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The improving access to increasing amounts of biomedical data provides completely new
chances for advanced patient stratification and disease subtyping strategies. This requires
computational tools that produce uniformly robust results across highly heterogeneous
molecular data. Unsupervised machine learning methodologies are able to discover
de novo patterns in such data. Biclustering is especially suited by simultaneously
identifying sample groups and corresponding feature sets across heterogeneous omics
data. The performance of available biclustering algorithms heavily depends on individual
parameterization and varies with their application. Here, we developed MoSBi (molecu-
lar signature identification using biclustering), an automated multialgorithm ensemble
approach that integrates results utilizing an error model-supported similarity network.
We systematically evaluated the performance of 11 available and established biclustering
algorithms together with MoSBi. For this, we used transcriptomics, proteomics, and
metabolomics data, as well as synthetic datasets covering various data properties.
Profiting from multialgorithm integration, MoSBi identified robust group and disease-
specific signatures across all scenarios, overcoming single algorithm specificities. Fur-
thermore, we developed a scalable network-based visualization of bicluster communities
that supports biological hypothesis generation. MoSBi is available as an R package
and web service to make automated biclustering analysis accessible for application in
molecular sample stratification.
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Optimizing treatments and improving patients ’ health is the goal of precision medicine.
In contrast to canonical medicine, where treatments are prescribed empirically (1),
precision medicine aims to identify individually adapted treatments. Nowadays, diseases
are commonly diagnosed based on the International Classification of Diseases. This
assumes that diseases show similar symptoms in every individual; hence treatments are
meant to act on the majority of symptoms. Patient stratification for precision medicine
builds on the idea that a cohort of patients with varying or similar symptoms might
have different molecular causes. They can then be stratified on the molecular level and
divided into subgroups (2). Therefore, precision medicine wants to move away from
classical disease definitions to characteristic signatures of molecular alterations which
enable individualized treatments.

Achieving this requires an understanding of molecular disease mechanisms. Unsuper-
vised machine learning methods are best suited since they uncover the inherent structure
of the given data and do not require labeled data, which might be biased toward classical
disease understandings (3). Unsupervised clustering methods seek to identify distinct
subgroups over the entire features set, but it is unrealistic to assume that diseases manifest
in all features. Instead, they are limited to a subtype-specific subset. Biclustering algorithms
can meet this requirement.

Molecular data is usually available in data matrices with patient samples as columns and
biomolecular features as rows. Biclustering algorithms cluster samples and biomolecules
of a data matrix simultaneously. This results in sample groups with a molecular subset that
characterizes the group. Numerous algorithms have been published, which try to tackle
the problem from different angles. An overview of important concepts was published by
Madeira and Oliveira (4).

Similar to clustering (5), evaluations of biclustering algorithms have shown differences
in performance under various real-life and synthetic conditions (6, 7). A common way to
improve the results of machine learning techniques is ensemble approaches, for example,
for biomarker discovery (8). The goal is to improve robustness, consistency, novelty, and
stability over what single algorithms could achieve (9). Also, for biclustering problems,
ensemble algorithms have been proposed (10–16). Most of these ideas are adaptations
of approaches for ensemble clustering. Some of the proposed methods have not been
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implemented (10, 13) and therefore not easily accessible, while
others are single-algorithm ensemble approaches that cannot over-
come the limitations of one algorithm.

The analysis and interpretation of biclustering results can profit
from visualizations, which show the content or relations between
biclusters. Many approaches have been developed (17–23), which
are often bound to specific algorithms or do not scale well for
many biclusters (18).

Here we propose a multialgorithm biclustering ensemble
approach for the stratification of molecular samples. In the
manuscript, we 1) introduce the methodology and network visu-
alization; 2) evaluate the performance on multiple experimental
metabolomics, proteomics, and transcriptomics datasets; 3) with
a framework for synthetic data generation, evaluate the approach
on synthetic data; 4) apply our approach in a multiomics context;
and 5) present open-source software to make biclustering more
accessible for research.

