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The eye is particularly susceptible to oxidative stress and disruption of the delicate
balance between oxygen-derived free radicals and antioxidants leading to many
degenerative diseases. Attention has been called to all isoforms of vitamin E, with
α-tocopherol being the most common form. Though similar in structure, each is diverse
in antioxidant activity. Preclinical reports highlight vitamin E’s influence on cell physiology
and survival through several signaling pathways by activating kinases and transcription
factors relevant for uptake, transport, metabolism, and cellular action to promote
neuroprotective effects. In the clinical setting, population-based studies on vitamin E
supplementation have been inconsistent at times and follow-up studies are needed.
Nonetheless, vitamin E’s health benefits outweigh the controversies. The goal of this
review is to recognize the importance of vitamin E’s role in guarding against gradual
central vision loss observed in age-related macular degeneration (AMD). The therapeutic
role and molecular mechanisms of vitamin E’s function in the retina, clinical implications,
and possible toxicity are collectively described in the present review.
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INTRODUCTION

Nutrition has a significant influence on ocular health. Certain vitamins may prevent or slow
the risk of several eye diseases like age-related macular degeneration (AMD), glaucoma, diabetic
retinopathy (DR), and cataracts. Supplementation is oftentimes beneficial and necessary if dietary
intake is below recommended guidelines. Compared to other organs of the body, the eye
is particularly susceptible to oxidative stress. Finding a balance between free oxygen radicals
and antioxidant vitamins E, A, and C may lower the threat of retinopathy. Of the fat-soluble
vitamins, vitamin E is a powerful antioxidant occurring organically in foods that protect the
body from free radicals that damage cellular processes. Vitamin E exists naturally in eight
chemical forms: α (alpha), β (beta), γ (gamma) and δ (delta)-tocopherol and α (alpha), β (beta),
γ (gamma) and δ (delta)-tocotrienol. Of all the forms, γ-tocopherol is the most common form
found in a Western diet of plant oils, though α-tocopherol [D-α-tocopherol (RRR-α-tocopherol)
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configuration] is the most biologically active. Tocopherols are
subject to oxidation, hence tocopheryl acetate (DL-α-tocopheryl
acetate), tocopheryl succinate (DL-α-tocopheryl succinate), and
tocopheryl nicotinate (DL-α-tocopheryl nicotinate)were created
for their stability under oxidative conditions by converting
the phenol group of the vitamin to an ester while tocopheryl
nicotinate is esterified to a niacin (vitamin B3) molecule.

Tocotrienols are the less understood and considerably less
widespread form of vitamin E. Tocotrienols differ in their side
chains by containing three trans double bonds, making them
much more flexible, putting greater stress on phospholipid
membranes. They are found in cereal grains like barley, rice, and
wheat. Palm oil is a great source of antioxidants that contains a
significant amount of tocotrienols. Half of the natural vitamin
E family are represented by tocotrienols, yet there are major
gaps in the literature regarding the non-α-tocopherol forms. The
biological actions of the differing homologs of vitamin E are
diverse though they are structurally similar. The unsaturated side
chains of tocotrienols appear to allow for more efficient tissue
penetration and distribution (Sen et al., 2006). Research into
tocotrienols has gained momentum in the last several decades
and has changed the trend in research of vitamin E.

The focus of this review is to shed light on the molecular
mechanisms involved in vitamin E signaling pathways as a
potential therapy for AMD, a progressive and irreversible
worsening of central vision, using a search of peer-reviewed
articles in the PubMed R© database for biomedical literature
focusing on the key words of the present review article
and covering the literature published prior to submission of
the present review article. Current treatments such as anti-
angiogenic drugs or laser therapy slow down the progression but
there is no cure. Results from population-based studies report
no improvement with vitamin E supplementation (Taylor et al.,
2002) while others tout the benefits for intermediate or advanced
AMD (Lindblad et al., 1999; Chew et al., 2012). A synopsis
of important preclinical and clinical studies involving vitamin
E’s benefit toward preserving vision are presented here with
the optimism that it will attract more research attention to its
mechanism of action.

THERAPEUTIC ROLE OF VITAMIN E IN
RETINAL DISEASE

Since its discovery a century ago (Evans and Bishop, 1922;
Evans, 1925), vitamin E’s antioxidant, anti-inflammatory, and
anti-apoptotic properties have made it a therapeutic option
for neurodegenerative diseases. Its antioxidant properties
were discovered in the 1930s from studies directed at animal
fats (Olcott and Emerson, 1937). In addition to its ability to
delay cellular injury, vitamin E also regulates inflammatory
cytokines and cell-signaling mechanisms. Evidence indicating
that the neurodegenerative process is associated with oxidative
stress and inflammation has led to the idea that neurological
conditions, especially retinal neurodegeneration may be
prevented with vitamin E.

Dietary Supplementation
Antioxidants take part in the crucial role of maintaining the
health of retinal tissue, as the retina is highly susceptible to
oxidative damage and free radicals. It naturally has a high
amount of blood supply with extensive oxidative metabolism
which can lead to increased amounts of free radical production
and lipid peroxidation (Muller, 1992; Winkler et al., 1999). The
therapeutic role of vitamin E in retinal disease pathogenesis has
been widely explored yet the focus of the data has been on clinical
studies in limiting the progression of retinal disease with vitamin
E treatment, especially dry AMD. The molecular mechanisms
of its therapeutic activity on degenerative retinal diseases like
AMD remain lesser-known. Vitamin E’s importance, alone or in
combination with additional vitamins such as vitamins A and C
has been shown to maintain retinal structure and function. The
most prevalent form of synthetic vitamin E is tocopheryl acetate,
found commonly in supplements, especially widely popular
ocular supplements containing the Age-Related Eye Disease
Study (AREDS) and AREDS2 formulation which introduced
zeaxanthin and lutein into the supplement (Lindblad et al., 1999;
Chew et al., 2012). These studies are important clinical trials
funded by the National Eye Institute and considered to be the
gold standard in promoting eye health. These supplements have
been clinically shown to slow the progression of advanced AMD
(Snodderly, 1995). Additional intake of lutein, zeaxanthin, and
other carotenoids with the reduction in zinc and the absence of
beta-carotene from the original AREDS formulation has shown
to be beneficial alongside vitamin E (Table 1; Cho et al., 2008;
Abdel-Aal el et al., 2013; Yang S. F. et al., 2016). A recent
comparative study looked at the concentrations of vitamin E
in national name brand vitamin supplements recommended for
patients at risk for macular degeneration and concluded that
levels were slightly higher than the label indicated, but not
enough to cause systemic toxicity (Fleissig et al., 2021).

