrest 
(OHCA), the survival after an OHCA remains low at 9.1%.2,3 In the chain of 
survival, bystander initiation of cardiopulmonary resuscitation (CPR) 
increases the 30-day survival rate to 10%.1 The effect is magnified when 
defibrillation with an automated external defibrillator (AED) is performed 
early by lay first responders. In fact, defibrillation by lay first responders 
was found to have the highest impact on survival (median 53%) when 
compared with professional emergency first responders (28.6%).1 In 
addition to survival, other benefits of bystander efforts include decreased 
rates of neurological damage and nursing home admissions.4 This 
improvement increases progressively as the arrival of emergency medical 
services is delayed. The increase in survival underlies the undeniable 
potential of pursuing innovation in cardiac arrest.

In this review, we describe new innovations to address unmet needs in 
the identification, treatment, and prevention of SCA and highlight 
technological advances such as machine learning and new AED designs 
in new public health models to reach the right person at the right time. We 
also discuss the priorities for reducing disparities in OHCA towards 
equitable interventions for communities at risk. Improving outcomes 
requires a combination of technological advancements and public health 
objects to propel the future of diagnosing and treating SCA.

Gap Analysis
Table 1 lists several unmet factors limiting the outcomes of SCA. The lack of 
AED use during the moments after a person’s cardiac arrest is associated 
with limitations in AED devices themselves, as well as public health efforts. 
Because most ventricular tachyarrhythmias occur in public spaces, our 
efforts should focus on the use of AEDs outside the hospital.5 While the 
availability of these life-saving devices has increased over the past two 
decades, current devices are expensive (up to and greater than $3,000 
per unit, plus an additional $150–400 for ongoing battery and electrode 
pad replacement).6 They are designed to be mounted in permanent 
holding locations, limiting their overall accessibility. Due to the necessity of 
manual maintenance, AEDs are often improperly maintained or neglected, 
leading to high rates of AED malfunction and failure. Device failures that 
have been reported to the Food and Drug Administration (FDA) include not 
powering on, powering off unexpectedly, failure to complete rhythm 
analysis, and failing to deliver a shock.7 Because of improvements in 
preventing and treating coronary artery disease, the incidence of shockable 
rhythms, particularly ventricular fibrillation, has decreased.8

The use of AEDs relies on the bystander to look for and find a nearby 
device. There is no existing map of AEDs in the US, and there is no central 
registration of the devices, although there is an ongoing approach to 
create one through the Dynamic AED Registry.9 Approximately 1 million 
AEDs have been purchased in the past 20 years, but the precise location 
of each device is not known.10 In addition, placement of AEDs in businesses 
that close after business hours can limit access during evenings and 
weekends. As many as 62% of OHCAs occur in the evenings, nights, and 
weekends, resulting in a 53% reduction in AED coverage.11–13 While most 
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AEDs are placed in open access cabinets, occasionally they are restricted 
and require personnel assistance, which can lengthen the time to access 
an AED.14

Even when AEDs are available during an OHCA, a lack of awareness and 
education of AEDs prevents their effective use. The general population is 
found to have as high as an 80% failure rate when compared with a 10% 
failure rate in trained physicians including anesthesiologists and 
surgeons.15 Successful defibrillation requires turning on the AED, placing 
AED pads on appropriate locations of a patient’s bare chest, waiting for 
analysis, prompting with voice and light, charging, and pushing the shock 
button while standing clear. Common mistakes include not removing the 
patient’s clothing, not placing pads correctly, and touching the patient 
while defibrillating.15 Up to 72% of errors associated with AED use are 
caused by the operator.16