Results

A Multialgorithm Ensemble Biclustering Approach. The steps of
our ensemble approach (MoSBi—molecular signature identifica-
tion using biclustering) are described in Fig. 1A; for full details,
please refer to Materials and Methods. At first, we selected a
set of established or recently developed biclustering algorithms
(Table 1), which are executed independently. Next, similarities
between all biclusters are calculated. The similarity is described
by the degree of overlap, meaning the more samples and features
shared between biclusters, the higher their similarity. Highly
similar biclusters point toward the same pattern in the data. Simi-
larities are filtered for random overlaps, and a bicluster network
is generated with biclusters as nodes and connections between
them if they exceed a higher than random similarity (for details,
see Materials and Methods). This removes overlaps of biclusters
that are likely to occur randomly and do not carry meaningful
overlaps. The same network without the filtered random overlaps
is shown in SI Appendix, Fig. S1. While biclusters with similar
disease subtypes are still close together, the overall connectivity in
the network is significantly higher. The example network shown
in Fig. 1A reveals several highly connected communities in the
network, which are not as strongly connected with each other.
By using the Louvain modularity, such communities can be
extracted and converted into ensemble biclusters. Two thresholds
control the size of the resulting ensemble biclusters. We previously
successfully utilized the principle of MoSBi to identify de novo
subtypes of nonalcoholic liver disease based on clinical lipidomics
data (34).

Before evaluating the performance of MoSBi on multiple omics
datasets, we selected a public thymic epithelial tumor dataset (35)
to show the application and potential of our approach. Ku et
al. (35) measured the proteome of 134 tumor, tumor-adjacent,
and normal thymus samples and revealed significant differences
in the proteome signatures of thymoma subtypes. In Fig. 1A,
the similarity network of predicted biclusters colored by sample
groups can be seen. Node sizes were scaled according to the
number of samples. It provides an overview of the match of
predicted biclusters with known information about samples, in
this case, cancer subtypes/tissues. While being a central part of the
workflow, to compute ensemble biclusters, networks also serve as
a visualization of biclustering predictions.

It is immediately obvious that clusters of nodes can be found
in the network, indicating biclusters with a similar set of samples
and features. This can be observed by similar color distribu-
tions of biclusters clustering together. The clusters show high

intraconnectivity, but also connections to other clusters. This
means that some signatures are shared between network commu-
nities. After applying the Louvain modularity, these clusters result
in network communities.

Some communities, in particular, communities 2, 4, and 8, pre-
dominantly consist of type A, B, and AB thymoma. We performed
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment of protein sets from the ensemble biclusters (Fig. 1B).
All selected communities showed significant repair mechanism
pathways, which is well known for tumors to influence those
pathways. Additionally, community 2, which includes samples
of all thymoma subtypes, indicating a common signature on the
proteomic level, showed two cancer-related terms.

We investigated the occurrence of proteins and samples in
biclusters belonging to one community (Fig. 1C ). A difference
in the distributions of samples and features can be observed. The
distribution of features is strongly positively skewed with a very
low mode. In contrast, the sample distribution, for example, for
communities 5 and 8, has a mode close to one. This shows that
biclusters inside the same community (after filtering edges for
random overlaps) can carry very different features and samples. By
setting thresholds, ensemble biclusters can be restricted to point
to consistent patterns in the data or to allow for variability.

In Fig. 1D, we visualize the affiliation of biclusters to algo-
rithms, which predicted them. This reveals that biclustering algo-
rithms tend to identify overlapping regions in the data, resulting in
highly connected communities consisting only of one algorithm.
This shows the necessity of taking the results of multiple biclus-
tering algorithms into account and relying on not one but many
different algorithms to capture patterns in the data beyond the
specificities of a single algorithm. While we observe a good overlap
of some network communities with the tumor subtypes, some
individual (unconnected) biclusters also show high overlaps, for
instance, with the type B thymoma. The strength of the MoSBi
algorithm lies in the aggregation of biclusters. The visualization
also helps to identify and analyze these individual biclusters, if
they exhibit a high consensus with relevant information such as
biological factors.

The results above demonstrate the power and utility of the
workflow to establish a sophisticated biclustering analysis, to
generate biological hypotheses.

Individual Biclustering Algorithms vs. MoSBi. Next, we com-
pared the individual performances of available biclustering algo-
rithms and contrasted them with the performance of MoSBi. For
that, we selected six published and publicly available datasets from
the metabolomics, transcriptomics, and proteomics disciplines
(details in SI Appendix, Table S1). All datasets were analyzing
cancer tissues or investigated cancer subtypes. As a gold standard,
we used the condition match score to quantify the overlap be-
tween predicted biclusters and sample labels (see Materials and
Methods), where the relevance describes how well predicted bi-
clusters correspond to known labels, and recovery describes how
well the labels were recovered by predictions. Additionally, Gene
Ontology (GO) and KEGG pathway enrichment was performed
to evaluate the gene sets in predicted biclusters.