Dietary supplementation with antioxidants can inhibit
complications of diabetes due to oxidative stress and abnormal
ATPase activity in the retina (Kowluru et al., 1996, 1999, 2001).
Retinal blood flow improvement in patients with diabetes as
evidenced by diabetes-induced electroretinogram (ERG) and
retinal vascular permeability (RVP) abnormalities have been seen
with vitamin E supplementation (Kunisaki et al., 1995, 1998;
Timothy et al., 2004). Other serious retinal diseases and injuries
of importance in which vitamin E has been shown to also provide
a protective effect include photic injury, oxidative injury, retinal
edema, uveitis-associated macular edema, and glaucomatous
damage (Tanito et al., 2002; Ohira et al., 2003; Aydemir et al.,
2004a,b; Nussenblatt et al., 2006; Engin et al., 2007; Zapata et al.,
2008).

Macular Degeneration and Vitamin E
The highest concentrations of vitamin E are found inside
the retinal pigment epithelium (RPE) followed by the outer
segments of the photoreceptor cells (Stephens et al., 1988).
Photoreceptor cell death (Dunaief et al., 2002), lipofuscin
accumulation (Dorey et al., 1989; Finnemann et al., 2002), and
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TABLE 1 | Comparison of AMD nutritional supplements.

Commercially available formulas

Nutrient AREDS* AREDS2 B&L
Preservision
AREDS

B&L
Preservision
AREDS2

B&L Ocuvite
Eye Health

Alcon Systane I-Caps
AREDS

Alcon Systane I-Caps
AREDS 2

Biosyntrx Eye and Body
Complete

Eye Science Macular
Health Formula

Vitamin C 400 mg 400 mg 226 mg
(ascorbic acid)

250 mg (ascorbic
acid)

150 mg (ascorbic
acid)

2226 mg (ascorbic acid) 250 mg (ascorbic acid) 251 mg (ascorbic acid and
ascorbyl palmitate)

500 mg (ascorbic acid)

Vitamin E 400 IU 400 IU 90 mg (dl-alpha
tocopherol
acetate)

90 mg (dl-alpha
tocopherol
acetate)

20 mg (d-alpha
tocopherol)

120 IU (dl-alpha tocopheryl
acetate)/80 IU (d-alpha
-tocopheryl acetate)

200 IU (d-alpha tocopherol
acetate)

15 IU (d-alpha tocopheryl
succinate and mixed
tocopherols), 15 mg mixed
tocotrienols

400 IU (d-alpha tocopheryl
succinate)

Beta-carotene* 15 mg – 4296 mcg – – 14320 IU – 1000 IU (retinyl palmitate) –

Copper (cupric
oxide)**

2 mg 2 mg 0.8 mg (cupric
oxide)

1 mg (cupric
oxide)

1 mg (copper
oxide)

0.8 mg (cupric oxide) 1 mg (cupric gluconate) 0.25 mg (copper sebacate) 2 mg (copper gluconate)

Lutein – 10 mg – 5 mg (marigold
flower extract)

5 mg (marigold
flower extract)

– 5 mg 10 mg 10 mg

Zeaxanthin – 2 mg – 1 mg (marigold
flower extract or
paprika fruit
extract)

1 mg (marigold
flower extract)

– 1 mg 3.13 mg zeaxanthin
isomers, 2.13 mg
zeaxanthin 3R, 3′R

2 mg

Zinc 80 mg 80 mg 34.8 mg (zinc
oxide)

40 mg (zinc
oxide)

9 mg (zinc oxide) 34.8 mg (zinc oxide) 12.5 mg (zinc oxide) 12.5 mg (zinc
monomethionine)

40 mg (zinc oxide)

Omega-3 fatty
acids

– – – – 250 mg (160 mg
EPA, 90 mg DHA)

– – – –

*Not recommended for smokers. **Added to avoid zinc-related copper deficiency. Formulas are based on the NEI-funded Age-Related Eye Diseases Studies (AREDS and AREDS2). Supplements that are made from
entirely natural sources contain d-alpha-tocopherol. This also is referred to as RRR-alpha-tocopherol. D-alpha-tocopherol is the most bioavailable form of alpha-tocopherol, meaning it’s the type that is preferred for use
by your body and is better absorbed and utilized than other forms. Dl-alpha-tocopherol is a synthetic form of alpha-tocopherol. This synthetic form of alpha-tocopherol is less bioavailable than the d-alpha-tocopherol
and is only half as potent, notes the Oregon State University, Linus Pauling Institute. This form of alpha-tocopherol is frequently found in nutritional supplements and fortified foods. Conversion: 1 mg of alpha-tocopherol
is equivalent to 1.49 international units (IU) of the natural form (d-alpha tocopherol) or 2.22 IU of the synthetic form (dl-alpha tocopherol), 1 mg of beta carotene equals 1667 IU.
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metabolic dysfunction of RPE are the main contributing factors
in AMD (Brown et al., 2019). Oxidative stress is known to
play a part in photoreceptor cell death and overall damage
in many retinal diseases including retinitis pigmentosa (RP),
diabetic retinopathy (DR), AMD, and glaucoma. Research studies
report that macular degeneration developed in monkeys after
a diet deficient in vitamin E. Lesions were characterized by
large, focal disruption of photoreceptor outer rod segments
(Hayes, 1974b). Indication of mitochondrial oxidative stress in
RPE linked metabolic dysfunction between photoreceptors and
RPE suggesting a possible mechanism for AMD in superoxide
dismutase 2 (Sod2)-KO mice (Brown et al., 2019). Photoreceptor
outer segment degeneration was reported in rats that were
given a diet lacking vitamin E due to enhanced activity of
lysosomal enzymes in the RPE (Amemiya, 1981). These studies
call attention to the consequences of a diet deficient in vitamin
E to guard against oxidative stress induced by lipid peroxidation
and suggest vitamin E’s role as a treatment strategy in preserving
retinal function in AMD.

