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Abstract: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease in
which the body’s immune system mistakenly attacks healthy cells. Although the exact cause of
SLE has not been identified, it is clear that both genetics and environmental factors trigger the
disease. Identical twins have a 24% chance of getting lupus disease if the other one is affected.
Internal factors such as female gender and sex hormones, the major histocompatibility complex
(MHC) locus and other genetic polymorphisms have been shown to affect SLE, as well as external,
environmental influences such as sunlight exposure, smoking, vitamin D deficiency, and certain
infections. Several studies have reported and proposed multiple associations between the alteration
of the epigenome and the pathogenesis of autoimmune disease. Epigenetic factors contributing to SLE
include microRNAs, DNA methylation status, and the acetylation/deacetylation of histone proteins.
Additionally, the acetylation of non-histone proteins can also influence cellular function. A better
understanding of non-genomic factors that regulate SLE will provide insight into the mechanisms
that initiate and facilitate disease and also contribute to the development of novel therapeutics that
can specifically target pathogenic molecular pathways.

Keywords: systemic lupus erythematosus; lupus; methylation; acetylation; histone deacetylase
inhibition

1. Introduction

Systemic lupus erythematosus (SLE) is a pathophysiologically complex systemic autoimmune
disease affecting multiple organs [1–3]. Epigenetic regulation refers to the change of the
epigenomic pattern that in turn alters gene expression specifically related to modified DNA
sequences [4]. Epigenetic abnormalities in cancer research has been widely studied for decades.
Because disease pathogenesis between autoimmune diseases and cancer share some similarities,
epigenetic contributions have been proposed in the regulation of autoimmune disease [5].
Epigenetic regulation may involve microRNAs, acetylation and methylation of histone proteins and
DNA methylation—all of which have been linked to the initiation, onset, progression and perpetuation
of SLE [6–8]. Attenuation of lupus-like disease in murine models via treatment with histone modifiers
has been reported in many studies. In regard to histone acetylation/deacetylation, different isoforms
of histone deacetylase enzymes may be predominantly nuclear, cytoplasmic or shuttle between the
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nucleus and cytoplasm. Our studies have demonstrated that histone deacetylases (HDACs) are
significantly upregulated in lymphocytes in MRL/lpr lupus prone mice [9,10]. Other studies have
also found elevated histone acetylation in innate immune cells, such as monocytes [11–13]. Moreover,
studies have shown that global alteration of DNA methylation is pathogenic in lymphocytes and
innate immune cells; specifically, hypomethylation has been highly correlated with disease activities in
SLE patients [14]. In this review, we will briefly summarize the role of DNA methylation in SLE and
highlight immunopathogenic contributions of acetylation and deacetylation to lupus.

2. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease that involves genetic
predisposition, epigenetic modification and environmental factors that lead to alteration in both
the innate and adaptive immune responses, including abnormalities in apoptotic cell clearance,
cytokine production, and dendritic cell, B-cell and T-cell activation [1,15,16]. Lupus is highly associated
with deficiency of apoptotic clearance [17]. While the initial triggers vary, the excessive accumulation
of apoptotic debris, in particular microparticles containing nuclear material, can activate antigen
presenting cells including dendritic cells and B cells, which initiate the cellular interactions that lead to
the generation of antinuclear antibodies through interactions with autoreactive T cells [17,18]. T cells
not only activate B-cell responses but also infiltrate target tissues and cause damage. Type I and type II
interferons (TFN I/II), tumor necrosis factors (TNF), B-lymphocyte stimulators (BLys), interleukin 6,
interleukin 17, interleukin 18, interleukin 21, and many other cytokines are involved in autoimmune
priming and induce inflammatory mediated tissue injury in patients with lupus [19–21].

One of the most severe manifestations of SLE is lupus nephritis (LN). LN remains a major cause
for morbidity and mortality in SLE patients [3,22–28]. Glomerulonephritis (GN) is the most common
form of LN, which is frequently accompanied by tubulointerstitial and/or vascular lesions [29]. In the
kidney, immune complexes containing anti-DNA and anti-nucleosome antibodies contribute to lupus
nephritis and initially deposit in the endothelial and mesangial areas, and then in the basement
membrane and epithelial areas [30]. Importantly, these immune complexes initiate a further influx of
inflammatory cells by activating the complement cascade.