The match between predictions and sample groups can be seen
in Fig. 2A. It reveals a heterogeneous performance of the individ-
ual biclustering algorithms. Spectral only predicted biclusters in
two out of the six scenarios. The iterative signature algorithm (Isa)
has the highest recovery on the Tang et al. (36) metabolomics and
Ku et al. (35) proteomics data and both transcriptomics datasets
but has a poor performance on Yang et al. (37) metabolomics
and Wiśniewski et al. (38) proteomics data. While having a good
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Fig. 1. Workflow of MoSBi with exemplary network visualizations. (A) Steps of the MoSBi approach. First, biclusters are predicted by multiple algorithms, and
a similarity matrix is computed, which is then filtered for larger than random overlaps, using an error model. The matrix is then converted to a network that
can be visualized with metainformation about samples or features. Louvain communities are then extracted and converted into ensemble biclusters. As an
example, the bicluster network of proteomics data from Ku et al. (35) is shown. Nodes represent biclusters, with edges between them if their overlap exceeds
the error threshold. (B) KEGG pathway enrichment for features of selected communities 2, 4, and 8. (C) Frequency of features (Upper) and samples (Lower) in
biclusters that belong to one community. (D) Bicluster network of proteomics data from Ku et al. (35). Node colors represent algorithms, by which they were
predicted.
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Table 1. List of evaluated biclustering algorithms in
alphabetical order
Algorithm Publication
BicARE Gestraud et al. (24)
Bimax Prelíc et al. (25)
CC Cheng and Church (26)
Fabia Hochreiter et al. (27)
Isa Bergmann et al. (28)
Plaid Lazzeroni and Owen (29)
QUBIC Zhang et al. (30)
Quest Murali and Kasif (31)
Spectral Kluger et al. (32)
UniBic Wang et al. (33)
Xmotifs Murali and Kasif (31)

The results of algorithms can be imported and accessed with our MoSBi R package or
executed using the webtool.

recovery, Isa never scores best on relevance. Similar behavior can be
observed for Plaid, which, on average, performs very well for rel-
evance, but shows low recoveries. It can also be observed that Plai
is the only algorithm that reached a relevance and recovery higher
than 0.5, and achieved this in one proteomics dataset. We then
applied our ensemble approach to the predictions of all algorithms
per dataset (Fig. 2A, black marker). The ensemble approach is one
of the two best performing tools in either recovery or relevance in
all other datasets, except for the Tang et al. (36) metabolomics
data, where we could observe high overlaps with other clini-
cal confounders (SI Appendix, Fig. S2). On metabolomics data,
with fewer features compared to sequencing data, the commu-
nities can additionally be visualized as cooccurrence networks
(SI Appendix, Fig. S3). Over all six datasets, MoSBi performed
second best, on average, by relevance and second best by recovery
after Plaid and Isa, which both have poorer performances on the
other scale.

To investigate the performance of the algorithms on the gene
level, we performed KEGG pathway and GO biological process
enrichment for the proteomics and transcriptomics datasets. In
KEGG enrichment (Fig. 2B), The Biclustering Analysis and Re-
sults Exploration (BicARE) algorithm predicted the most biclus-
ters with at least one significantly enriched term in three datasets.
Interestingly, it did not stand out when investigating sample group
labels. The ensemble method again showed a better performance
than the average of biclustering algorithms. The same holds for the
enrichment of biological processes with GO terms (Fig. 2C ). Since
all investigated proteomic and transcriptomic datasets were cancer
related, we searched specifically for enriched KEGG pathways
including the word “cancer,” “carcinoma,” or “tumor” (Fig. 2D).
On the Wiśniewski et al. (38) proteomics data, only Isa and
BicARE found significant terms for biclusters, but only at very
low frequencies. In the Ku et al. (35) proteomics data, MoSBi
found the most significant terms and, on the two transcriptomics
datasets, the second most after Fabia (factor analysis for bicluster
acquisition) and BicARE.

This reveals that individual biclustering algorithms peak in one
or another measure or dataset, but in an unpredictable manner.
However, the MoSBi ensemble approach is more consistent and
therefore more reliable for biclustering analysis.

Performance on Synthetic Data. Evaluation on experimental
data is preferable since it accurately resembles the real-life
application of biclustering and stratification. Unfortunately,
two-dimensional (2D) gold standards are usually not available,
since many factors are influencing the molecular state of samples.
Synthetic data can overcome this problem. This is frequently done
to evaluate biclustering algorithms (6, 25, 39).

Based on the synthetic data generation of Prelić et al. (25),
we developed a workflow to create synthetic scenarios, where
one or multiple properties can be investigated (SI Appendix,
Synthetic Evaluation Scenarios). We repeated previous scenarios
from Prelić et al. (25) and added scenarios, covering sparsity,
overlaps, and mixed sizes (SI Appendix, Table S2), and evaluated
them on biclustering algorithms (Materials and Methods and
SI Appendix, Figs. S6–S10). Since molecular omics data can
include missing values, we investigated the effect of sparsity on
the performance of biclustering algorithms (Fig. 3A). While the
overall performance of all algorithms decreases with increased
sparsity, Fabia and Isa showed a higher resilience until a sparsity
of 20% (percentage of missing values in the matrix; SI Appendix),
after which the results deteriorated. The relevance was more robust
against sparsity and did not decrease as strongly as the recovery.