Scientific literature has also identified an inflammatory role in
AMD (Ambati et al., 2013; Kauppinen et al., 2016). Inflammatory
cytokines, complement system, macrophage involvement, and
more recently, inflammasomes of the innate immune system
have been shown to be involved in the pathogenesis of
AMD (Liu et al., 2011; Chen and Smith, 2012; Shin and
Bayry, 2013; Knickelbein et al., 2015; Yang Y. et al., 2016).
Oxidative stress coupled with inflammation performs a role in
disease progression to the intermediate state characterized by
accumulation of drusen, lipofuscin deposits that build up in the
Bruch’s membrane. Constituents of drusen such as amyloid-β,7-
ketocholesterol, carboxyethylpyrrole protein (CEP)-adducts, and
advanced glycation end products (AGE)-adducts may elicit local
complement activation (Crabb et al., 2002; Dentchev et al., 2003;
Glenn and Stitt, 2009; Rodríguez and Larrayoz, 2010). Of those
with early to intermediate AMD, 15–20% will develop into late-
stage AMD (Sunness et al., 1997). Evidence of increased levels
a marker of inflammation, high-sensitivity C-reactive protein
(hsCRP), may predict the risk of macular degeneration. A study
from 2013 looked at hsCRP in blood samples of men and women
and observed a significantly increased risk of AMD for high
versus low hsCRP levels (Mitta et al., 2013). CRP potentially
mediates complement activation and may have significant roles
in therapeutic intervention in AMD. Activation of complement
by CRP was demonstrated with exogenous addition of CRP
by the formation of complement component iC3b in A2E-
laden RPE cells bathed in normal human serum (Zhou
et al., 2009). The fluorophore molecule A2E (N-retinylidene-N-
retinylethanolamine) is short for two all-trans-retinal molecules
(vitamin A aldehyde) and one ethanolamine molecule (Lamb
and Simon, 2004). In Sparrow et al. (2012), they showed that
pre-treatment with 100 µM of vitamin E for 24-h suppressed
complement activation evident by reduction of iC3b production
in mature retinal pigment epithelium-19 (ARPE-19) cells with
A2E accumulation (Sparrow et al., 2012).

Tocotrienols have been shown to inhibit angiogenesis, the
development of new capillaries from established blood vessel
networks (Miyazawa et al., 2008). Excessive and abnormal
growth of new blood vessels frequently occurs in neovascular

or “wet” AMD. Research performed with human umbilical vein
endothelial cells (HUVECs) by Miyazawa et al., 2008 concluded
that tocotrienols halted proliferation induced by growth factors,
cellular migration, and tube formation. Tocotrienols also
displayed suppression of tumor cell-induced angiogenesis in
mouse dorsal air sac (DOS) assay, tocopherols did not (Miyazawa
et al., 2008). Evidently, the differences in the biological activity of
the two forms of vitamin E are not redundant and the different
isoforms of vitamin E should be individually considered.

VITAMIN E DEFICIENCY

Our bodies need regular consumption and supply of vitamin E
stores. In 2000, the Food and Nutrition Board of the Institute
of Medicine recommended a 15 mg typical daily allowance
of vitamin E for adults (Medicine, 2000). Vitamin E is lipid
soluble, so any deficiencies are likely caused by dietary fat
absorption or metabolism.

Symptoms
Deficiency in vitamin E leads to characteristic, irreversible
changes in retinal structure and function. Described changes
include progressive neurological syndrome, pigmentary
retinopathy, cerebellar ataxia, loss of position and vibration
sense, pes cavus, scoliosis, and generalized muscle weakness
(Hayton et al., 2003). Factors leading to deficiency in vitamin
E can include environmental or nutritional influences, genetic
entities, iatrogenic, or experimentally induced sources. Mutations
found in α-tocopherol transfer protein (α-TTP) lead to
ataxia, a decline in the coordination of voluntary muscle
movements, with isolated vitamin E deficits (Ouahchi et al.,
1995). Vitamin E deficiencies are rare, but cases have been seen
in children diagnosed with abetalipoproteinemia and familial
hypobetalipoproteinaemia. These syndromes are lipoprotein
deficiency disorders causing a large amount of fat to build up
in the blood due to a lack of a protein that breaks down the
fat molecules (Lloyd, 1973). A very small study of children
diagnosed with chronic cholestasis and low blood serum vitamin
E and A concentrations all developed abnormal flash ERGs and
half had abnormal visual evoked potentials (VEPs; Bishara et al.,
1982). Patients with abetalipoproteinemia and severe vitamin
E deficiency demonstrated abnormal visual electrophysiology
(Bishara et al., 1982). Clinical retinal manifestations include
the development of progressive pigmentary retinopathy and
subnormal mixed cone-rod ERG amplitudes. Initial treatment
with oral vitamins E and A is advised (Alvarez et al., 1983;
Chowers et al., 2001). Cystic fibrosis and cholestatic liver
disease are also implicated in vitamin E deficiency with ocular
findings largely revealing a decrease of the ERG b-wave,
abnormalities of eye movement, and retinal degenerative changes
(Alvarez et al., 1983).

Retinopathy of Prematurity
Infants, especially premature babies, have an increased
susceptibility to oxidative damage due to their exposure to
large amounts of free radicals during the birth process as their
lungs adapt to their new environment as well as having vitamin
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deficiencies (Muller, 1992). This is exacerbated in premature
babies with respiratory distress syndrome of the newborn,
in which they are administered supportive oxygen in the
hospital, causing further free radical formation (Muller, 1992).
Premature infants can have vitamin E deficiency which can
manifest as hemolytic anemia and impaired coordination.
Retinopathy of prematurity (ROP) is often treated with vitamin
E supplementation in order to scavenge free radicals created
in the hypoxic birth process. In most newborns, vitamin E is
derived from breastmilk and reaches normal levels after a few
weeks. Vitamin E is easily found in a balanced diet, however, a
diet high in processed foods or low in fat can lead to a deficiency
in vitamin E. This was studied in lactating women and those with
diets high in processed foods had lower vitamin E levels in their
breastmilk (Amorim et al., 2021).

Bioavailability
Absorption of vitamin E is controlled by transporters including
the multidrug resistance protein 1 (MDR1) and ATP-binding
cassette transporter B1 (ABCB1) expressed on the apical
surface of enterocytes. Drug interactions can occur at this
point in the process as certain medications and herbal
supplements including St. John’s wort can alter expression
of these transporters (Podszun and Frank, 2014). Delivery
of vitamin E to its target tissues is a necessary process
that involves a number of lipoproteins for transport of
vitamin E’s hydrophobic characteristics, and binding proteins
which allow for transport intracellular and extracellularly
(Table 2). Although γ-tocopherol is the most abundant
isoform, its bioavailability is limited. Studies demonstrated that
concentrations of γ-tocopherol, but not α-tocopherol, declined
dramatically in plasma and lipoproteins of normal individuals
24-h after ingestion. Moreover, studies in patients post-surgical

