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Abstract

Arbuscular mycorrhizal fungi (AMF) are part of the most widespread fungal-plant symbiosis.

They colonize at least 80% of plant species, promote plant growth and plant diversity. These

fungi are multinucleated and contain either one or two haploid nuclear genotypes (monokar-

yon and dikaryon) identified by the alleles at a putative mating-type locus. This taxon has

been considered as an ancient asexual scandal because of the lack of observable sexual

structures. Despite identification of a putative mating-type locus and functional activation of

genes related to mating when two isolates co-exist, it remains unknown if the AMF life cycle

involves a sexual or parasexual stage. We used publicly available genome sequences to

test if Rhizophagus irregularis dikaryon genomes display signatures of sexual reproduction

in the form of reciprocal recombination patterns, or if they display exclusively signatures of

parasexual reproduction involving gene conversion. We used short-read and long-read

sequence data to identify nucleus-specific alleles within dikaryons and then compared them

to orthologous gene sequences from related monokaryon isolates displaying the same puta-

tive MAT-types as the dikaryon. We observed that the two nucleus-specific alleles of the

dikaryon A5 are more related to the homolog sequences of monokaryon isolates displaying

the same putative MAT-type than between each other. We also observed that these

nucleus-specific alleles displayed reciprocal recombination signatures. These results con-

firm that dikaryon and monokaryon isolates displaying the same putative MAT-type are

related in their life-cycle. These results suggest that a genetic exchange mechanism, involv-

ing reciprocal recombination in dikaryon genomes, allows AMF to generate genetic

diversity.

Introduction

Arbuscular mycorrhizal fungi are plant endosymbionts, forming symbioses with most plant

species, promoting plant growth [1], plant community diversity [2, 3] and affect how plants

cope with biotic [4] or abiotic stresses [5]. As a consequence, they are widely used in
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agriculture [6]. In a single agricultural field, the presence of at least 17 different genotypes of

Rhizophagus irregularis displaying spatial genetic structure have been detected [7, 8]. Further-

more, these R. irregularis isolates display different levels of within isolate genetic diversity [9],

which has been reported to produce differential effects on plant growth [10]. Understanding

how genetic variability is generated in AMF, is important because it could be harnessed to gen-

erate genetic variants that could be beneficial for their plant hosts [11].

AMF are part of the Glomeromycotina subphylum [12], which fossil records date to at least

~400 Million years ago [13]. They are coenocytic (without septa separating otherwise adjacent

compartments), their hyphae harbor hundreds of nuclei within the same cytoplasm [14] and

no single-nucleus state has been recorded. The nuclei of these fungi have been reported as hap-

loid [15–18]. This group of fungi has been previously considered as an ancient asexual scandal

[19], due to low morphological diversification and the absence of observable sexual structures.

However, different reports suggest that sexual reproduction could be possible in AMF since

these fungi contain a complete meiosis machinery [20]. A putative mating-type determining

locus (MAT) has been proposed [16], population genetic data suggests the existence of recom-

bination in AMF populations [21] and activation of genes related to mating has been detected

when different isolates of the same species co-exist in plant roots [22, 23].

Several R. irregularis isolates issued from the same geographic location have been reported

to have one haploid nuclear genotype (monokaryon: isolates A1,B12 and C2) and two haploid

nuclear genotypes (dikaryon: isolates A4, A5, C3 and G1) [16, 24–26], evidencing that mono-

karyon and dikaryon isolates co-exist in the same location. Single nucleotide polymorphisms

(SNP) profiles from single-nucleus from dikaryon isolates (A4, A5 and SL1) cluster into two

genetically different groups, that are associated with the identity of a putative MAT-locus [24].

This demonstrates that the presence of two copies of the putative MAT-locus is a reliable

marker of the dikaryon state.

Like most fungi, AMF can undergo anastomosis, the fusion of hyphae. Through these con-

nections, bi-directional flow of cytoplasm has been observed between genetically different

AMF individuals [27]. Via anastomosis, the transfer of genetic material between vegetative

compatible isolates (parasexuality) has been suggested as a mechanism of maintenance of

genetic diversity in the absence of sexual recombination [28]. In fungi, hyphal fusion between

different individuals leads to cell death, however, non-self vegetative compatibility has also

been observed in AMF when different isolates form perfect hyphal fusions [29]. In the model

species Aspergillus nidulans parasexuality involves fusion of two haploid nuclei, mitotic recom-

bination and haploidization of the diploid nuclei by i.e. chromosome loss [30]. In conse-

quence, a genomic signature of parasexuality is gene-conversion where there is a loss of

heterozygosity. Although sexual reproduction can also produce signatures of gene-conversion,

sexual reproduction also involves meiotic recombination and allele segregation on reciprocal

products [31].

The existence and relevance of sexuality and/or parasexuality for the evolution of AMF

remains unknown [32]. It has been hypothesized that monokaryon isolates could fuse to form

dikaryon isolates during the AMF life-cycle [16]. However, it is still unclear whether the transi-

tion between a dikaryon and monokaryon life stages involves a sexual event involving meiotic

recombination, or a parasexual event.