So far, synthetic evaluation has focused on the assessment of
individual characteristics of the data (e.g., noise or size). Using
our workflow and knowledge from previous synthetic scenar-
ios, we defined a complex scenario, incorporating all previously
mentioned manipulations to the data (Fig. 3B). We evaluated all
approaches in this scenario and added a negative binomial back-
ground to simulate unique molecular identifier RNA sequencing
(RNAseq) data (Fig. 3 B, Left). Performance analysis separated the
tools into two groups: clearly higher performing tools consisting
of Fabia, Isa, and MoSBi, and the rest performing significantly in-
feriorly. Fabia shows the best recovery, and the ensemble approach
shows the best relevance, but only marginally above Fabia and Isa.
Even with the poor performance of many algorithms, MoSBi can
still achieve high recovery and relevance. Algorithm selection has
an influence on every ensemble approach; therefore, excluding the
worst-performing algorithms from the ensemble approach yields
a high increase of the relevance of the ensemble approach, while
the recovery remains similar (SI Appendix, Fig. S11A).

Being an average, the relevance does not characterize every
distribution correctly, but is widely used in biclustering evalu-
ation studies. We investigated the relevance distribution of all
algorithms independently (Fig. 3C ) and combined (Fig. 3D).
Some distributions are skewed. The combined distribution is
positively skewed, showing that the majority of biclusters have
a very low overlap with the gold standard. Predictions by the
ensemble approach show a different distribution (Fig. 3E), where
the majority of biclusters have a score above 0.5. Since an ensemble
approach is sensitive to the performance of the underlying biclus-
tering algorithms, we selected the best-performing algorithms and
repeated the analysis (SI Appendix, Fig. S11 C and D). As can be
seen, the performance of MoSBi is even more evident, showing
the importance of the utilized algorithms. On the other hand, it
shows that the approach can achieve a good performance, even
with some poorly performing algorithms included. By combining
highly overlapping biclusters, MoSBi can reduce the number of
mismatched biclusters. This also shows that the relevance distribu-
tion can give more detailed insights into algorithm performance.
MoSBi additionally reduces the number of biclusters drastically,
making an investigation of all predictions more manageable. Ana-
lysis of the MoSBi parameters (SI Appendix, Fig. S12) showed that
the row and column thresholds should be in the range of 0.02 and
0.2. The relevance increases with higher minimum community
size thresholds, whereas the recovery decreases. An application-
specific trade-off has to be decided by users. The number of
randomizations for the similarity cutoff estimation does not affect
the performance of MoSBi.

To investigate the performance of all algorithms under the
best conditions, we optimized their parameters to achieve the
best possible performance (SI Appendix, Fig. S13). This showed
that algorithms can produce markedly better results given correct
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Fig. 2. Performance of MoSBi and individual biclustering algorithms on cancer-related omics data. Data was used from Ku et al. (35), Wisniewski et al. (38),
Berger et al. (41), Curtis et al. (44), Tang et al. (36), and Yang et al. (37). For further information about the data, see SI Appendix, Table S1. (A) Recovery and
relevance for the condition match score of biclustering tools based on samples for cancer (subtypes). (B) Frequency of predicted biclusters per algorithm, with
one or more significant KEGG terms (adjusted P value cutoff < 0.05). (C) Frequency of biclusters with one or more significant GO terms from the “biological
process” category. (D) Frequency of predicted biclusters per algorithm, with one or more cancer-related KEGG terms.

parameters compared to their standard parameters, in Fig. 3B.
However, this is time consuming and only possible for data with
an existing gold standard. The differences between the two com-
plex synthetic scenarios showed that parameters and performances
vary widely between datasets. Therefore, an ensemble method of-
fers an easier method to achieve good performance independently
of parameter optimization.
Biclustering in a Multiomics Context. Since biclustering requires
a data matrix as input, it can naturally be applied to multiomics
data, when merged into one data matrix. To investigate the
performance of MoSBi in a multiomics context, we used the

TCGA breast cancer cohort from the Xena Platform (40), which
provides omics data for multiple breast cancer subtypes. RNAseq,
microRNA (miRNA), and protein data were run independently
and combined for all biclustering algorithms. All resulting biclus-
ter networks (Fig. 4A) appear similar, with big basal communities
and multiple communities consisting mainly of the LumA or
LumB subtype, often highly interconnected. The protein data net-
work shows a less distinct basal community, whereas the miRNA
data network shows Her2 samples mixed with LumB samples.