for gall bladder procedures, revealed secretion of γ-tocopherol
in bile is preferential, suggesting the liver distinguishes between
α- and γ-tocopherol secretion (Traber and Kayden, 1989). The
discrimination of γ- in favor of α-tocopherol is due, in part,
to a higher affinity for transfer protein. The mechanism of
transport that is specific to α-tocopherol occurs in the liver by
a 32 kDa protein, α-tocopherol transfer protein (α-TTP), that
facilitates its secretion from hepatocytes to extrahepatic tissues
(Thakur et al., 2010). α-TTP was first reported in rat liver by
Catignani and Bieri (1977). Originally thought to only be present
in the liver, it is now widely accepted to be found in the brain,
kidney, lung, and spleen (Hosomi et al., 1998; Copp et al., 1999;
Yamaoka et al., 2008; Tamura et al., 2020). Additionally, it has
also been found to be localized to human placenta and mouse
uterus (Kaempf-Rotzoll et al., 2002, 2003; Rotzoll et al., 2008).
Distribution of vitamin E intracellularly has been identified to be
controlled by a novel, cytosolic 46-kDa α-tocopherol associated
protein (α-TAP), which binds α-tocopherol by chylomicron
formation and lipids in the liver (Stocker et al., 1999; Zimmer
et al., 2000) and acts as a metabolizing enzyme by increasing the
uptake and absorption of vitamin E and hence facilitates an anti-
proliferative effect most notably in prostate cancer and as a tumor
suppressor in cancer through a non-vitamin E mechanism. The
highest amounts of the human homolog hTAP have been found in
the liver, brain, prostate, and breast epithelial cells (Upadhyay and
Misra, 2009; Tam et al., 2013). α-TTP and α-TAP are expected to
be found in the retina since this neural tissue and its circuitry is an
extension of the brain and nervous system (London et al., 2013;
De Groef and Cordeiro, 2018).

Transport Across Blood Barriers
Transport of vitamins and essential nutrients through the blood-
retinal barrier (BRB) is facilitated by membrane permeability and

TABLE 2 | Vitamin E binding and transport proteins.

Vascular transport

Protein Gene Function

Chylomicron/Apolipoprotein B-48 APOB transport under normal physiological conditions

High density lipoprotein/Apolipoprotein AI APOA1 transport under normal physiological conditions

Low density lipoprotein/Apolipoprotein B APOB transport under fasting conditions

Very low density lipoprotein/several apolipoproteins APOB, APOC1, APOC2,
APOE

transport under normal physiological conditions

Afamin AFM binds hydrophobic molecules and may be involved in the transport of vitamin E
across the blood-brain barrier

Intracellular binding proteins

Protein Gene Function

Alpha-tocopherol transfer protein TTPA (known as TPP1) intracellular transport protein

Scavenger receptor class B type 1 (SR-B1) SCARB1 transfers vitamin E into the cell

ATP-binding cassette transporter A1 ABCA1 excretes vitamin E out of the cell

SEC14-like protein 2 [known as
alpha-tocopherol-associated protein (short names: TAP,
hTAP), squalene transfer protein, supernatant protein factor
(short name: SPF)]

SEC14L2
(synonyms:C22orf6,
KIAA1186, KIAA1658)

associates with α-tocopherol by binding hydrophobic molecules for intracellular
transport

SEC14-like protein 3 (aka Tocopherol-associated protein 2),
SEC14-like protein 4 (aka Tocopherol-associated protein 3)

SEC14L3 (synonym:TAP2),
SEC14L4 (synonym:TAP3)

not investigated thoroughly

Saposin B PSAP has specific binding site for γ tocopherol
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regulation of tight junctions of the retinal capillary endothelial
cells (inner BRB), analogous to the blood-brain barrier (BBB;
Campbell and Humphries, 2012), and RPE cells (outer BRB).
Inward and outward movement of fluid and molecules
between blood and retina is restricted by these structures.
DR and AMD are directly linked with alterations of the BRB
(Cunha-Vaz et al., 2011). To circumvent the BRB, intravitreal
injection of steroids and anti-vascular endothelial growth factor
(VEGF) treatments have become more widely administered
in recent years. Modulation of the inner BRB to enhance
systemic therapeutic intervention may lead to better options
in controlling retinal diseases (Campbell and Humphries, 2012).
Aeschimann et al. (2017) has shown that vitamin E delivery can
be effectively transported to tissues protected by an endothelial
barrier utilizing HUVECs. α-TTP displays a tendency to
aggregate into stable high molecular weight oligomers which
then transport α-tocopherol across endothelial barriers but not
through epithelial barriers.

Experimentally induced vitamin E deficiency is a way of
evaluating the effects of decreased levels of vitamin E found
in the retina. Interrelationships of vitamin E and A have been
studied and was found that a diet fed to rats lacking in both
vitamin E and A accelerated loss of photoreceptor cells but
the amount of cell death varied according to the quantity of
vitamin A provided in the diet (Robison et al., 1980). Dietary
vitamin E must cross the BRB from the circulating blood to be
effective in protecting the retina. Lipid transport by high-density
lipoprotein (HDL) via scavenger receptor class B type I (SR-BI) in
the retina has been identified in the transport process (Tachikawa
et al., 2007). Tserentsoodol et al. (2006) showed an internal lipid
transport mechanism that involves HDL-like particles and SR-BI
proteins are found in retinal pigment epithelium/choriocapillaris
(CC) regions, Müller cells, ganglion cells, and as well as primate
photoreceptors. Experimental evidence using α-TTP null mice
fed a diet deficient in vitamin E leads to a severe deficiency of
vitamin E (a rare condition), enhances lipid peroxidation in the
retina, and accelerates degenerative changes in the retina with age
(Tanito et al., 2007).

Animal Models of Retinal Vitamin E
Deficiency
Rodent models of experimental vitamin E deficiency can provide
clues to vitamin E’s role in disease processes of the retina
(Elizabeth Rakoczy et al., 2006). Through disease models,
we have learned that vitamin E and A maintain various
structures of the retinal tissue, yet in their absence, results
in lipofuscin deposits in the RPE and loss of rod nuclei in
rats fed a diet lacking vitamin E and A (Robison et al.,
1979, 1980). Studies using frog retinal outer rod segments
revealed stabilization of membrane fluidity due to α-tocopherol
(Moran et al., 1987). Alterations in membrane fluidity, lipid
peroxidation, and irreversible loss of long-chain polyunsaturated
fatty acids (LC-PUFAs) were also indicated in the rat (Goss-
Sampson et al., 1998). Other models of experimentally induced
vitamin E deficiency include monkey and bovine, which show
similar alterations in loss of structural integrity to rod outer

segment membranes (Hayes, 1974a; Farnsworth and Dratz, 1976;
Guajardo et al., 1999). The symbiotic relationship between
the structures of the outer BRB that include the RPE/Bruch’s
membrane/choriocapillaris (CC) complex is lost in AMD
and suggest vitamin E’s transport mechanism is ultimately
compromised (Bhutto and Lutty, 2012; Hosoya and Kubo, 2014;
Tisi et al., 2021).