Genetic variations suggest a predisposition to SLE development [31]. Both single gene deficiency,
such as complement C1q and C4, and the effect of a large number of genetic variations including
single-nucleotide polymorphisms (SNPs) within noncoding regions of immune response–related genes
are associated with SLE [31–33]. However, these findings can only account for about 15% of the
heritability of SLE, suggesting that factors other than genetic variations may have additional effects on
SLE development [34]. UV light exposure is a well-documented environmental trigger of SLE [2,29].
However, paradoxically, avoidance of sunlight to reduce UV light exposure can result in a vitamin
D deficiency, which is negatively associated with SLE severity [35]. Additionally, viral infections
may trigger SLE by self-antigen mimicry and induction of inflammation [36–38]. As the disease
ratio of female to male is about 9 to 1, hormones and the X chromosome are believed to play a
role in the increased prevalence of SLE among women [39,40]. Epigenetic changes, including DNA
methylation, histone modifications (acetylation and methylation), and acetylation of non-histone
proteins, influence DNA accessibility to transcription factors, as well as translocation and addition
of proteins resulting in altered gene expression. These epigenetic changes have emerged as possible
mechanisms that initiate or contribute to the pathology of SLE.

3. Methylation in SLE

Methylation of C bases in CG pairs, known as DNA methylation, is characterized by the addition
of a methyl group to the carbon residue in a gene promoter region. Histones are a group of conserved
proteins associated with the DNA strand that regulate DNA stability, replication, and transcription
through different histone modifications, including methylation and acetylation. The modification of
DNA and histones may act as epigenetic regulators of gene expression. DNA methylation promotes the
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repression of gene transcription through prevention of transcription factors binding to the chromatin
structure [41]. Histone modifications can be very dynamic based on the activation and differentiation
status of the cell (Figure 1) [42,43].
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Studies have used DNA methylation inhibitors to induce lupus-like diseases in murine models 
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active lupus is positively correlated with SLE disease activity index (SLEDAI) score. They further 
demonstrated that demethylation of the promoter region of CD11a is higher in active lupus patients 
compared with inactive patients and normal controls [52]. 

Enhancer of Zeste homologue2 (EZH2) can act as an epigenetic regulator of gene expression, 
either through trimethylation of lysine 37 in histone 3 (H3K27me3) or direct control of DNA 
methylation by recruiting DNA methyltransferase [53,54]. Unlike other histone methylation, which 
relaxes chromatin and turns on gene transcription, trimethylation of H3K27 causes the chromatin to 
compact and repress gene transcription [55–57]. In lupus patients, H3K27me3 is enriched in the 
hematopoietic progenitor kinase 1 (HPK1) promotor region [58,59]. As HPK1 acts as a negative 
regulator of T cell-mediated IFNγ and IgG production, it may explain part of the lupus 
pathophysiology. Additionally, EZH2 is highly expressed in naïve CD4+ T cells in lupus patients 
compared to healthy controls and positively correlates with lupus disease activity. Increased EZH2 

Figure 1. Histone and DNA methylation and demethylation. Histone methylation adds methyl group
to the residue of histone tails and increases gene transcription by uncoiling DNA from histone and
opening more DNA binding sites to transcriptional factors. DNA methylation happens between paired
CG groups in DNA sequences. It prohibits the transcriptional factors binding to DNA and represses
the gene transcription. H: Histone; HT: Histone tails; Me: Methylation; TF: Transcriptional factor.

The induction of this lupus-like syndrome depends on the level of methylation of genome
DNA from the apoptotic cells. Studies have reported that perturbation of DNA methylation
results in the activation of the apoptotic pathway. Aberrant clearance of apoptotic DNA plays
a critical role in the development of SLE. It has also been shown that the injection of extracted
DNA from stimulation-induced apoptotic lymphocytes into a mouse model induced a lupus-like
disease, characterized by the production of anti-dsDNA antibodies and lupus nephritis [44–46].
Upon re-methylation of apoptotic DNA, the ability to induce anti-dsDNA antibody was dampened.
In contrast, an increase in DNA demethylation boosts its ability to stimulate an autoimmune
response [47]. Toll-like receptor 9 (TLR9), which recognizes hypomethylated DNA to induce an
inflammatory response in innate immune cells, drives an enhanced type I interferon response that is
likely to contribute to the DNA methylation effect on SLE development [48].