In the next step, we evaluated the performance of the biclus-
tering algorithms on the different data types. A consistent perfor-
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Fig. 3. Evaluation of biclustering algorithms on synthetic data. (A) Recovery and relevance of biclustering algorithms with increasing sparsity, for one hidden
shift bicluster. (B) Performance of biclustering algorithms and ensemble approach on a synthetic scenario including different bicluster types, sizes, sparsity, and
noise with a negative binomial distributed background (Left) and normally distributed background (Right). (C) Relevance distribution of biclustering algorithms
for the scenario shown in B, Right. (D) Relevance distribution of all algorithms summed up from C. (E) Relevance distribution of the predictions of the ensemble
approach using the biclusters from D.

mance of most algorithms can be observed (Fig. 4B), with only
Plaid showing a high increase in relevance on the multiomics data
compared to the other datasets, and not identifying any biclusters
on the protein data. Only with MoSBi, a relevance and recovery
higher than 0.25 could be observed in all four datasets. This
shows that the multiomics data did not yield a big performance
increase for most algorithms, but rather that all data types carry

the information to identify subtypes, with the ensemble approach
being the most robust throughout all data types.

While we did not find big differences in the overall perfor-
mance, we next looked at the recovery of the subtypes individually
(Fig. 4C ). Most algorithms did not recover all subtypes equally
well. Isa has the highest recovery for basal (above 0.75 for RNAseq
and multiomics) and worst for normal (all below 0.25). Fabia

6 of 10 https://doi.org/10.1073/pnas.2118210119 pnas.org

https://doi.org/10.1073/pnas.2118210119


Subtype
Basal
Her2
LumA
LumB
Normal

Multi-omics miRNA

RNAseq

Protein

Protein RNAseq

miRNA Multi omics

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0
0.0

0
0.2

5
0.5

0
0.7

5
1.0

0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Recovery

R
el

ev
an

ce

Algorithm

MoSBi

BicARE

Bimax

Fabia

Isa

Plaid

QUBIC

Spectral

QUBIC Spectral

Fabia Isa Plaid

MoSBi BicARE Bimax

Bas
al

Her2
Lu

mA
Lu

mB

Norm
al

Bas
al

Her2
Lu

mA
Lu

mB

Norm
al

Bas
al

Her2
Lu

mA
Lu

mB

Norm
al

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Subtype

M
ea

n 
re

co
ve

ry

Data

miRNA

Multi omics

Protein

RNAseq

A

B C

A

B C

Fig. 4. Biclustering on breast cancer multiomics data. (A) Bicluster similarity networks on TCGA breast cancer miRNA, Protein expression, RNAseq, and
combined data. Biclusters are colored by subtype, and node size is proportional to sample size. (B) Relevance and recovery for the condition match score
on the datasets from A for each algorithm individually and combined with MoSBi. All algorithms were executed 10 times. (C) Recovery for subtypes on the
datasets from A for each algorithm individually and combined with MoSBi. All algorithms were executed 10 times.

exhibits a more equal distribution, except for normal, which has a
low recovery throughout all algorithms. It can again be observed
that all data types are similarly able to identify subtypes. In MoSBi,
the basal subtype has a better recovery in RNAseq and multiomics
data. Another interesting observation is that BicARE consistently
recovers the LumA subtype through all data types.

In this analysis, we can show that multiomics biclustering is
possible and can add value to the results. However, an individual
biclustering analysis on all data types is also possible and yields

similar performance. However, a combined analysis might be ben-
eficial for a biological interpretation of biclusters, which consists
of features from different omics types.

The MoSBi Software Suite. To make our ensemble approach
and biclustering algorithms, in general, accessible for scientists
and provide an easy-to-use interface, we developed the MoSBi
suite for the identification of molecular signatures using
biclustering. MoSBi is available as an R package on biocon-
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ductor (https://bioconductor.org/packages/mosbi/) and web-app
(https://exbio.wzw.tum.de/mosbi).

Many biclustering algorithms, such as Isa (41) and Fabia (27)
or the biclust package, use different result formats for returning
biclusters. Therefore, we developed a unified framework, which is
able to import predictions from various biclustering algorithms
to simplify the analysis of biclustering algorithms and apply
our ensemble approach. Our network-based visualizations are
also available in MoSBi, which can be used with our ensemble
approach or single biclustering algorithms. The framework can
be extended to offer support for new biclustering algorithms and
integrate them into the workflow. Networks can be exported as
graphML for compatibility with tools such as Cytoscape (42).