MOLECULAR MECHANISMS OF
VITAMIN E SIGNALING IN THE RETINA

Vitamin E is known to activate kinases and transcription factors
that regulate gene expression (Figure 1). Signaling pathways that
are associated with the pathophysiology of macular degeneration
such as the mitogen-activated protein kinase (MAPK) signaling
pathway, which is stimulated by mitogens, hormones, growth
factors, cytokines, oxidative stress (Kyosseva, 2016), and the
transcription factor, nuclear factor erythroid 2-related factor 2
(Nrf2), regulates genes involved in the oxidative stress response
(He et al., 2020). The most widely known signaling pathway
associated with the retina and macular degeneration is the
vascular endothelial growth factor (VEGF) signaling pathway
(Kowanetz and Ferrara, 2006).

Distribution of Vitamin E in Ocular
Tissues
Much is still not understood on the signaling mechanism of
vitamin E’s neuroprotective and cytoprotective effects in the
retina. It has been shown that levels of α-tocopherol are higher
in the retina than in the vitreous and choroid. These findings
correlate with serum levels of α-tocopherol (Bhat, 1986). Results
from a comparative study to determine distribution differences
in rat eye tissue by administration of a 5 µL eye drop of
either tocopherol or tocotrienol concluded that the α-tocotrienol
concentration increased in all ocular tissues. Results showed that
α-tocopherol did not increase significantly nor did γ-tocopherol
and γ-tocotrienol differ significantly. Noteworthy increases in
total vitamin E were found in the neural retina, eyecup, and
crystalline lens (Tanito et al., 2004).

Role of Vitamin E in Retinal Layers
Photoreceptors and especially the outer rod segments are the
most vulnerable to oxidative damage through peroxidation
because more than 65% of the membrane fatty acids are poly-
unsaturated (Muller, 1992). Scavengers including glutathione
peroxidase are upregulated in the photoreceptor outer segments
in response to light exposure (Ohira et al., 2003). Levels of
α-tocopherol in retinal cytosol also have a positive correlation
with the antioxidant ability of vitamin A, suggesting a
compounding effect (Guajardo et al., 1999). This part of the
retina also sustains phototoxic damage due to intense light
exposure over time which can be seen as lipofuscin granules
(Muller, 1992; Winkler et al., 1999). Vitamin E can be beneficial
to decreasing phototoxic damage because of its ability to
decrease lipid peroxidation. Vitamin E deficiency accelerates
RPE autofluorescent pigment deposition rates, possibly by
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FIGURE 1 | Molecular pathomechanism of vitamin E (α-tocopherol) with phase II enzyme system, anti-inflammatory, and oxidative stress involvement in the retina.
AP-1, Activator protein-1; ATF-2, activating transcription factor 2; DAG, diacylglycerol; ERK, extracellular-signal-regulated kinase; FOS, proto-oncogene c-Fos; JNK,
c-Jun N-terminal protein kinase; Keap1, kelch-like ECH-associated protein 1; MAPK, mitogen-activated protein kinase; Nrf2, nuclear factor erythroid 2-related factor
2; P, phosphate group; PI3K, phosphoinositide 3-kinase; PKC, protein kinase C; VEGF, vascular endothelial growth factor.

enhancing the conversion of phagocytosed photoreceptor outer
segment components into autofluorescent pigment granules
(Muller, 1992; Winkler et al., 1999). This is likely a similar
mechanism to age-related lipofuscin formation. Both are formed
by autooxidation of photoreceptor disk membrane components.

The choroid and CC region can be affected by oxidative
damage in AMD so there is potential for vitamin E to
ameliorate these effects. As red blood cells pass through the
CC region, hemoglobin precursors may undergo photoactivation
(Winkler et al., 1999). Activating these precursors may generate
reactive oxygen species which can then damage the RPE and
Bruch’s membrane (Winkler et al., 1999). A deficiency of
vitamin E in rats triggered an increase of lipofuscin content in
melanocytes and fibroblasts of the choroid (Herrmann et al.,
1984). These changes were not seen in the endothelial cells of the
CC (Chapy et al., 2015).

Interconnected Signaling Pathways
In addition to vitamin E’s oxygen scavenging properties,
inhibition of cell growth and protein kinase C (PKC) activity
has been observed (Saishin et al., 2003; Xu et al., 2004; Betti
et al., 2006; Kim et al., 2010; Titchenell et al., 2012). It has
also been shown to alter expression of transcription factors
involved in gene expression (Zingg, 2015; He et al., 2020).
More research is needed to demonstrate that vitamin E mediates
signal transduction involved in macular degeneration pathology

(Figure 1). A summary of these pathways as determined
by published experimental studies is described in the sub-
sections below.

Models to Study Vitamin E Signaling
A common experimental model to study AMD and oxidative
stress is the use of the ARPE-19 cell line, immortalized
human RPE cells, and human telomerase reverse transcriptase
(hTERT)-RPE. In Duncan et al., 2022 they demonstrate that
α-tocopherol, γ-tocopherol, δ-tocopherol, and α-tocotrienol all
exhibited similar, but not identical, antioxidant activity. In
addition, exposure time is important for its protective properties
against oxidative stress. Synthesis of new proteins was also found
to be partially required with α-tocopherol, but not γ-tocopherol,
within a 24-h period and before exposure to tertiary butyl
hydroperoxide (tBHP) for optimal cytoprotection (Duncan et al.,
2022). In another study, ARPE-19 cells were subjected to
pre-treatment of ≥2.5 mM α-tocopherol, which significantly
decreased oxidative stress-induced activator protein-1 (AP1)
transcription factor expression at 14 h but was not further
reduced with higher levels of α-tocopherol (Yin et al., 2011).
The major AP1 transcription factor family of genes include
JUN, FOS, and ATF, which are important regulators of redox,
cellular homeostasis, and proliferation that can activate nuclear
factor kappa-light-chain-enhancer of activated B cells (NFκB)
and MAPK/extracellular-signal-regulated kinase (ERK) signaling
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pathways (Figure 1). Vitamin E pre-treatment also significantly
improved viability in APRE-19 cells exposed to oxidative stress
and quenched blue light induced lipofuscin autofluorescent
pigment accumulations of A2E-epoxidation causing DNA
damage and cell death in macular degeneration etiology,
respectively (Sparrow et al., 2003; Kagan et al., 2012). It was also
determined α -tocopherol, in combination with either zeaxanthin
or lutein, provided better protection to A2E photooxidation than
single antioxidant treatment (Kim et al., 2006).