In the absence of stable transformation methods in AMF [33], analyses of continuous geno-

mic sequences (haplotype analyses) could be an important resource to identify genomic signa-

tures of recombination in dikaryon isolates. Nucleus-specific alleles from dikaryon isolates

(identified through haplotype phasing) can then be compared to orthologous sequences of

related monokaryon isolates (that share the same MAT-type) and could allow to identify
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genomic signatures of a sexual event, involving meiotic recombination, or a parasexual event

which results in the loss of heterozygosity or gene conversion.

AMF genomes display large gene duplication events [18], which make it difficult to distin-

guish nucleus-specific sequences (orthologs) from sequence duplications (paralogs) in dikar-

yon isolates. The analysis of nucleus-specific sequences could be used to better differentiate

orthologs from paralogs. The identification of nucleotype specific sequences in dikaryon iso-

lates could be made by: 1) Drop in coverage analyses: use of short-read sequences to identify

genome-wide copy number variation. These analyses consist in obtaining the read depth, or

coverage, after mapping the reads to a genome assembly and identify changes in coverage

across the genome [34]. A drop in coverage could represent that the sequences are nucleotype

specific. In AMF, a drop in coverage analysis was used to originally identify a putative MAT-

locus [16]. 2) Analyzing sequences issued from long-reads sequencing platforms to identify

haplotypes and, consequently, nucleotype-specific sequences in fungal dikaryon isolates [35].

Here, we demonstrated that AMF dikaryons display reciprocal recombination genomic sig-

natures by analyzing nucleotype-specific sequences in dikaryon (A5) and monokaryon isolates

(A1-C2). In this study we used publicly available data of bulk whole genome short-reads

sequencing, single-nucleus short-read sequence data and long-read bulk sequence data to

identify nucleotype-specific sequences in dikaryon isolates. We identified regions displaying

drops in coverage in short-read whole genome sequence data. In these regions we detected the

presence of genes that have two alleles in the dikaryon isolates and one allele in the respective

monokaryons. We then confirmed independently, with short-read genome sequence data

from single-nucleus, that in dikaryon isolates, different nuclei have different alleles and that

they are not always associated to the nucleus genotype (putative MAT identity), evidencing a

reciprocal recombination genomic signature. Finally, we validated the analysis, by evaluating

long-read genome sequence assemblies and confirmed that A5 dikaryon display genomic sig-

natures of reciprocal recombination.

Materials and methods

Source data

We used public-available sequence reads, genome assemblies and annotations of isolates A1,

A4, A5, C2 of R. irregularis for this study, including data from bulk-isolate and single-nucleus

sequencing (S1 Table). We used short-read whole genome assemblies from isolates A1, A4, A5

and C2 [16]. We used single-nucleus raw short-reads to generate genome assemblies from

individual nuclei of isolates A1, A5 and C2 [24]. We also analyzed long-read genome assem-

blies of isolates A1, A5 and C2 [36].The long-read genome assembly of the dikaryon isolate A5

is a phased assembly, where the contigs are divided in two parts, the primary assembly and the

haplotig assembly. We downloaded the sequence reads from the sequence read archive (SRA)

using the SRAtoolkit software with the prefetch and fastq-dump tools [37].

Coverage analysis on bulk sequencing short-reads

We first trimmed the bulk sequence reads using Trim Galore! [38] with the default parameters.

We then used BWA [39] to index the reference genome assemblies and BWA mem -M [39] to

map the reads to the reference whole-genome assemblies. We mapped the reads coming from

a given isolate to the reference genome assembly of the same isolate (i.e. reads A1 mapped to

reference A1). We then kept the reads that display a mapping quality of at least 30. We used

the genomecov tool from bedtools [40] to calculate the coverage for each position. We then

created a ready-to-use algorithm that detects genome-wide drop in coverage analysis in

whole-genome data (S1 File). The algorithm divides the data in portions of 50kb. Then, with a
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sliding window approach consisting of windows of 400bp and steps of 100bp, the algorithm

searches for drops in coverage of 0.3–0.6 times lower than the median coverage of the entire

genome and that with a minimum length of 1000bp (Please refer to S1 File for the algorithm

specifications implemented in the R programming language). We then further filtered the

regions exhibiting a drop in coverage by keeping only the regions that display an average of

1.25 coverage difference between the neighboring regions and the drop in coverage region.

Gene detection in coverage drops

We identified all the genes located within genomic regions that presented a drop of sequencing

coverage. We used the ‘intersect’ command from the BEDTools suite with the existing gene

annotations corresponding to each R. irregularis isolate (GTF format) and their query regions

with drops in coverage (BED format) to identify overlapping genes [40]. Genes in scaffolds

smaller that 1kb were not considered for further analyses.

de novo single-nucleus assemblies

We trimmed the single-nucleus raw reads by using TrimGalore-0.6.0 [38] with default param-

eters. After trimming, we performed single-nucleus de novo assemblies with SPAdes v3.14 [41]

with the following parameters: -k 21,33,55,77—sc—careful—cov-cutoff auto. The resulted sin-

gle-nucleus genome assemblies were used for further analysis. The length, number of contigs

and N50 value of the de novo assemblies was evaluated with quast- 5.1.0rc1 with default param-

eters [42].