The web app allows users without programming knowledge
to stratify samples with our ensemble approach and profit from
visualizations. Additionally, all biclustering algorithms can be
accessed and executed with all parameters independently, if users
are interested in specific algorithms. We also provide a docker
image of the web tool, which allows it to be deployed locally.

Discussion

Stratification of patients based on molecular omics data is a
challenging task and requires modern computational tools. Unsu-
pervised approaches are suited to identify novel subgroups in the
data. Biclustering is able to find meaningful patterns in modern
omics data. In contrast to traditional clustering, algorithms not
only output sample subgroups but, additionally, feature subsets
that characterize this similarity and can be further analyzed, for
example, for functional associations to find disease mechanisms.
We developed a biclustering ensemble approach, which takes the
results of multiple biclustering algorithms and computes ensemble
biclusters using a network-based approach. This is based on the
assumption that biclustering algorithms predict highly overlap-
ping biclusters, which we could validate in our work. Various
biclusters pointing to the same underlying data structures can
indicate robust biclusters, which are then identified with MoSBi.
We showed this on thymic epithelial tumor data (35), where we
were able to retrieve known cancer subtypes.

We demonstrated the application of MoSBi on cancer-related
datasets and showed the possibility of performing a multiomics
analysis using biclustering. On various synthetic and experimental
datasets, we assessed the performance of different biclustering
algorithms and compared them to our ensemble approach. While
Fabia and Isa, on average, performed best of all considered biclus-
tering algorithms, no algorithm performed best in all scenarios
and can be universally recommended. MoSBi did not always
stand out, but it achieved a robust good performance in most
scenarios. While the optimization of algorithm parameters on
synthetic data could significantly improve the results, it leads
to extensive run times and requires gold standard annotations,
which are usually not available in real data, indicating that MoSBi
is a preferable choice for biclustering. Additionally, it markedly
reduces the number of biclusters. The network visualization gives
an overview of the results and, compared to other methods (18),
scales well with an increased number of biclusters.

The advantage of our ensemble approach over other biclus-
tering ensemble approaches is that it is not algorithm specific
and, via the MoSBi suite, is accessible as an application program-
ming interface (API) and graphical user interface. Unfortunately,
some proposed approaches lack implementation (10, 13). An
ensemble method based on the calculation of similarities between
biclusters was proposed by Hanczar and Nadif (12), where the

authors calculated overlaps based on sums of overlaps of rows and
columns, which can result in nonzero similarities for biclusters
that share rows but no columns and are, in fact, not overlapping
(SI Appendix, Fig. S14). They proposed the method as a single-
algorithm ensemble approach that applied hierarchical clustering
on the similarity matrix. This introduces another parameter for
the number of consensus biclusters and assigns each bicluster
to an ensemble bicluster, even with low overlap. Our approach
avoids this by using the Louvain modularity to find the optimal
split of the network into communities. We also introduce an
error model for ensemble biclustering that removes random,
and therefore misleading, overlaps from the similarity network.
Additionally, MoSBi makes further analysis easier, since it reduces
the number of predictions while maintaining similar performance.
With MoSBi, we provide a tool to make the application of
multialgorithm ensemble biclustering with scalable visualizations
applicable for all kinds of noninformatics users possible. However,
as an ensemble approach, MoSBi relies on the performance of
multiple biclustering algorithms. We showed how the selection
of biclustering algorithms can influence the results of MoSBi
(SI Appendix, Fig. S11 C and D). While MoSBi is robust against
a few badly performing algorithms, the majority of algorithms
need to identify reasonable biclusters for MoSBi in order to
work correctly. With new developments and available algorithms,
MoSBi can be extended to improve performance in the future.

Similar to other unsupervised methods such as clustering,
biclustering is often only the first step in data analysis. This
comes with the challenge to inspect and interpret the results be-
fore further deciding about follow-up analysis steps. A particular
challenge can be the difference in sizes of (ensemble) biclusters.
It is important to consider the number of samples included
for a molecular signature that corresponds to a phenotype, to
evaluate its robustness. A direct comparison of biclusters with
big differences in size should therefore be handled with care. The
MoSBi framework allows for simple visualization of this but still
requires manual supervision.

Our methodology offers an advanced perspective on biclus-
tering and can visualize detailed properties of predictions. We
demonstrated how a bicluster network analysis provides additional
biological and structural insights into data. Clinical or experimen-
tal conditions can be associated with biological features. Using our
approach, biclustering has the potential to play a significant role
in disease subtyping and understanding.