Animal models are crucial for studying the mechanism of
AMD pathogenesis and evaluating therapeutic options to prevent
or slow disease progression. The features and stages of AMD
are not all replicated in non-human primates due to the lack
of a macula, but instead, horizontal visual streaks through the
retina have similarities to the primate macula (Hughes, 1985).
Researchers are still able to tease out valuable information on
mechanistic and novel treatments. A table of commonly utilized
models is listed in the following reviews (Pennesi et al., 2012;
Fletcher et al., 2014). Vitamin E therapeutics can be administered
to animals either systemically or topically to assess its effects on
disease phenotypes. There is scope for further investigation here
as this area is unexplored or currently under exploration during
the writing of this review.

Phase II Enzyme Inducer
Vitamin E has been shown experimentally to induce the phase II
enzyme system. These enzymes are involved in drug metabolism
in the liver and conjugate oxidized intermediates to form
hydrophilic products that can be more easily excreted by the
body. An upstream promoter regulatory element called the
antioxidant-response element (ARE) regulates the expression
of these enzymes. The ARE regulator is activated by Nrf2
transcription factors. A study using an acrolein (oxidant)
model of AMD in human retinal pigment epithelium cells
showed that α-tocopherol has been found to activate the
nuclear factor erythroid 2-related factor 2 (Nrf2) pathway (Feng
et al., 2010). This is done through cysteine residue oxidative
modification within kelch-like ECH-associated protein 1 (Keap1)
or phosphorylating Nrf2 (Feng et al., 2010). Activating this
pathway upregulates phase II enzymes (Feng et al., 2010).
Alternately, the same pathway can be activated by α-tocopherol
by activating phosphoinositide 3-kinase (PI3K) and mitogen-
activated protein kinase (MAPK) pathways which cause Keap1
phosphorylation (Figure 1; Feng et al., 2010). The importance
of Nrf2 and upregulation of phase II genes has potential for
neuroprotective application in AMD.

MOLECULAR MECHANISMS OF
VITAMIN E SIGNALING OUTSIDE OF THE
RETINA

Signal transduction pathways are modulated by vitamin
E through several mechanisms relevant for its absorption,
distribution, metabolism, and molecular functions. These
include modulation of a variety of enzymes involved in signal
transduction like cyclooxygenase-2 (COX-2), diacylglycerol

kinase (DGK), 5-, 12-, and 15-lipoxygenases (LO), protein kinase
B (PKB), PKC, protein tyrosine kinases (PTK), phospholipase A2
(PLA2), protein phosphatase 2A (PP2A), and protein tyrosine
phosphatase (PTP) (Zingg, 2015, 2019).

Modulation of Vitamin E
It is highly unlikely that one antioxidant is proven to be effective
in absence of other members of a supporting team like vitamin
C, selenium, vitamin A, CoQ10, and calcium to work efficiently
(Golumbic and Mattill, 1941). Calcium plays a significant role in
the metabolism of vitamin E. In studies of hepatocytes, calcium
was shown to modulate vitamin E metabolism. Decreasing
intracellular calcium levels led to a decrease in α-tocopherol levels
(Pascoe and Reed, 1987).

Peroxyl Radical-Scavenging System
Vitamin E’s antioxidant activity can scavenge reactive oxygen
and nitrogen species. This can protect mono-unsaturated fatty
acids (MUFAs/PUFAs) and their lipid mediators which are
important for cellular functions (Zingg, 2019). The unusually
high content of PUFAs in the membrane lipids are susceptible
to oxygen damage when vitamin E is low. These fatty
acids can play beneficial roles in preventing cancer, insulin
resistance, non-alcoholic steatohepatitis (NASH), cardiovascular,
and neurodegenerative disease (Zingg, 2019). It has been shown
that mixed tocopherols as seen in a typical diet had more
effect on several of the observed effects of tocopherol including
decreasing lipid peroxidation, attenuating platelet aggregation,
and decreasing arterial thrombosis than α-tocopherol alone
(Liu et al., 2002). Modulation by vitamin E can also affect
the stability and properties of the cell membrane, which can
indirectly modulate the signaling properties of proteins in
the membrane (Zingg, 2019). The different vitamin E analogs
affect cellular signaling differently through signal transduction
enzymes and influencing the translocation of receptors to the
plasma membrane (Zingg, 2019). Supplementation with vitamin
E succinate was shown to increase activity of glutathione
reductase and thus increase glutathione concentrations (Rego
et al., 1998). In addition, vitamin E has been demonstrated to
affect oxidative actions related to stress. Stress-induced increase
in lipid peroxidation caused by nitric oxide production is a
process that can be decreased by vitamin E (Yargiçoğlu et al.,
2003). Choroidal neovascularization, observed in “wet” AMD, is
vulnerable to sub-retinal hemorrhages which may induce retinal
degeneration by promoting lipid peroxidation from iron released
from hemorrhages as oxyhemoglobin (HbO2) or methemoglobin
(metHb). When porcine retinal homogenates were incubated
with α-tocopherol or docosahexaenoic acid (DHA), a major fatty
acid, α-tocopherol was more rapidly decomposed than DHA
with metHb versus HbO2. α-tocopherol scavenged hemoglobin-
induced lipid peroxyl radicals and was consumed in the process
(Ito et al., 1995).

Mitochondrial Dysfunction
Mitochondria are the primary user of oxygen for energy synthesis
and reactive oxygen species (ROS) produced there can go to
the cytosol, be neutralized by antioxidants, or remain within the
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mitochondria and interact with mitochondrial lipids, proteins,
and DNA. These interactions can alter mitochondrial function
by deactivating enzymes involved in the respiratory chain and
citric acid cycle. Mitochondrial dysfunction has been implicated
in diseases including aging, dementia, type 2 diabetes, and
obesity (Napolitano et al., 2019). As the major antioxidant
present in mitochondrial membranes, vitamin E can respond
with peroxyl radicals and protect mitochondrial membranes
from oxidative stress (Napolitano et al., 2019). This effect can also
be seen from studies in allergic asthma. Interleukin-4 (IL-4) and
12/15 lipoxygenase (12/15-LOX) contribute to mitochondrial
dysfunction in allergic asthma and can be reduced by vitamin
E supplementation (Mabalirajan et al., 2009). The mechanism of
IL-4 inhibition is thought to inhibit the binding of NF-κB and
transcription factor Sp-1 with binding sites of the IL-4 promoter
region (Mabalirajan et al., 2009). Interestingly, administration
of vitamin E increased mice longevity by slowing mitochondrial
degeneration (Mabalirajan et al., 2009).