Identification of genes in genome assemblies

To identify the position of gene sequences on the different genome assemblies, we first

extracted a query sequence. We then used the console NCBI+ blast suite [43] to blast the query

against the desired target. In the case of the putative MAT-locus, we used the homeodomain

genes HD2 and HD1-like as query (HD2:KT946661.1, HD1-like: KU597387 from isolate A1).

For further downstream analyses, we extracted the sequences from the genome assemblies by

using the blastdbcmd command from the NCBI+ suite. We used a reciprocal blast approach to

identify the gene sequences corresponding between the whole genome sequence data and the

single-nucleus data. We considered the best hits by evaluating the % identity, mismatches, e-

value and bitscore. We used the reciprocal blast in the comparison between gene sequences in

the short-reads bulk assemblies and the single nucleus assemblies. We do not expect that a

high gene copy number plays a role at this step because we worked with highly filtered data.

i.e. we are sure that the genes to compare display two copies in the dikaryon and 1 in the

monokaryon. So, from the resulting blast output we keep only the best match of the sequence.

Orthology inference

We used Orthofinder 2.3.11 [44] to identify orthologs of genes found inside the drop in cover-

age regions within the same isolate. We also identified orthologs in the long-read assemblies

and identified single copy orthologs in isolates A1, C2, the primary assembly of A5 and the

haplotig assembly of A5. We used the orthogroups output from Orthofinder for the different

analyses.

Synteny plots

We compared genomic regions by performing synteny plots computed with EasyFig2.2.3 [45].

We provide full Genbank files of each contig to compare genomic regions to each other. The

PLOS ONE Reciprocal recombination in arbuscular mycorrhizal fungi

PLOS ONE | https://doi.org/10.1371/journal.pone.0270481 July 1, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0270481


software executes a blast comparison between the regions to determine their homology. We

used the default parameters for the blast. The figure result can be modified by using the tools

on the image menu.

Genetic distance between nucleus-specific haplotypes on short-reads data

Coding sequences for the 12 confirmed nucleotype-specific genes were extracted using the

Blast+ command line blastdbcmd tool [43]. The sequences were then aligned with MAFFT

[46] using the—auto option. Then, the ape package [47] of R was used to calculate the pairwise

distance between the 4 alleles (2 from A5, and 1 each from A1 and C2).

Recombination detection in short-reads data

We compared the sequences from drop in coverage regions from both nuclei specific haplo-

types of isolate A5 and isolates A1 and C2 to detect if isolate A5 display recombination events

between the two putative parental isolates. After identification of the syntenic region among

the different isolates, we aligned the sequences with MAFFT [46] and evaluated whether the

sequence of one of the nucleotype of isolate A5 was similar to A1 and the other similar to C2.

Recombination detection in long-reads data

We identified genomic regions in isolate A5 that display long phased sequences containing

more than 10 genes. We then identified single-copy orthologs in the monokaryon isolates A1,

C2 and on the phased assembly of isolate A5 (primary and haplotig assemblies). We then visu-

alized the phylogenetic relation of each single-copy ortholog among the four genome assem-

blies by using the gene tree output Orthofinder [44]. We considered a sequence as recombined

when within the same continuous phased sequence, we observed that an allele of the A5 pri-

mary assembly clusters with an allele of isolate A1, and then a contiguous gene of the same A5

primary assembly clusters with the allele of isolate C2. We did not compare phased sequences

separated by unphased sequences because this could lead to artificial recombination signals.

Phylogenetic analyses

We used MEGA-X [48] for the different phylogenetic reconstructions shown in the study. We

find the best DNA models describing the relation between the sequences. Finally, we used a

maximum likelihood phylogeny reconstruction with 100 bootstraps to infer the phylogenetic

relation among the samples. In several cases, we were not able to perform maximum likelihood

phylogenies because of the low number of samples to compare, so UPGMA trees were done

instead. Phylogenetic reconstructions of the different orthologous groups on Fig 4 where pro-

duced by the Orthofinder software.

Results

Drop in coverage analysis on bulk short-reads genome assemblies reveals

potential nucleotype-specific haplotypes

Previously, a drop in coverage analysis of selected regions was used for the identification of a

putative MAT-locus in R. irregularis [16]. To perform a similar analysis across the entire

genome, we developed a script (S1 File) that allows us to identify genome-wide drop in cover-

age events (for the accessions of raw data and genome assemblies used in this study see S1

Table).

We identified drops in sequencing coverage in 4 different isolates of R. irregularis which are

reported to be dikaryons (A4 and A5) and monokaryons (A1 and C2) (Fig 1, S2 Table). The
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number of coverage drops and genes inside the drop in coverage regions were different

between dikaryons (A4-A5) and monokaryons (A1-C2) (S3 Table). These results indicated

that dikaryotic isolates displayed more heterozygous regions than the monokaryons, suggest-

ing that the genes present within the regions showing a drop in coverage are potential candi-

dates for highly divergent, nucleotype-specific alleles in dikaryons. Confirming the reliability

of our approach, we detected the expected drop in coverage in the putative MAT-locus region

in isolates A4 and A5 but not in isolates A1 and C2 (Fig 1D).

