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ABSTRACT

A comprehensive search that utilized a large set of
mRNA data from human genome databases and
additionally, expressed sequence tag (EST) data-
base characterized this latest update of AU-rich ele-
ments (AREs) containing mRNA database (ARED).
A large number of ARE-mRNA, as much as 4000,
were recovered and include many of ARE alternative
forms. This number represents as much as 5–8% of
the human genes depending on the entire number of
genes. The new ARED does not contain only larger
and diverse number of ARE-mRNAs but additional
functionality and enhanced search capabilities are
given in the database website http://rc.kfshrc.edu.
sa/ared/. These include class and cluster of AREs,
source mRNAs, EST evidence, buildup information,
retrieval of lists of genes, and integrationwith current
and new NCBI data, such as Entrez ID and Unigene.
Gene Ontology analysis shows there are significant
differences in functionaldiversityofAREDwhencom-
pared with the overall genome. Many of ARE-genes
mediate regulatory processes, reactions to outside
stimuli, RNA metabolism, and developmental pro-
cesses particularly those of early and transient
responses. The wide interest in mRNA turnover and
importance of AREs in health and disease signify the
compilation of ARE-genes.

INTRODUCTION

The availability of entire human genome and millions of
records of expressed sequence tags (ESTs) made it possible
to expand the repertoire of AU-rich mRNA information. The
mRNAs that contain adenylate uridiylate (AU)-rich elements
in their 30-untranslated region (30-UTR) comprise an important
structural class of mRNAs with diverse functional repertoire.

The wide interest in mRNA turnover and biological import-
ance of AU-rich elements (AREs) in health and disease (1,2)
necessitate further compiling of ARE-mRNAs.

In this latest ARED update, ARED 3.0, more than 4000
ARE-mRNAs have been computationally mapped to the
human genome. This significant increase of ARE-mRNAs
over previous ARED versions reflects both the breadth of
human genome databases utilized and the computational
extraction procedures. The new database comprised ARE-
genes that were obtained from mRNA records and EST clus-
tered data and represent broad functional classes with overrep-
resentation in genes involved in regulation, stress responses
and other critical processes.

METHODS

Computational extraction of mRNA records from
GenBank and RefSeq databases

The strategy for extracting GenBank mRNA records was pre-
viously outlined in ARED 2.0 methods (3). Briefly, GenBank
release 135 (April 15, 2003) which contained 24 027 936
records and EMBL release 74 (March, 2003) which contained
23 234 788 records were utilized. The mRNA records were
specifically extracted by first comprehensively extract all pos-
sible records followed by extracting records with the molecule
type, mRNA. Subsequently, computational extraction of
30-UTR from those with complete CDS using PERL program
and GCG (Wisconsin Package) was performed; mRNA
records with ARE search pattern were extracted and compiled.
Redundancy was removed using CLEANUP program (4) and
further refined by exclusion of duplicates corresponding to
Unigene records. The corresponding Unigene records were
extracted using PERL program that match the GenBank
accession number with Unigene record.

Human RefSeq mRNA records (October, 2003) were used
for further extraction of ARE-mRNA records using the
same strategy above. The mRNA records from both sources
(GenBank and RefSeq) mRNAs were further processed
for removing redundancy by integration with Unigene data.

*To whom correspondence should be addressed. Tel: +1 966 1 442 7876, Fax: +1 966 1 442 7858; Email: khabar@kfshrc.edu.sa

� The Author 2006. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

Nucleic Acids Research, 2006, Vol. 34, Database issue D111–D114
doi:10.1093/nar/gkj052

http://rc.kfshrc.edu


A later Unigene release (January, 2005) was used to update the
database.

Computational extraction and clustering of
ARE-mRNAs

Computational extraction of 30-UTR was performed using
ASSEMBLE and PERL codes. The 30-UTRs were searched
for the 13 bp pattern WWWU(AUUUA)UUUW with mis-
match ¼ �1 in the pentamer flanking regions. This pattern
was computationally and functionally derived as described
previously (5,6). Similarly, 30 ESTs containing this pattern
were retrieved from EST databases and mRNAs matching
their cluster consensuses are described below. ARE classifica-
tion was performed by two methods. One method is Chen ARE
classification as Class I and Class II (7) and the other is based
on number of pentamers as we previously described elsewhere
(4,8). Classification of ARE-genes into Chen’s ARE classi-
fication of Class I and Class II (9) was performed. If the 13 bp
ARE pattern matches only one dispersed pentamer in the
30-UTR, then the mRNA belongs to Class I whereas if the
13 bp pattern matches two pentamers or more, the mRNA
belongs to Class II.

Computational extraction of ARE-mRNAs from
EST databases

EST clustering buildup and the matching mRNAs were pre-
viously detailed (5). TIGR clustered EST transcripts were also
used http://www.tigr.org/tigr-scripts/tgi/T_index.cgi?species=
human. In both cases, ARE-mRNAs were extracted by choos-
ing records in which ARE and poly(A) signal that are in

correct order and orientation (5). Matching mRNA records
with significant overlapping and similarity were retrieved from
GenBank and RefSeq records using MEGABLAST at 95%
identity and using the following criteria: word size of 32 bp,
minimumExpect value of (P < 0.00001), limit by Entrez query
of Homo sapiens [ORGANISM] and biomol_mRNA[PROP].
A PERL program was used to retrieve mapped Unigene
records. Redundant Unigene records of the two mRNA sets
(ours and TIGR) were removed. The data were integrated in
ARED 3.0. Specifically, ARE-mRNAs, in which their ARE
evidence are from EST evidence alone, were categorized as
‘EST evidence’ in the database records. In addition, EST
evidence ARE-mRNAs were also classified to Class I and
Class II and ARE bioinformatics clusters as explained above.