Emerging Innovations to Address SCA
Improving Patient Identification with 
Electronic Medical Record Analytics
Advanced computational approaches such as machine learning have 
emerged to potentially improve the identification of patients shortly 
before a cardiac arrest. Lee et al. developed the Deep learning-based 
Early Warning System (DeepEWS) to predict cardiac arrests that occur in 
the hospital.17 The algorithm learned the relationship between vital signs 
and cardiac arrest and outperforms traditional track-and-trigger systems 
such as the Modified Early Warning Score (MEWS) with a higher specificity 
(87.0% versus 79.9%).18 Although the DeepEWS has fewer variables than 
the MEWS, it has the advantage of being able to interpret the vital signs 
based on one another, such as interpreting an elevated heart rate 
differently depending on the body temperature.18 

In patients with hypertrophic cardiomyopathy, machine learning was used 
to identify lethal ventricular arrhythmias for risk stratification to determine 
the need for ICD implantation. Using an electronic health dataset that 

involved 93 variables from echocardiography, cardiac MRI, Holter 
monitors, and EKGs, the investigators were able to demonstrate 12 new 
predictors of ventricular arrhythmias, including global longitudinal strain. 
By combining multiple machine learning methods, the new model had a 
higher area under the receiver operating characteristic curve (AUC) than 
the baseline model (0.83 versus 0.80).19 Similar predictive analytics by 
reviewing clinical diagnoses from the medical record have also been 
performed for patients with QTc interval prolongation to identify those at 
highest risk for torsade de pointes.20 

Among patients with heart failure and left ventricular dysfunction, machine 
learning with Cox proportional regression modeling was used to develop a 
prognostic model for heart failure survival models that was found to be 
more accurate than the traditional Seattle Heart Failure Model, with an 11% 
improvement in AUC.21 The limitations of such analyses using medical 
record data include the quality and quantity of the dataset that trains the 
algorithms. Even with perfect methodology, a dataset that does not contain 
adequate predictors will not produce a strong machine learning algorithm.22

Artificial Intelligence and Machine 
Learning Approaches to Cardiac Rhythms 
and High-risk EKG Phenotypes
EKGs and vital signs are particularly rich in quantitative data, making them 
well-suited for machine learning. Over the years, a number of EKG 
classification schemes has been proposed and implemented for use to 
improve the reporting of shockable rhythms. A few such machine learning 
approaches include frequency domain analysis, gradient pattern 
detection, waveform shape matching techniques, and neural networks to 
predict EKG rhythm classification.23 Multiple studies test and compare the 
variety of machine learning methods for performance accuracy (sensitivity, 
specificity, AUC), and they report performances as high as 95–99% 
accuracy (Table 2).23–27 In fact, some research has aimed at determining 
whether algorithms can even exceed the accuracy (precision, recall, F1 
score) of cardiologists.28

A common classification approach is to extract selected features of the 
EKG and to base classification on those features. Extracted features 
include time intervals such as PR interval, QRS, RR interval, and QT 
interval; amplitudes of P wave, QRS, or ST segment; shapes of P wave, 
QRS, and T wave; directions of the P wave, QRS, and T wave; and 
irregularity. These extracted features are submitted to a classifier, which 
in turn classifies the heart signal based on the extracted features. The 
classification results are then used to determine whether the detected 
cardiac rhythm is a good candidate for defibrillation shock therapy.24,28–30

Among the challenges in using machine learning for EKG interpretation is 
the abundance of individual features of EKG waveforms compared with a 
limited number of EKG training data. Often, the number of extracted 
features needs to be reduced or selected to be generalizable. Different 
techniques such as dimensionality reduction and feature selection 
optimize different feature combinations for a smaller subset of features to 
use in the classification.24 Combining multiple techniques improves 
learning further. For example, an algorithm combines a convolutional 
neural network with multiple input channels (stand-alone EKG, shockable, 
and non-shockable signals) with secondary learning (a boosting classifier) 
that improves accuracy to 99.25%.31

Machine learning can learn the EKG features not only of a particular 
rhythm, but also of a particular disease. A fully convolutional neural 
network approach reached the performance of human cardiologists to 

Table 1: Gap Analysis

Types of Gaps Causes
Limitation in bystander CPR Most events occur at home, not in public