One cause for a drop in coverage could be copy number variation between the nucleotypes in

a dikaryon. To test for this, we inferred orthologous gene families among the different isolates to

identify if the genes present in the drop in coverage regions displayed more than one copy in

their own genome. We used the gene annotation available for each isolate and inferred the

orthology of all the genes present in each genome. Many orthologous groups had more than one

copy within each isolate (A4: 20%, A5: 18%, A1: 17% and C2: 19%; Fig 1 and S1 Fig, S4 Table)

consistent with the high reported incidence of paralogs in these fungi [18]. We further identified

orthologous gene families of genes detected in drop in coverage in isolates A4 and A5 indepen-

dently. Under the assumption of a monokaryon-dikaryon genome organization in R. irregularis,
to avoid the confounding effect of duplications and reduce the complexity of the dataset, we

retained only the orthologous groups that are present in the drop in coverage regions and that

display two copies in the dikaryon isolates (A4, A5) and a single copy in the monokaryons (A1,

C2) (Fig 2A, S5 Table). In the regions where a drop in coverage was detected, we identified 32

orthologous groups that are present with two copies in isolate A4 and only a single copy in iso-

lates A1 and C2. We also identified 27 orthologous groups in isolate A5 that display two copies.

Only two orthologous groups were common between the two isolates: namely, HD2 and

HD1-like which are part of the putative MAT-locus in R. irregularis (Fig 2B). As reported in

Ropars et al., we observed that the two copies of the putative MAT-locus in the dikaryons were

located in different contigs. One copy of HD2 and HD1-like genes were present in a long contig

of the genome assembly, while the second copy was present in a much shorter contig (Fig 2C).

We observed the same pattern for the other orthologous groups, where the second copy was

always present in a second shorter contig (for several examples see Fig 2D).

To further sort paralogous genes from true orthologs, we performed a synteny analysis to

compare the genomic location of the presumed orthologous genes among isolates. We identi-

fied that 12 out of 32 predicted orthologs in A4 and 16 out of 27 predicted orthologs in A5,

were located in the same genomic location on the different isolates, suggesting that they should

be considered as orthologs (S5 Table, for examples of inferred orthologs and paralogs see Fig

2, S2 Fig).

Hence, in the whole genome assemblies of dikaryon isolates, two divergent alleles were

assembled into different scaffolds; one longer scaffold containing neighboring regions and a

shorter scaffold without the neighboring regions. Given that the nuclei are haploid in the

dikaryon isolates, two possibilities are consistent with this previous fact: The two copies could

be present within the same or in different nuclei.

Drop in coverage signatures represent nucleotype-specific sequences

To confirm that genes found inside drop in coverage regions are nucleotype-specific, we used

sequencing reads of individual nuclei of dikaryon isolates A4 and A5 [24] to produce de novo
single-nucleus assemblies. The de novo assemblies were very fragmented and incomplete (Fig

3, S3A and S3D Fig, S6 Table) and their utilization was highly limited. This limitation resulted

in the inability to identify some genes and some complete gene sequences. However, a recipro-

cal blast approach between the whole genome assembly and the single-nucleus assemblies
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allowed us to detect sequences in the single-nucleus assemblies corresponding to the genes

detected in the whole genome assemblies.

We tested in the dikaryons if the genes identified in the drop in coverage regions were pres-

ent in the form of different alleles in different single nuclei by using a reciprocal blast

approach. We confirmed 9 orthologous genes to be nucleotype-specific in isolate A4 and 12

orthologous genes in isolate A5 (S7 Table). We found that the population of nuclei clustered in

two groups that corresponded to the identity of the putative MAT-locus contained in each

nucleus (Fig 3). This result confirms that nucleotype-specific alleles in dikaryon isolates can be

identified based on genes found in drop in coverage regions and that are represented by a

duplication within the genome assembly.

Nucleotype-specific alleles from A5 share a more recent evolutionary origin

with monokaryon isolates A1 and C2 than among them

The origin of dikaryon isolates could be investigated through comparisons of monokaryon iso-

lates that display the same alleles of the putative MAT-locus, to those found in the dikaryons

Fig 1. Drop in coverage events in isolates A4, A5, A1 and C2. a, Examples of drop in coverage events. We plotted the normalized coverage (y) per position

(x). Grey rectangles represent the region detected by the algorithm. The horizontal dashed line represents the normalized coverage. b, Number of regions

showing a drop in coverage that were detected in each isolate. c, Number of genes found in the regions showing a drop in coverage in each isolate. d, Summary

statistics of regions showing a drop in coverage: i, proportion of total length of regions showing a drop in coverage and proportion of contigs that contain

regions with a drop in coverage. ii, Histogram representing the lengths of identified regions where a drop in coverage was detected. iii, Coverage plot on the

putative MAT-locus. Drop in coverage was detected in isolates A4 and A5 but not in A1 and C2.

https://doi.org/10.1371/journal.pone.0270481.g001
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(Isolates A5:MAT-3/MAT-6; A1:MAT-3; C2: MAT-6). A phylogenetic reconstruction of the

putative MAT-locus suggests that MAT-3 from isolates A1 and A5 are more closely related

than MAT-6 from isolates C2 and A5 [16]. Furthermore, a phylogenetic reconstruction of sev-

eral R. irregularis isolates, based on thousands of SNPs, indicated that isolate A5 is more closely

related to isolate A1 than to isolate C2 [9, 49].