Studies have used DNA methylation inhibitors to induce lupus-like diseases in murine models
and found impaired DNA methylation in SLE patients, both of which support the relationship between
DNA hypomethylation and lupus disease [49–51]. CD11a is an integrin involved in cellular adhesion
and co-stimulation and provides a critical initial interaction between T cells and antigen-presenting
cells, stabilizing the immune synapse. CD11a is overexpressed in lupus via the regulation of DNA
methylation. Lu et al. show that overexpression of CD11a from CD4+ T cells in patients with
active lupus is positively correlated with SLE disease activity index (SLEDAI) score. They further
demonstrated that demethylation of the promoter region of CD11a is higher in active lupus patients
compared with inactive patients and normal controls [52].

Enhancer of Zeste homologue2 (EZH2) can act as an epigenetic regulator of gene expression,
either through trimethylation of lysine 37 in histone 3 (H3K27me3) or direct control of DNA
methylation by recruiting DNA methyltransferase [53,54]. Unlike other histone methylation,
which relaxes chromatin and turns on gene transcription, trimethylation of H3K27 causes the chromatin
to compact and repress gene transcription [55–57]. In lupus patients, H3K27me3 is enriched in the
hematopoietic progenitor kinase 1 (HPK1) promotor region [58,59]. As HPK1 acts as a negative
regulator of T cell-mediated IFNγ and IgG production, it may explain part of the lupus pathophysiology.
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Additionally, EZH2 is highly expressed in naïve CD4+ T cells in lupus patients compared to healthy
controls and positively correlates with lupus disease activity. Increased EZH2 expression also induces
overexpression of junctional adhesion molecule A (JAM-A) through DNA hypomethylation. In this
regard, upregulated JAM-A promotes T cell adhesion and T cell survival, increasing the ability for
T cells to migrate to inflamed tissues in lupus [60].

CD40L (CD154) and CD70 are two molecules that are expressed on activated T cells and involved
in co-stimulation during T cell: B cell interaction. Both molecules have been shown to be upregulated
on T cells in patients with active SLE compared to lupus patients with inactive disease or healthy
individuals. Furthermore, hypomethylation of these molecules at the promoter regions of T cells has
been demonstrated to promote disease [61–63]. Recently, a study by Ulff-Muller and coworkers
reported that hypermethylated DNA in B cells contributed to SLE, which contrasts with DNA
hypomethylation in T cells [64]. In addition to methylation of DNA, acetylation of histone and
non-histone proteins has been reported to play a role in the development of lupus and has been of
particular interest in our research studies [65].

4. Acetylation in SLE

The acetylation and deacetylation of amino-acid residues within histone tails has been shown to
be a main factor influencing chromatin structure and modulating gene transcription, both positively
and negatively [66,67]. Histone acetylation regulates gene transcription in different ways. First,
acetylation of lysine residues within histone tails neutralizes the positive charge of histone proteins,
loosening chromatin structure. This increases the accessibility of transcription factors to the promoter
regions of their target genes [68]. Second, acetylated histones also function as binding sites for
other proteins that act as transcriptional co-activators. In contrast, histone deacetylation promotes
transcriptional suppression via chromatin compaction [69]. Third, direct acetylation and deacetylation
of transcription factors and proteins, other than histones, have been shown to have both positive or
negative regulating roles on gene expression (Figure 2) [70].

Histone acetylation is controlled by the opposite actions of two large families of enzymes—the
histone acetyltransferases (HATs) and histone deacetylases (HDACs).

The HDAC superfamily encodes 11 proteins with a highly conserved deacetylase domain (Table 1).
These proteins can be classified into four families (class I, IIa, IIb and IV), which differ in function,
cellular and subcellular localization, and expression patterns. The class I HDAC family consists of
HDAC1, 2, 3 and 8 [71–73]. They are expressed ubiquitously, localized predominantly to the nucleus,
and display high enzymatic activity toward histone substrates. HDAC1, HDAC2 and HDAC3 are
nearly identically in repressive complexes [74], whereas HDAC8 seems to work alone without binding
to repressive complexes [72].