Lack of recognition of event
Fear and unwillingness to become involved
Delay in calling 911
Poor description of event
Delayed dispatcher recognition of event
Lack of CPR and AED training

Limitations of current AED devices Cost
Manual maintenance requirement
Opportunities for operator errors
Continued analysis and shock through clothing
Incorrect shock advice16

Device failure
Non-compliance with AHA recommendations

Limitation in AED access No central registry
Variable geographical and logistical placement
Limited spatial access
Limited temporal access
Racial and gender disparities

Decrease in shockable rhythms Increased burden of non-cardiac comorbidities

Incorrect rhythm diagnosis Limitations in current automated diagnostic 
algorithms

AED = automated external defibrillator; AHA = American Heart Association; CPR = cardiopulmonary 
resuscitation.
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detect MI.32 Machine learning also has the ability to extract underlying 
EKG features in cases, such as hypertrophic cardiomyopathy. Primary T 
wave inversion not secondary to QRS abnormalities was found to be 
associated with a higher risk of sudden cardiac death.33

Innovations to Improve Bystander CPR
Lay persons who learn CPR by a novel kiosk approach with an on-screen 
practice with feedback outperform those who learn CPR by video only.34 
In the Netherlands, a simple method was tested to improve bystander 
defibrillation rates. A network of trained volunteers was available and 
notified via a text message alert system in the event of cardiac arrest. It 
involved a text message alert system for trained volunteers in the 
community. When a text message alert resulted in a trained volunteer 
responder, the recorded rhythm was more often shockable (59.9% 
versus 4.5%), suggesting a reduced response time, and survival to 
hospital discharge increased (27.1% versus 16% alive at discharge; OR 
1.95; 95% CI [1.15–3.33]).35 Another application, Heartrunner, dispatches 
volunteer responders who accept an alert, although a small randomized 
clinical trial of the application did not find a significant difference in AED 
attachment given that the majority of AEDs were attached by lay 
volunteers.36

New Automated External 
Defibrillator Technologies
Multiple studies have used machine learning to detect shockable rhythms 
in AEDs.31,37–39 We have recently described the creation of a novel 
convolution neural network (CNN) to diagnose a shockable rhythm from a 
single-lead EKG in next-generation, miniaturized AEDs. The AED was 
designed for personal use in community settings.40 Our approach was to 
develop a 26,000 single-lead EKG dataset consisting of publicly available 
and patient care EKGs, which was used to train, validate, and test the 
performance of a CNN that conformed to the American Heart Association 
(AHA) criteria for performance. A six-layer CNN was developed, with five 
convolutional layers and one fully connected layer, and performance was 
tested on the hardware of the AED device itself. In both internal and 
external validation analyses, this CNN was found to have high accuracy 
even with varying levels of noise applied to EKGs to mimic muscle artifact, 
and to have better performance compared with individual physician EKG 
readers. Intended for use in the field during OHCA, the neural network 
can generate an output in 383  milliseconds. The input is an EKG strip 
7 seconds long, therefore, added together, the AED has a total time of 
7.383 seconds to reach a decision. Together, these results are adequate 
to improve the chain of survival of cardiac arrest.

Other advances include mobile applications that create an online map via 
crowdsourcing to enable a quick mobile search for the nearest AED when 
the time arises.10,41 One mobile application, PulsePoint, includes an AED 
registry added by users and a community of individuals who sign up for 
notification by location to nearby emergencies requiring CPR.41,42 In 
Stockholm, Sweden, researchers tested AED-equipped unmanned aerial 
systems, or drones, that were dispatched and found to be faster than 
emergency medical services.43,44

Public Health Innovations
The Dynamic AED Registry is authorized by the FDA to catalog each AED 
with a 2D matrix code that records its location and status, which are 
tracked using a smartphone and passed to a confidential online 
database in real time. Users are encouraged to scan the code after 
using the AED, and then they answer preset questions.9 

Novel AEDs with improved machine learning techniques should be 
incorporated into public health emergency medical services systems of 
care. Key performance measures include recording the use of AEDs and 
regular service checks.