Fig 2. Identification of orthologs of genes present in regions showing a drop in coverage. a, Orthologous groups that display two or more genes in

dikaryons and only a single gene in monokaryons. This analysis was performed independently on isolate A4 and isolate A5. � orthologous groups where HD2

and HD1-like genes are present. b, Venn diagram representing the number of shared orthologous groups within drop in coverage regions between isolates A4

and A5. Only two orthologous groups were shared between the isolates, they contain the putative MAT-locus genes HD2 and HD1-like. c, Synteny plot

between the two contigs containing the different alleles of the putative MAT-locus of isolates A4 and A5. d, Synteny plot between the two contigs containing

different alleles of other orthologous genes. Please note that the synteny figures are made from the public available annotations of each genome assembly.

Differences in size of open-reading frames (ORF) among isolates are due to differences in detection of ORF on each isolate and likely could be the result of the

annotation process.

https://doi.org/10.1371/journal.pone.0270481.g002
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To confirm the previous findings, for each previously defined nucleotype-specific gene, we

compared the phylogenetic relationship of the two nucleotype-specific alleles in isolate A5 iso-

late and in isolates A1, C2 and A4. We observed that for several nucleotype-specific alleles, the

allele from isolate A1 clustered with one of the alleles of isolate A5, but it was not always the

case for isolate C2 (Fig 4A).

We then analyzed the genetic distance of each of the 12 nucleotype-specific genes indepen-

dently between the two alleles of isolate A5 and the homologous allele in isolates A1 and C2.

The mean nucleotide distance between the two A5 alleles was 0.147. The mean distance

between A1 and C2 was 0.132. In contrast, the mean of the minimum distance between an

allele of isolate A5 and isolate A1 was 0.013 and between A5 and C2 was 0.043 (Fig 4B). We

did not observe any case where the two A5 alleles clustered together, instead we observed that

for all 12 nucleotype-specific gene the two A5 alleles were more similar to the allele from iso-

late A1 or C2 (Fig 4C). The mean distances calculated between alleles in this study are much

higher than average distances calculated on the whole genome between different isolates [50],

reflecting our selection criteria for nucleotype-specific regions. As each of the A5 alleles was

closer to A1 or C2, instead of the two A5 alleles being most similar, this indicates that the

alleles of A5 share a more recent evolutionary origin with these monokaryons than the two

alleles within A5.

Fig 3. Single-nucleus sequence data confirms that genes contained in regions where a drop in coverage was observed are nucleotype-specific.

Phylogenetic reconstruction of single-nucleus for genes found in regions where a drop in coverage was detected in A4 and A5 isolates. The genes are named by

their membership to the orthologous groups previously defined. Branch support consisting of 100 bootstraps is shown. When only sequences from three nuclei

were included, we performed an UPGMA hierarchical clustering. a, data for nuclei from A4 isolate. b, data for nuclei from A5 isolate.

https://doi.org/10.1371/journal.pone.0270481.g003
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Identification of reciprocal recombination between nucleotype-specific

haplotypes in isolate A5 using single-nucleus data

Knowledge about nucleotype-specific alleles of dikaryon isolate A5 and their orthologs in iso-

lates A1 and C2 allowed us to test whether parasexual or sexual genomic signatures could be

identified in dikaryon isolate A5 (Fig 5A). We scanned the different nucleotype-specific-genes

for the detection of recombination events within the two haplotypes of isolate A5. Comparison

of gene sequences issued from the short-read whole genome assemblies from isolates A1, C2

and the two haplotypes of A5 showed that each nucleotype-specific allele from isolate A5 was

highly similar to either the allele of isolate A1 or C2, but we did not identify any recombination

events on these sequences (S4 Fig).

To further assess the potential for clonal relationships between the two alleles within A5

and isolates A1 and C2, we compared the nucleotype-specific alleles on the single-nucleus

assemblies from isolate A5 and their orthologs on the single-nucleus assemblies of isolates A1

and C2 (S8 Table). The difference with the previous analysis is that with the single-nucleus

Fig 4. Nuclei from isolate A5 share a more recent evolutionary origin to isolates A1 and C2 than among them. a, Phylogenetic reconstruction of

nucleotype-specific alleles in isolate A5 and its orthologs in isolates A1, C2 and A4. c, Average genetic distances between the different nucleotype-specific alleles

from two alleles from isolates A5 and their homologs in isolates A1 and C2. We show histograms representing the genetic distance between the two nucleotype-

specific alleles of isolate A5 and their homologues in isolates A1 and C2. For comparisons between A5 and C1 or A1 we used the minimum distance of the two

alleles from A5. d, Scenarios of genetic similarity between the two A5 alleles and alleles from A1 and C2.

https://doi.org/10.1371/journal.pone.0270481.g004
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data, we are able to identify the identity of the A5 alleles by identifying the identity of the puta-

tive MAT-type on each nucleus. We found that for several nucleotype-specific genes (i.e.