HDAC4, 5, 7 and 9 belong to the class IIa HDAC family. They have conserved binding sites
for the transcription factor myocyte enhancer factor 2 (MEF2) and the chaperone protein 14-3-3.
These HDACs can translocate between the nucleus and the cytoplasm after phosphorylation by kinases
and thereafter binding to the chaperone protein 14-3-3 [75–78]. The regulated phosphorylation of
class IIa HDACs functions as a linker between extracellular signals and transcriptional changes in the
nucleus, and plays key roles in different tissues during development and disease. Different from other
HDACs, class IIa HDACs show relatively restricted expression patterns, with HDAC4 expressed in
the brain, HDAC5 and HDAC9 enriched in muscle, the heart and brain, and HDAC7 mostly found in
the thymus and endothelial cells [75,79–81].
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Figure 2. Histone and nonhistone protein modified by acetylation and deacetylation. Acetylation and
deacetylation refer to removal or addition of acetyl group from targeted protein or DNA. (1) Histone
acetylation and deacetylation is a dynamic and reversible reaction that alters the structure of histones
and affect the gene transcription by loosening or compacting the DNA. (2) Acetylated histones can
act as a binding site for other proteins which are co-activators of transcriptional factors. (3) Nucleus
translocation and DNA binding affinity of transcriptional factors in the cytoplasm can be modified
by acetylation or deacetylation. (4) Acetylation and deacetylation can regulate other nonhistone
proteins in the cytoplasm and alter their function in cellular activities. H: Histone; HT: Histone tails;
AC: Acetylation; TF: Transcriptional factor; CA: Co-activator; CP: Cytoplasm protein.

The Class IIb family consists of HDAC6 and HDAC10. HDAC6 mainly resides in the cytoplasm,
and the function of HDAC6 is not well understood [82–84]. The direct targets of HDAC6 include the
cytoskeletal proteins α-tubulin and cortactin, transmembrane proteins such as the interferon receptor
IFNαR, and chaperones [85–89]. HDAC11 is the only class IV HDAC discovered to date, but its
function is not well delineated [90,91].
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Table 1. Summary of HDAC Classifications.

Histone
Deacetylases

(HDAC)
Classification

Enzymatic
Activity

Mechanism of
Action Location Substrates HDAC Inhibitor

Autoimmunity and
Systemic Lupus

Erythematosus (SLE)
Involvement

Class I.

HDAC1
Enhanced when
incorporated into
complexes

1 class I catalytic
domain Nucleus

p53, RB, MyoD, NF-kB,
DNMTI, DNMT3a,
MBD2, Sp1, BRCA1,
MeCP2, ATM, Smad7
[61,92]

Valproic acid,
phenylbutyrate, MS-275,
Romidepsin,
Suberoylanilide
Hydroxamic Acid [93]

Overexpression of HDAC1
increases the activity of the
3’-IgH enhancers. HDAC1 is
recruited to the IgH enhancer
region, and TSA treatment of
B cells reduced the
production of anti-DNA
autoantibodies.

HDAC2
Enhanced when
incorporated into
complexes

1 class I catalytic
domain Nucleus RB, NF-kB, BRCA1,

DNMTI [61]

Valproic Acid,
phenylbutyrate,
Suberoylanilide
Hydroxamic Acid, MS-275,
Romidepsin [93–95]

Critical for transcriptional
regulation, cell cycle
progression and
developmental processes.

HDAC3
Enhanced when
incorporated into
complexes

1 class I catalytic
domain Nucleus/Cytoplasm RB, NF-kB, Smad7,

Stat3, SRY [61]

Valproic Acid,
Suberoylanilide
Hydroxamic Acid,
MS-275 [93,96]

HDAC3 gene expression is
decreased in SLE monocytes,
involved in macrophage
polarization.

HDAC8 Fully active in
isolation

1 class I catalytic
domain Nucleus Not Reported

Suberoylanilide
Hydroxamic Acid,
Resveratrol, APHA,
Curcumin [93,97]

Downregulate the expression
of pro-inflammatory
cytokines (TNF-alpha,
TGF-beta, IL-1beta, and IL-6).

Class IIa.

HDAC4
Weak enzymatic
activity in
isolation

1 class II catalytic
domain Nucleus/Cytoplasm GCMa, GATA-1, HP-1

[92,98,99] Not reported Role in pro-inflammatory
gene expression.
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Table 1. Cont.

Histone
Deacetylases

(HDAC)
Classification

Enzymatic
Activity

Mechanism of
Action Location Substrates HDAC Inhibitor

Autoimmunity and
Systemic Lupus

Erythematosus (SLE)
Involvement

HDAC5
Weak enzymatic
activity in
isolation

1 class II catalytic
domain Nucleus/Cytoplasm GCMa, Smad7, HP-1

[92,100] TSA [93]
HDAC5 mRNA expression is
enhanced in inflammatory
states.

HDAC7
Weak enzymatic
activity in
isolation

1 class II catalytic
domain Nucleus/Cytoplasm PLAG1, PLAG2

[92,101] Not reported

Promotes inflammatory
responses in macrophages,
regulates TLR responses in
macrophages, regulates LPS
signaling.