Vitamin E Signaling in Systemic Disease
In addition to Vitamin E’s antioxidant properties, vitamin E
is known to have other beneficial effects in various disease
processes including being anti-thrombotic, anti-neoplastic, anti-
angiogenic, anti-inflammatory, and on levels of cholesterol
(Pearce et al., 1992; Singh et al., 2005; Song and DeBose-Boyd,
2006; Zingg, 2019; Ziegler et al., 2020). Anti-proliferative and
apoptotic properties have also been observed through studies
examining its inhibitory effects on mouse mammary cells. This
effect is thought to be due to its ability to reduce PKC activation
and can be extrapolated to modulating general mammary gland
development, function, and modification (McIntyre et al., 2000).
Anti-neoplastic actions of tocopherol have been described in
breast, colon, and prostate cancer cells (Betti et al., 2006).
This is thought to be due to a decrease in PKC-α activity
and decreased expression of cell cycle-related proteins (Betti
et al., 2006). This PKC-α effect can also decrease activation of
MAPK/ERK (Betti et al., 2006) and modulate gene expression,
including certain proteins that control cell cycle progression,
including cyclin D, cyclin E1, p27, and p53 (Betti et al., 2006).
γ-tocopherol may have stronger anti-inflammatory and anti-
neoplastic effects than α-tocopherol through increased inhibition
of COX2 (Betti et al., 2006).

Vitamin E can be anti-inflammatory through inhibition of
the PKC pathway (Lloret et al., 2019). It can activate protein
phosphatase 2A (PP2A) that deactivates PKC and modulates
diacylglycerol kinase (DGK) activity (Lloret et al., 2019). α- and
β-tocopherol have different effects on PKC. α- tocopherol has a
significant inhibitory effect on PKC in vascular smooth muscle
causing arrest of cell growth but β-tocopherol does not (Betti
et al., 2006; Lloret et al., 2019). This effect has been studied
with regards to Alzheimer’s disease, as there is thought to be an
oxidative stress and inflammatory component.

Vitamin E is thought to have anti-thrombotic properties
and has been studied in myocardial infarction prevention.
Separate from its antioxidant properties, α-tocopherol regulates
genes and enzyme activity involved in vitamin E uptake and
metabolism in addition to regulating lipoprotein uptake and

inflammation (Ziegler et al., 2020). A study of patients with
myocardial infarction, showed decreased levels of vitamin E in
a significant number of patients (Ziegler et al., 2020). Anti-
inflammatory properties including decreasing the release of
proinflammatory cytokines including interleukin-8 (IL-8) and
plasminogen activator inhibitor-1 (PAI-1) as well as decreasing
CRP levels have been observed (Singh et al., 2005).

Vascular Endothelial Growth Factor
Signaling
Studies indicate vitamin E to have regulatory effects on
angiogenesis through the modulation of VEGF (Zingg, 2019).
The exact regulatory pathways are unclear, as in some settings
vitamin E can activate or inhibit VEGF but it is thought to
block effector mechanisms (Nussenblatt et al., 2006). Studies have
been done in human microvascular endothelial cells (HMVECs),
HUVECs, and cultured endothelial cells with varying effects
on VEGF receptors (Zingg, 2019). It has been observed that
expectant ewes given vitamin E showed enhanced angiogenesis
and formation of the vascular network in the placenta, thought
to be due to increased VEGF (Zingg, 2019). On the other
hand, in a comparative study, tocotrienols inhibited bovine
aortic endothelial cell proliferation and tube formation of which
δ-tocotrienol appeared to have the highest activity. δ-tocotrienol
reduced VEGF-activated tube formation in HUVECs and
halted new blood vessel formation shown by a chorioallantoic
membrane assay to assess in vivo angiogenesis on the growing
chick embryo (Miyazawa et al., 2004).

MOLECULAR MECHANISMS OF
VITAMIN E TOXICITY

Toxic amounts of vitamin E do not concentrate in the body as
it is metabolized and transported out of the liver through bile
and urine. This prevents accumulating α-tocopherol levels and
eliminates toxic effects in most healthy individuals. Although
rare, there are some circumstances where exogenous vitamin
supplementation is not due to diet alone or conditions that
prevent excess vitamin E from being eliminated from the
body. Ideally, vitamin E supplementation should be kept
to a lower dosage.

Hypervitaminosis
As with many vitamins, an excess of vitamin E can cause potential
health complications. Many individuals consume vitamin E
supplements for its antioxidant or immune-boosting properties.
An accumulation of vitamin is a pathological condition known
as hypervitaminosis. It may take months for a vitamin to
substantially accumulate in the tissues, especially if the body is
unable to eliminate it (Kitagawa and Mino, 1989; Handelman
et al., 1994). The daily tolerable upper limit dose is 1000 mg
(Miller et al., 2005). An upsurge in mortality from all causes
has been reported with excessive doses of vitamin E (Miller
et al., 2005). Toxic amounts of vitamin E can alter liver and
kidney function and cause muscle weakness or bleeding problems
(Tsai et al., 1978). In addition, as vitamin E is metabolized in
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the liver by cytochrome P450 (CYP) enzyme system, it can
interact with many other commonly used medications that
share this pathway.

Cardiovascular Disease
The link between high doses of vitamin E and heart failure has
been extensively studied in several randomized control trials
including most notably the HOPE and HOPE-TOO trials. These
trials found greater risk of heart failure related to high doses
of vitamin E (≥400 IU/d) (Lonn et al., 2005). The cause for
this effect is unclear but has been postulated to be due to
disruption of the natural balance of antioxidant systems or
reduction of HDL cholesterol (Lonn et al., 2005). This effect was
redemonstrated by a similar trial, finding a 50% increase in risk
to develop congestive heart failure (CHF) after administration
of α-tocopherol (Brigelius-Flohé, 2007). A study examining the
effects of megadoses of vitamin E showed an increase in serum
triglyceride levels most pronounced in female subjects (Tsai et al.,
1978). Heart failure can result in microvascular dysfunction
in the retina where dilation responses of both arteriolar and
venular retinal microvessels were significantly reduced to a flicker
stimulus (Grassi and Mancia, 2018; Nägele et al., 2018). Concern
about this effect may limit the usefulness of vitamin E in large
doses in patients with extensive cardiovascular risk factors or
diabetes, both of which are common in the elderly population
where AMD would be seen. On the other hand, Bursell et al.
(1999) described in early stages of type I diabetes, high doses
of vitamin E controlled retinal blood flow with minimal to no
diabetic retinopathy.