OG2995, OG3981 and OG4715), the alleles from isolates A5 (MAT-3 type) and A1 (MAT-3

type) clustered together (S5 Fig, Fig 5B). However, we found that for other nucleotype-specific

genes (OG4925, OG4492 and OG4493), the alleles from isolate A5 (MAT-3 type) clustered

with the alleles from isolate C2 which has a MAT-6 type (Fig 5, S5 Fig, Fig 5C). The alignments

on these nucleotype-specific genes show that A5 nuclei with MAT-3 have similar, but not

identical alleles as C2 nuclei (MAT-6 type). In the same way, A5 nuclei with MAT-6 type har-

bor alleles similar to those of A1 nuclei (MAT-3 type). These results demonstrate that the A5

isolate harbors two nuclei genotypes, where one genotype is highly similar to the genotype dis-

played on nuclei of isolate A1 and the other A5 genotype is similar to the genotype of isolate

C2. However, the A5 nuclei that is similar to the A1 nuclei, contain regions that are more simi-

lar to the equivalent region of isolate C2. This happens as well, for the A5 nuclei that is similar

to isolate C2, where some regions are more similar to the equivalent region of isolate A1, dem-

onstrating a reciprocal recombination pattern. The presence of reciprocal recombinant nuclei

in isolate A5, involving isolates sharing the same MAT-type, strongly suggest that isolate A5

results from a sexual and not parasexual event between isolates similar to A1 and C2.

Confirmation of reciprocal recombination events in isolate A5 using long-

read genome assemblies

We compared single-copy orthologous genes among the A1, C2 assemblies and the phased

assembly of isolate A5, which is divided in a primary assembly and an haplotig assembly.

The long-read assemblies were more complete and contain longer scaffolds than the short

reads assemblies (S3B, S1C, S1E and S1F Fig). The A5 phased assembly consisted of a primary

Fig 5. Recombination events in nucleotype-specific genes in A5 isolate. a, Schematic representation of possible outcomes after fusion of two different

isolates. Please note the schema illustrates different contigs, separated by blank lines and no different chromosomes. b,Phylogenetic relationship of different

nucleotype-specific alleles among different nuclei from A1, A5 and C2 isolates. Cases where no recombination was detected. Nuclei having the same MAT-type

clustered together. c, Phylogenetic relationship of different nucleotype-specific alleles among different nuclei from A1, A5 and C2 isolates. Cases where

recombination was detected. Nuclei having the same MAT-type did not clustered together. We performed 100 bootstraps for the branch support of all

phylogenetic constructions.

https://doi.org/10.1371/journal.pone.0270481.g005
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assembly of 392 scaffolds and an haplotig assembly on 292 of the primary scaffolds. The pri-

mary assembly was 115Mb long and the haplotig assembly was 19.2Mb [36].

We identified 1250 single-copy orthologs among isolates A1, C2, the A5 primary assembly

and the A5 haplotig assembly (S9 Table). We then focused only in the orthologs were one of

the genes of A5 clustered with either A1 or C2. The majority of the gene sequences were very

similar among all the isolates, however we identified 44 orthologous groups where one of the

alleles of A5 isolate cluster with an allele of isolate A1 or C2 (23 genes A1-A5haplotig and 21

genes A1-A5primary). We observed that for several contiguous phased regions, a gene dis-

played the A5primary allele clustering with A1 allele and in another gene, contained in the

same contiguous region, the A5 primary allele clustered with the C2 allele (Fig 6), confirming

that reciprocal recombination signatures are found within continuous haplotypes (S9 Table).

Discussion

In this study, we used published short and long read sequencing data to demonstrate that

nucleotypes from the dikaryon isolate are more genetically related to monokaryon isolates dis-

playing the same putative MAT-type than between each other. We also demonstrated that sig-

natures of reciprocal recombination can be detected in genomes of dikaryon AMF isolates

with the help of related monokaryon isolates that display the same putative MAT-type as the

dikaryon. This study suggests that in the AMF life cycle there could be a transition between

monokaryon and dikaryon isolates sharing the same putative MAT-type. It also suggests that a

Fig 6. Recombination events identified in continuous haplotypes issued from the long-read genome assembly of dikaryon isolate A5. a Schematic

representation of recombination events within continuous haplotypes. We highlight single-copy orthologous genes represented by different colors depending if

they cluster with a gene of isolate A1 MAT-3 (yellow) or C2 MAT-6 (violet). Genetic recombination is demonstrated when within a continuous haplotype (grey

background) a change in clustering pattern between an A5 haplotype and isolate A1 or C2 is observed. We can also observe that for few cases the two

haplotypes of A5 clustered together (green). b Phylogenetic reconstructions of the different single-copy orthologous groups identified within the same

haplotype. We can observe that the clustering pattern change within the same haplotype (i.e. A1-A5primary and C2-A5primary). We performed 100 bootstraps

for the branch support of all phylogenetic constructions.

https://doi.org/10.1371/journal.pone.0270481.g006
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genetic exchange, involving reciprocal recombination, could be another mechanism generat-

ing genetic variability in AMF.