Materials and Methods

The biclustering ensemble algorithm consists of four major steps. These are the
execution of multiple biclustering algorithms, followed by a similarity compu-
tation for all returned biclusters, filtering of the similarity matrix for random
overlaps, and community detection on the similarity network. In the following,
all steps are described in detail.

Algorithms. Given an input matrix M ∈ R
R×C , we utilize different biclustering

algorithms (Table 1) and collect their results in one combined list of biclusters
B = [B1, B2, ., Bn], where Bi = (Br

i , Bc
i ) and Br

i � [1, ., R], Bc
i � [1, ., C] is a set

of row and column indices of the matrix M that belongs to a bicluster Bi. We
implemented interfaces for all algorithms in our R package to generate this list
using one unified API.

Similarity Metrics. In the next step, pairwise similarities between all biclusters
in B are computed. This is done using common similarity metrics, where the
similarity is expressed as a 2D overlap between biclusters. To do so, we treated
a bicluster matrix as a 2D area and computed their similarity in terms of overlap-
ping areas. This is different than the additive similarity as proposed by Hanczar
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and Nadif (12). One implemented metric is the Jaccard index. Our adaption
resulted in the following formula:

J(B1, B2) =
|B1 ∩ B2|
|B1 ∪ B2|

=
|Bc

1 ∩ Bc
2| × |Br

1 ∩ Br
2|

(|Br
1| × |Bc

1|) + (|Br
2| × |Bc

2|)− (|Bc
1 ∩ Bc

2| × |Br
1 ∩ Br

2|)
.

Besides the widely used Jaccard index, also the Bray–Curtis similarity, overlap co-
efficient, and Fowlkes–Mallows index were implemented in a similar 2D fashion.
This results in a similarity matrix S with Si,j = J(Bi, Bj). Note that MoSBi can use
any other definition of similarity as well. Biclusters fully contained in other ones
are evaluated with the same metric. Hence, they exhibit a similarity based on their
overlap as described above.

Error Model. Since biclusters can have random overlaps that do not represent
meaningful interactions, we estimate a cutoff to filter for such overlaps in the
similarity matrix. This is done by randomly generating a list of biclusters B′

such that B′ = [B′
1, B′

2, ., B′
n], |B′|= |B|, and B′

i = (Br′
i , Bc′

i ), where Br′
i and

Bc′
i are randomly drawn without replacement from [1, . . . , R] and [1, . . . , C]

correspondingly such that |Br′
i |= |Br

i | and |Bc′
i |= |Bc

i |. To estimate the best
cutoff c∗ for the values in the similarity matrix S, we treat the S as an adjacency
matrix and optimize c* for the biggest ratio between remaining edges in S and
S′, where S′i,j = J(B′

i , B′
j ) (to increase robustness, multiple randomizations K of

B are used),

c∗ = argmax
c

∑
i,j Θc(Si,j)∑

k(
∑

i,j Θc(S′k
i,j ))/K

,

with
Θc : R→{0, 1}

x �→
{

0 : x < c
1 : x ≥ c

.

This results in the final and filtered similarity matrix Sc∗ where

Sc∗
i,j �→

{
0 : Si,j < c∗

Si,j : Si,j ≥ c∗
.

Community Detection. Finally, Sc∗ is used as an adjacency matrix with biclus-
ters as nodes, and edges representing similarities. We compute the weighted
Louvain modularity (43), with similarities as weights, to find bicluster communi-
ties in the network. These highly similar bicluster communities can then be con-
verted into ensemble biclusters using three parameters: min size (default = 2)
which defines the minimum number of biclusters in a community to convert
a community into a bicluster, where smaller communities are not considered;
and row threshold and col threshold (default = 0.1), the minimum frequency
of occurrence of a row/column element in a bicluster community to be taken
over into an ensemble bicluster: For example, with values of 0.5, only genes and
samples will be part of the new ensemble bicluster if they occur in at least 50%
of all biclusters in the corresponding community.

Implementation. MoSBi is free software. The workflow was implemented in
the R programming language (version ≥ 3.6) and C++17. The web interface
was realized with the Shiny web framework for R (version 1.4.0.2). The workflow
can be executed from our web app on our servers or on a local machine using a
public Docker image. For higher throughput or for the integration of our approach
into a bioinformatics pipeline, the R package can be used directly.

Visualizations. Network visualizations of the MoSBi package are implemented
in R using the “igraph” package. Interactive plots in the web tool use the “visNet-
work” library. All other visualizations use the “ggplot2” library in R.