Thyroid Homeostasis
Tocopherol has been shown to affect the hypothalamus-pituitary-
thyroid axis (Tsai et al., 1978). Prolonged vitamin E deficiency
has shown a reduction in function of this system, while large
doses of vitamin E have been shown to lower concentrations
of thyroid hormone T3 and T4 (Tsai et al., 1978). However,
studies with a longer duration have shown that this may be a
transitory effect (Tsai et al., 1978). Low thyroid levels can cause
hypertriglyceridemia and may contribute to this observed effect
(Tsai et al., 1978). Thyroid hormones are known to regulate visual
functions in human and mouse studies (Takeda et al., 1994, 1996;
Ittermann et al., 2014). Data indicate that cultured human RPE
cells are a direct target of thyroid hormones (THs; Duncan et al.,
1999). Ma et al. (2014) looked at cone cell viability and whether
TH signaling affects retinal degeneration mouse models. TH
signaling has been shown to be important for cone visual pigment
expression and pattern formation while an overabundance of TH
signaling causes cone degeneration (Ng et al., 2010). In contrast,
Ma’s study discovered when TH signaling was suppressed in
rodent cone-rod dystrophy models, preservation of cones was
found, a novel approach to macular degeneration therapy (Ma
et al., 2014). A link between thyroid hormone, vitamin E, and
macular degeneration has not been thoroughly investigated and
can only be speculated at this time.

Bleeding Disorders
The most well-known symptom of vitamin E toxicity is bleeding.
Vitamin E inhibits vitamin K dependent activation of clotting

factors, tissue factor, and inhibits aggregation of platelets with
an oxidative stress mediated mechanism (Handelman et al., 1994;
Chapy et al., 2015). Intracranial hemorrhagic stroke with higher
than recommended doses of vitamin E has been reported (Le
et al., 2020). This is especially important to consider in patients
using warfarin (a vitamin K antagonist) for anticoagulation.
A retrospective cohort study found that serum vitamin E
levels could predict bleeding events in patients on warfarin
(Chapy et al., 2015).

Drug Interactions
Vitamin E supplementation can also potentially interact
with medications such as simvastatin (Zocor) and niacin,
chemotherapy and radiotherapy, and anticoagulants and
antiplatelet medications (Brown et al., 2001; Cheung et al.,
2001; Doyle et al., 2006; Block et al., 2007; Lawenda et al., 2008;
Violi et al., 2010; Pastori et al., 2013). Decreased concentrations
of mRNA for hepatic organic anion transporting polypeptide
3 (OATP3) transport proteins have been found in rats that
were injected with α-tocopherol (Podszun and Frank, 2014).
These transport proteins are important for uptake of statin
medications into circulation. Several cases have implicated the
use of niacin with cystoid macular edema (CME; Millay et al.,
1988; Fraunfelder et al., 1995; Callanan et al., 1998; Domanico
et al., 2015). The CYP enzyme family can also be affected by
vitamin E. These enzymes are responsible for metabolism of
xenobiotics and 60% of prescription medications (Brigelius-
Flohé, 2007). In rat studies using vitamin E supplementation, a
vitamin E deficient diet reduced CYP enzyme concentrations.
The mechanism behind this is thought to be vitamin E activation
of a nuclear pregnane X receptor (PXR) driven chloramphenicol
acetyltransferase (CAT) reporter in HepG2 cells, a human
hepatoma cell line that is typically used in drug metabolism
and hepatotoxicity studies which can mediate and induce CYP
functions (Brigelius-Flohé, 2007). This can decrease the efficacy
of common drugs. RRR-α-tocopherol did not alter hepatic
mRNA expression of CYP enzymes, however, high doses of all
racemic α-tocopherol acetate induced hepatic mRNA expression
3-4x (Podszun and Frank, 2014). At normal doses, vitamin E
does not appear to have significant effects on CYP expression.
There is evidence to suggest a link between CYP27A1, a
broadly expressed mitochondrial sterol 27-hydroxylase, AMD,
and cholesterol maintenance in the retinal. Retinal lesions
developed in Cyp27a1−/−mice were characterized by cholesterol
containing drusen, neovascularization, and activated Müller cells
(Omarova et al., 2012). Müller cells are the first to reveal changes
in metabolic processes due to retinal stress or disease. Cholesterol
buildup is associated with macular degeneration (Sarks et al.,
1999; Curcio et al., 2011). It is conceivable that the AREDS
formulation containing vitamin E reduces the progression of
drusen in AMD, but this is not proven and remains to be seen.

Fetal Health and Birth Defects
Research investigating teratogenic effects triggered by vitamin
E on fetal health has been investigated in rat models where no
obvious teratogenic effects, survival rate, or size and weight of
litters were observed (Martin and Hurley, 1977). In mothers
treated daily with 500 mg of vitamin E, results showed a delay
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in opening eyelids and other ocular complications, however,
nothing statistically significant in comparison to control animals
(Martin and Hurley, 1977). It has been shown in several
studies that vitamin E protects against birth defects in the
presence of nicotine use, sparing malformations, embryonic
bone development (Güler et al., 2022), decreased the rate of
embryo malformations, and increased size and maturation of
streptozotocin-induced diabetic animals (Viana et al., 1996).
Folic acid and vitamin E taken together with antiepileptic,
antihypertensive, and anti-allergic drugs prevented mortality and
teratogenic effects in mice (Wahid et al., 2014). Teratogenicity
due to zinc deficiency is not ameliorated by vitamin E, suggesting
that fatty acid metabolism may be impeded by zinc causing an
increase in the lipid peroxidation rate (Hurley et al., 1983). With
this, it cannot be assumed that vitamin E’s antioxidant effects are
entirely beneficial.

Ocular Drug Delivery to Bypass Systemic
Effects
While significant doses of systemic vitamin E have demonstrated
a toxic effect (Abdo et al., 1986), there is less pre-clinical
evidence to show that accumulations of ocular vitamin E are
toxic. Intravitreal injection of high concentrations of an ocular
therapeutic allows for the bypass of systemic effects (Peyman
et al., 2009). Results from intravitreal injection of vitamin E
in rabbits suggest that α-tocopherol in doses of 0.05, 0.10, and
0.20 mL failed to show any toxic effects following injection at
1 week, 1 month, and 3 months (Fallor et al., 1984).

CONCLUSION AND FUTURE RESEARCH

Vitamin E influences cell physiology and survival by several
signaling pathways. The molecular mechanisms by which it
achieves uptake, transport, metabolism, and cellular action to

promote neuroprotective effects in the retina are still being
elucidated. Clinical studies suggest that supplements containing
vitamin E may benefit individuals with moderate to severe
AMD in contrast to only a nominal protective effect in early
disease progression. Reducing the risk of AMD vision loss must
begin prior to detection. Supplementing our diet with vitamin
E, recommended by medical professionals, is beneficial to our
health and survival but current literature also warns us against
adverse effects. The long-term supplementation of vitamin E
to counteract the progressive effects of AMD deserves further
pre-clinical research.
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