In the absence of experimental evidence that isolates with different putative MAT-types are

involved in sexual reproduction, genomic signatures of recombination can help us to under-

stand whether sexual or parasexual reproduction are involved in the AMF life cycle. On one

hand, parasexual reproduction genomic signatures involves gene-conversion, which result is

the loss of heterozygosity [51]. On the other hand, reciprocal recombination associated with a

putative sex-determining region (MAT-type) is a genomic signature of sexual reproduction,

although gene-conversion could also happen in sexual reproduction [52]. It could be plausible

that parasexual recombination could lead to a reciprocal recombination pattern by fusion of

two monokaryons, mitotic reciprocal recombination, followed by reciprocal chromosome

loss, however this cascade of events seems less plausible.

In this manuscript, we used single-nucleus short read sequence data which produced highly

fragmented and incomplete single-nucleus assemblies. We were able to work with this data

because it served as a confirmatory dataset. We would not be able to identify recombination

signatures relying only on the single-nucleus sequence dataset. The identification of genomic

regions to test the hypothesis was made on the bulk short-read genome assemblies. However,

with the bulk genome assemblies we were not able discriminate which of the two copies of the

dikaryon is more similar to A1 or C2, because we did not have phasing information. It was at

this step when the single-nucleus assemblies are useful. The single nucleus assemblies con-

tained phasing information. Each nucleus had been sequenced independently and the infor-

mation of the putative MAT-locus was associated to the nucleus ID. Consequently, there is an

ID number (e.g. SN01) of a given nucleus and then its assembly is associated with that ID.

Then the nucleus ID can be associated with the sequence of the putative MAT-locus. This

makes it possible to associate other sequences at other genomic regions to the putative MAT-

locus ID. We then were able to test our hypothesis by querying each nucleotype-specific gene

detected with the bulk short-read data on the different types of nucleus (which are defined by

their putative MAT locus).

We identified few regions that display recombination patterns within continuous haplo-

types in the dikaryon isolate A5. The principal reason, is that we did not evaluate all the differ-

ent genes present, but only the genes that display only 1 copy in a haploid phased contig. We

only compared single-copy orthologs among the different assemblies, to avoid the confound-

ing effect of paralogy on our results. In consequence, the examples of reciprocal recombination

shown in this study, are only a small subset of the total plausible recombination spots present

in their genomes. With the information of nucleotype-specific haplotypes identified with the

drop in coverage analysis, we found that nucleotypes of isolate A5 were as little 1% diverged

from isolate A1 and 4% diverged from isolate C2, suggesting that isolates sharing the same

MAT-type as the monokaryon isolates A1 and C2 are closely related ancestors from which the

dikaryon A5 arose. Interestingly, with the long-read data, we identified several loci where the

A1 and C2 genes were more closely related among them than to the alleles of isolate A5. This

suggests, that there could be other evolutionary forces shaping AMF genome evolution. AMF

genomes could be influenced by horizontal gene transfer from the host plant or bacteria [53]

Transposable elements (TE) have been reported to be responsible of genome duplications,

inversions, insertions and deletions [18, 54, 55]. In nature, AMF co-exist with different con-

specifics and they co-exists as well with different host-plants. We could speculate, that gene

trajectories within AMF populations could be also driven by TE-mediated horizontal gene

transfer events. However, an important sampling of AMF genomes is necessary to better

understand the genome architecture features and life-history of the different gene families

[56].
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An intriguing question, is how only two coexisting nucleotypes and a well-orchestrated

mechanism such as meiosis could be achieved without the presence of a single-cell stage in the

AMF life cycle. A genetic bottleneck, where only 1 or 2 nuclei co-occur has never been detected

in AMF. Despite the last feature, two studies that evaluated nuclear imbalance in dikaryon iso-

lates show that nuclei ratio among single-spore lines are conserved despite multiple culturing

for years [57] or are stable when exposed to different host plants [26]. These studies suggest

that a nuclei regulation mechanism should exist and could be responsible of the stability of the

nucleotypes in the dikaryons.

In this study, we compared haplotypes within the dikaryon A5 to monokaryon isolates (A1

and C2) that contain the same putative MAT-types as the dikaryon A5 to identify the recombi-

nation patterns. We were able to analyze these signatures on the A5 dikaryon, but not on the

dikaryon A4, because there are no available genomic assemblies of monokaryon isolates dis-

playing the same putative MAT-type as in Isolate A4. We hypothesized that MAT-type com-

patibility exists between the two different putative MAT-types identified in the dikaryon

isolates. However, to date there is no direct experimental evidence that different putative

MAT-types could be compatible. An indirect evidence of compatibility between different puta-

tive MAT-types was found, when two different isolates harboring different putative MAT-

types elicited a putative fungal mating response [22, 23]. However, Mateus et al., did not test if

the mating of two co-existing isolates took place [22]. Consequently, in order to experimentally

identify mating and MAT-type compatibility, crossing experiments between strains harboring

different putative MAT-types, including transcriptome and recombinant progeny analyses

should be performed.