Cooccurrence Networks. For cooccurrence networks, biclusters from one com-
munity were selected. From this, a new network is computed with samples and
features as nodes. Edges can occur between samples and samples, samples
and features, and features and features. An edge is drawn between two nodes
if they occur together in at least one bicluster of the community. Edges are

weighted by the number of biclusters, where two nodes cooccur. For the vi-
sualization, a network layout is computed, which takes the edge weights into
account.

Match Score. The performance of biclustering algorithms and MoSBi was eval-
uated by comparing their overlap to labeled gold standard data. We used the
commonly applied gene match score,

MSG(M1, M2) =
1

|M1|
∑

(G1,C1)∈M1

max
(G2,C2)∈M2

|G1 ∩ G2|
|G1 ∪ G2|

,

where M1 and M2 are two sets of biclusters, with each bicluster consisting
of a set of genes Gi and conditions Ci (rows and columns) (25). To inves-
tigate sample/condition overlaps, we define the according condition match
score,

MSC(M1, M2) =
1

|M1|
∑

(G1,C1)∈M1

max
(G2,C2)∈M2

|C1 ∩ C2|
|C1 ∪ C2|

.

On synthetic data, where a 2D gold standard is available, we define the 2D match
score as the multiplicative score of both dimensions,

MS2D(M1, M2) =
1

|M1|
∑

(G1,C1)∈M1

max
(G2,C2)∈M2

|C1 ∩ C2|
|C1 ∪ C2|

× |G1 ∩ G2|
|G1 ∪ G2|

.

The scores can be used to compute relevance and recovery. Let Mopt be a set of
implanted biclusters or a gold standard, and let M be the output of a biclustering
algorithm. Then, the average bicluster relevance is defined as MS(M, Mopt) and
describes to what extent the biclusters found by the algorithm correspond to
the true hidden biclusters in the gene, condition, or both dimensions. Similarly,
the average bicluster recovery is defined as MS(Mopt , M) and describes how
well each of the true biclusters is recovered by the algorithm. The recovery and
relevance score both have an optimal value of one, indicating a perfect overlap,
and zero, indicating no overlap.

The match scores describe a normalized sum of values. To investigate how
well all individual biclusters predicted by one algorithm match the gold standard,
we investigated the relevance distribution RD = [rd1, rd2, . . . , rdn]with n as the
number of biclusters in set of biclusters M and

rdi = max
(Gopt ,Copt)∈Mopt

|Ci ∩ Copt|
|Ci ∪ Copt|

× |Gi ∩ Gopt|
|Gi ∪ Gopt|

,

where Ci and Gi are the columns and rows of bicluster Mi.

Experimental Omics Data. We evaluated the biclustering algorithms and
MoSBi on six publicly available metabolomics (36, 37), proteomics (35, 38), and
transcriptomics (41, 44) datasets (SI Appendix, Table S1). Feature-wise z scores
were computed for all datasets, and, prior to that, log2 transformed [except
for Ku et al. (35) and Curtis et al. (44), which already showed a normal distri-
bution]. Transcriptomics data were filtered for genes with 80% coverage in all
samples and filtered the 5,000 most variant genes, to reduce algorithm run-
time. Gene set/pathway enrichment was performed using the “clusterProfiler” R
package using the “enrichGO” (biological process enrichment) and “enrichKEGG”
functions.

TCGA breast cancer data were downloaded from the Xena Platform (40, 45).
RNAseq transcriptomics data were processed as described above, and miRNA
and protein data were filtered for 80% coverage in all samples and z-score
transformed. Only samples occurring in all three datasets were considered for
the individual and multiomics analysis, which resulted in 484 samples with
measurements for all three data types.

Synthetic Data Generation. To investigate the performance of tools in a
controlled environment with a fully known gold standard, we developed a
pipeline to generate synthetic datasets with implanted biclusters and additional
properties such as noise and sparsity. The pipeline is shown in SI Appendix,
Fig. S1. A detailed description of all synthetic scenarios is available in
SI Appendix.
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Data Availability. The source code is available for the R package (https://
github.com/tdrose/mosbi) and for the web application (https://gitlab.lrz.de/
lipitum-projects/mosbi-webapp). Both are published under the aGLPv3 license.
The code and all used data for the evaluation that was performed for this work is
available on figshare: https://doi.org/10.6084/m9.figshare.19096070.v1 (46).

Previously published data were used for this work (35–38, 40, 41, 44).
All other study data are included in the article and/or SI Appendix.
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5. C. Wiwie, J. Baumbach, R. Röttger, Comparing the performance of biomedical clustering methods.
Nat. Methods 12, 1033–1038 (2015).

6. V. A. Padilha, J. G. Ricardo, A systematic comparative evaluation of biclustering techniques. BMC
Bioinformatics 18, 55 (2017).
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