Corti is a Danish company that created a machine learning framework 
that listens to emergency phone calls, learning the words most often 
spoken in critical illness and the background noise accompanying it. 
When it detects cardiac arrest, it signals the emergency operator to 
advise the caller to begin chest compressions. While dispatchers 
recognized a cardiac arrest at an average of 54  seconds, Corti 
recognized it in 44 seconds. In addition, the model predicted cardiac 
arrest with a higher sensitivity as compared with medical dispatchers 
(84.1% versus 72.5%).26

The AHA aims to improve the use of AEDs through public access 
defibrillation programs that ensure that AEDs and trained lay rescuers are 
available. After primary training, 90% of volunteers retain competency in 
AED skills for up to 1 year.45 One of the major goals of the AHA is to improve 
public access defibrillation programs. Key recommendations for effective 
sites include planned and practised responses, ongoing training of lay 
rescuers, and links with local emergency medical services.46

In a landmark trial, the use of trained volunteers was capitalized upon by 
using a mobile-phone positioning system to dispatch them when an 
emergency occurred. This increased the rate of bystander-initiated CPR 
from 48% to 62%.47

Table 2: Machine Learning Innovations in Sudden Cardiac Arrest

Author Conditions Performance
Linh et al. 200354 Fuzzy network algorithm for EKG heartbeat detection Efficiency of recognition 96%

Özbay et al. 200655 Fuzzy clustering neural network algorithm in arrhythmia detection Recognition rate 99.9%

Pourbabaee and Lucas 200856 Multilayer perceptron neural network algorithm to diagnose AF Cases correctly classified 87%

Ceylan et al. 200957 Neural network algorithm for EKG beat detection Sensitivity 96.7%, specificity 100%

Zhang et al. 201558 Convolutional neural network algorithm to diagnose cardiac disorders (ischemic/dilated 
cardiomyopathy heart block, sick sinus syndrome)

True-positive rate 93%, true-negative rate 94%

Blomberg et al. 201926 Machine learning to recognize cardiac arrest during calls to emergency medical services Sensitivity 85%, Specificity 97%

Kim et al. 202225 Logistic regression, extreme gradient boosting, and multilayer perceptron network predicting 
in-hospital cardiac arrest in the emergency department

AUC 0.9267

Lee et al. 202327 Machine learning to predict in-hospital cardiac arrest in the intensive care unit AUC 0.881

AUC = area under the receiver operating characteristic curve.
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Equitable Approaches to Reduce 
Disparities in OHCA
Unfortunately, there are significant disparities in OHCA.48 There is a 
gender disparity in CPR, with more men (45%) receiving public bystander 
CPR than women (39%).49 Black and Hispanic communities have 
significantly lower rates of bystander resuscitation, thought to be 
secondary to lower rates of CPR training.50 Although there are similar 
bystander CPR rates, Asian individuals have lower survival than white 
individuals.51 It is unknown whether disparities in comorbidity or post-
resuscitation care exist for Asian versus white patients. There is also 
significant geographic variation among emergency medical service 
agencies, including response times and length of resuscitation.52 

Systemwide improvement is needed to improve these disparities, focused 
on funding, training, and measuring success metrics.53

Proposing a Data-driven and 
Technology-enabled SCA System of Care
Despite the life-saving capabilities of defibrillation with AEDs, these 
devices are left unused during cardiac arrest. We propose a data-driven, 
technology-enabled system of care to improve outcomes of SCA (Figure 
1). This involves machine learning algorithms to identify individuals at high 
risk, recognize emergencies, and diagnose rhythms. It requires new 
technology to make AEDs available where and when they are needed. 
Last, we need a public health framework to train volunteers and integrate 
the intelligence and innovation to save lives. 

Figure 1: Data-driven, Technology-enabled System of Care
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