One of the main findings in this study is that in dikaryon short-read assemblies, if the two

alleles of the same gene are highly divergent (i.e. like idiomorphs), the alleles are dispatched in

two separate contigs. One allele can be found in a large contig containing the neighboring

region of the allele and displaying a drop in coverage, whereas the second allele, without its

neighboring region, is present in another short contig. We were able to demonstrate this by

looking at the orthologous relationships between the two alleles of the gene present in the two

different contigs. Our approach is reliable because we also detect the putative MAT-locus

which is present in two separate contigs in the Illumina assemblies.

Our “drop in coverage” approach allowed us to identify divergent nucleotype-specific

alleles in dikaryon isolates situated in different contigs of the short-read whole genome assem-

blies. This approach differs from previous approaches of global intra-isolate divergence assess-

ment that measured the number of SNPs [58] or poly-allelic sites [9]. Although the

comparison of both types of measurements gave similar information (intra-isolate divergence),

their comparison should be carefully addressed as their methodology and the types of

sequences compared are different. While SNPs are best identified in low divergence regions,

where reads can be confidently mapped to the same contig, the sequences with large genetic

differences, detected with the drop in coverage approach, are highly divergent to the point that

they are assembled in different contigs in the same genome assembly. Consequently, genetic

divergence between alleles detected in different genomic locations should be higher than when

the two alleles are collapsed in the genome assembly. Contrary, to the drop in coverage analysis

using short-read data, the analysis made on phased haplotypes from long-read sequencing, dis-

play genes that differ in several SNPs between the two dikaryon haplotypes.

Inter-nucleus recombination has been previously reported [24], although the robustness of

the analysis has been questioned. The application of strict filtering parameters such as removal

of heterozygous sites in haploid nuclei, duplicated regions of the genome, and low-coverage

depths base calls results in an extreme loss of the signal of recombination [59]. Although some

of these limitations, as coverage depth and filtering-out heterozygous sites were addressed
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[58], other limitations such as replicability (recombination events shown in several nuclei shar-

ing the same putative MAT-type) and issues related to the whole-genome amplification step as

the formation of chimeric sequences [60], allelic drop-out [61] and SNP miscalling [62] are

inherent limitations of the analysis of any single nucleus amplification data. Furthermore, the

previously reported evidence of large inter-nuclei recombination [24, 58] does not fit the

observations about a monokaryon–dikaryons organization in AMF. In Chen et al., 2018a, the

selected examples of genotypes presented, show 4 nuclei per isolate, which represent four dif-

ferent nucleus genotypes for SL1, A4 and three different nucleus genotypes on A5. The same

pattern can be observed in Chen et al., 2020, the examples of genotypes show 7 out of 8 differ-

ent nucleus genotypes in isolate A5, at least 7 different nucleus genotypes in isolate A4 and at

least 5 different nucleus genotypes in SL1. The presence of repeated inter-nuclear recombina-

tion in dikaryons without prior crossing with other isolates, as observed in the single-nucleus

genotypes shown in Chen et al. (2018a, 2020) would result in heterokaryons with more than

two types of nucleus genotypes. But this does not appear to be the case for R. irregularis [16,

24, 59, 63].

Maintaining monokaryon and dikaryon isolates within the same natural population sug-

gests that both forms are stable over time. Rather than a promiscuous mixing between isolates

via anastomosis, a mechanism of recognition that involves a putative MAT-locus could regu-

late which isolates can form a dikaryon [64]. The fact that nucleotype-specific haplotypes from

isolate A5 are more closely related to isolates A1 and C2, and that A5 nucleotypes display

recombination, suggests that isolates sharing the same putative MAT-type as A1 and C2 could

be the origin of a recombining dikaryon isolate. However, we cannot discard that these find-

ings could apply to another step of the AMF life cycle. It could also be possible that a stable A5

isolate could segregate producing recombined monokaryons that share the same putative

MAT-type as isolates A1 and C2, that can disperse and then fuse again to form stable dikar-

yons and complete a life cycle which involves recombination. It then becomes crucial to exper-

imentally confirm if monokaryon isolates having different putative MAT-types could generate

a dikaryon-like form and if a dikaryon isolate could segregate into recombining monokaryon

isolates. It is difficult to establish in-vitro crosses mainly due to the difficulty of spore identifi-

cation arising from the hyphae that fuse from the two parental isolates (an in-vitro culture pro-

duces thousands of spores). Hyphal fusion between different parental isolates has been

reported [29, 65, 66]. We think that with technologies such as microfluidic channels developed

for the study of filamentous fungi [67], it could be easier to identify hyphal fusions and the

resulting spores from individual fusions. However, if recombination is a rare event between

AMF genomes, which is a possibility, then it may be difficult to observe it in the laboratory.

Understanding the life cycle of AMF could have an enormous impact in the generation of

AMF genetic variability. The generation of diverse AMF monokaryons or dikaryons could be

used to generate variants that enhance plant growth and have an enormous potential in agri-

culture [11].
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