ARED 3.0 structure and data links

For each ARE-mRNA the following information and data
link were associated: Buildup Unigene, Current Unigene,
chromosome number, Gene Ontology (GO) information and
ARE classification. The database is constructed using rela-
tional database structure. ARED 3.0 also contains different
search formats including retrieval of a list of genes or acces-
sion numbers. All search results are downloadable as tab-
delimited tables.

Gene Ontology analysis

ARE-genes with available GO information were used to ana-
lyze the representation of functional categories. This analysis
was performed using FatiGO and GOStat programs (10,11).
The P-values for significance of difference in GO categories

Figure 1. ARED 3.0 buildup. A schematic chart showing the stages of the ARED 3.0 buildup. Methods and computer programs used are described in Methods.
n denotes number of sequences.
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between ARED 3.0 and whole genome were imported from
GOStat program.

RESULTS AND DISCUSSION

Extraction of ARE-mRNA records was performed using
two sources: RefSeq and GenBank databases. While there
were many common ARE-mRNAs in both databases, their
compilation (both the numbers and content) were higher
than if ARE-mRNAs were extracted from either of the data-
base (Figure 1). We have made the search ARE pattern more
stringent when compared with ARE patterns previously used
in ARED 1.0 and ARED 2.0. This is because accumulation of
several studies that associate ARE patterns with functional
characteristics of AREs, e.g. primary and transient responses
(6,12) resulted in more refined ARE pattern. This pattern
WWWT(ATTTA)TTTW was unique to the 30-UTR when

compared with other regions of the mRNAs, i.e. 50-UTR
and coding region (4,5).

ARED 3.0 has additional database source, namely, EST
database. Specifically, we utilized the information that was
previously compiled using our 30 end EST clustering approach
(5,8). The 30 ESTs constitute a rich source for 30-UTR-specific
AREs. This strategy allowed us to extract more than one
thousand putative transcripts that include alternative forms
due to 30-UTR completeness, variant polyadenylation and
splicing (5,8). Compilation with EST clusters from TIGR
assembled database yielded a total of �2000 non-redundant
ARE clusters (Figure 1). When compiled with the ARE-
mRNAs from GenBank and RefSeq, there were �4000
mRNAs. These mRNAs clustered into more than 2500 unique
ARE-genes and 400 non-HS mapped records.

Classification of ARE-genes into Chen’s ARE classification
of Class I and Class II, (9) in which Class I ARE-mRNA

Figure 2. Gene Ontology (GO) of ARE-genes. Annotation of ARE-genes according to GO was performed using FatiGO program (http://www.fatigo.org) and
compared with GO of overall genome using GOStat (http://gostat.wehi.edu.au). **, *** and **** denote P-values of P < 0.01, P < 0.001 and P < 0.0001,
respectively, according to GOStat algorithm.
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contains one pentamer repeat in U-rich context and Class II is
two pentamers or more, revealed that the majority belong to
Class I (70%). This ratio is similar to the content of an ARE-
cDNA library generated in the laboratory (8). The database in
the website also provides information about the bioinformat-
ics, in which Class II can be further classified into four cluster
groups that are dependent of the number of pentamers (4).

It should be noted that the sequence-based ARE assignment
in ARED is putative in nature and does not necessarily mean
that every ARE in ARED confers regulatory control. Though it
is more likely that ARE with longer stretches found in Class II
AREs are functional (6,13,14), these and many of the other
ARE-mRNAs need to be experimentally validated. The selec-
tion criteria used do not take into account either AREs loosely
related to the 13 bp ARE search pattern, such as c-myc, nor
AREs lacking the AUUUA motif, such as c-jun, which lack
specific recognizable pattern derived from computational bio-
logy studies (6,11,15,16). Though the location of the AREs is
not given in ARED due to heterogeneity of the length of the
component sequences, a good resource to map Class II AREs
can be found in UTRdb and UTRSCAN http://bighost.area.ba.
cnr.it/BIG/UTRHome/ (17).

Analysis of Gene Ontology, which assigns genes into func-
tional categories, was performed on ARED 3.0. The largest
functional categories occur with those of regulatory processes,
such as cell communications (28%), regulation of cellular
physiological processes (26%), nucleobase, nucleoside, nuc-
leotide and nucleic acid metabolism (27%), signal trans-
duction (24%) and transcription (20%). Cell proliferation
which comprised 25% of the gene category is significantly
over-represented by 5-fold (P < 0.0001) when compared with
overall genome. Similarly, processes involving developmental
processes such as morphogenesis, organogeneses and neuro-
genesis, are significantly over-represented (P < 0.001) in
ARE-genes (Figure 2). Many of significantly represented
ARE-genes also include those of responses to outside stimuli
including immune response and stress and of regulatory
functions such as regulation of nucleotide metabolism and
transcriptional regulation (Figure 2).

The ARED 3.0 website database includes a multitude of
information and links, such as ARE classification, source of
ARE-mRNA, Gene Ontology, Unigene and RefSeq informa-
tion (Figure 1). Buildup information for each ARE-mRNA
based on Unigene mapping is included with each entry
whenever available. Since Unigene automated assembly and
information can change with each release, a link to current
Unigene is given. Information on EST evidence for those
ARE-mRNAs in which their AREs were extracted using
EST clustering are given in Buildup details. In addition to
the enhanced search capability of ARED 3.0, the data can
be downloaded as tab-delimited table.

The large and diverse repertoire of ARE-genes expands the
array of the involvement of ARE-gene products in health and
disease. Dysregualtion of ARE-mRNA stability is mediated
predominantly by AREs. Thus, knowledge about which genes
code for AREs in their mRNAs may lead to finding new
pathways that operate during disease conditions such as cancer
and inflammation.
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