HDAC9
Weak enzymatic
activity in
isolation

1 class II catalytic
domain Nucleus/Cytoplasm Not Reported

Suberoylanilide
Hydroxamic Acid,
MS-275 [93]

Regulates Foxp3-dependent
suppression. Increase in Treg
cells—decrease in
suppressive activity. HDAC9
inhibition may benefit SLE
patients as shown in
MRL/lpr mice.

Class IIb.

HDAC6 Acts on structural
proteins

2 class II catalytic
domains with
1215 amino acids.
SE14 repeats. BUZ
is ZnF domain

Mainly cytoplasmic Smad7, α-Tubulin,
Hsp90 [61,102] M344 [92,93,103]

HDAC6 is overexpressed in
SLE—causes an increased B
cell development and
response. Inhibition causes
reduced germinal center B
cells, T follicular cells and
IFN-gamma secreting cells.

HDAC10 Not measurable 2 class II catalytic
domains Nucleus/Cytoplasm Not reported Not reported Overexpressed in B cells

from the spleen.

Class IV.

HDAC11

Regulates
immune
activation and
immune tolerance

1 class IV catalytic
domain Nucleus Not reported Not reported

Gene expression is decreased
in SLE monocytes, negative
transcriptional regulator
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The roles of HDACs in lupus have been reported by us and others, and HDAC inhibitors are
indicated to be a possible new treatment for lupus. There are pan-HDACs and selective HDAC
inhibitors. Pan-HDAC inhibition causes a global interference of epigenetic programming which could
result in both therapeutic as well as adverse effects. In contrast, selective HDAC inhibition has less
toxicity based on their limited substrates, location, and specific enzyme activities.

In T cells of SLE patients, CD40L and IL-10 are overexpressed, whereas IFN-gamma is
downregulated [104]. After treatment with trichostatin A (TSA), a reversible pan inhibitor of HDAC,
the expression levels of CD40L, IL-10 and IFN-gamma were corrected in patient T cells, suggesting the
involvement of HDACs in abnormal T cell activation in SLE patients through at least regulating
CD40L and IL-10 expression, which are both critically involved in T cell: B cell interaction and B cell
activation. TSA also suppressed IL-2 production by activated T cells by downregulating T cell receptor
zeta chain signaling [105]. Treatment of either TSA or another HDAC inhibitor, suberonylanilide
hydroxamic acid (SAHA) targeting HDAC I in MRL/lpr lupus-prone mice showed reduced proteinuria,
glomerulonephritis, spleen weight, and mesangial cell inflammation, associated with an increased
accumulation of acetylated histones H3 and H4 in total cellular chromatin [106,107]. Recently Hu et al.
reported reduced H3 and H4 acetylation and decreased IFN-gamma expression in mouse splenocytes
of SLE patient peripheral blood mononuclear cell (PBMC) [108]. Conversely, Garcia et al. reported
hypoacetylation in splenocytes of MRL/lpr lupus-prone mice compared to MRL/MpJ control
mice [109]. Besides the effects of HDACs on T cell activation, it has been reported that HDAC1
is recruited to the IgH enhancer region, and TSA treatment of B cells reduced the production of
anti-DNA autoantibodies directly, highlighting the influence of HDACs on B cells in lupus mice [110].
In New Zealand Black/White (NZB/W) F1 female mice, TSA administration resulted in an increase
in regulatory T cells and a decrease of CD69+ activated T helper cells which correlated with reduced
lupus nephritis [111]. Another pan-HDAC inhibitor, panobinostat targeting class I, II and IV HDACs,
decreased the percentage of autoreactive plasma cells and reduced the production of autoantibodies in
MRL/lpr mice in pre-disease stage [112].

Hu et al. reported differential functions and expression patterns of different HDACs in MRL/lpr
mice. They demonstrated increased SIRT1 expression but decreased HDAC7 expression in MRL/lpr
mice compared to MRL control mice [113]. SIRT1 siRNA treatment reduced tubulointerstitial scores
but had no effect on proteinuria and serum autoantibody levels, which was different from the effects
of the pan HDAC inhibitor TSA. HDAC3 and 11 have been reported to be decreased in monocytes
from SLE patients compared to healthy individuals, suggesting their possible roles in suppressing
autoimmune responses [114]. In addition, the transcription factor RFX1 which recruits the co-repressor
HDAC1 is reduced in T cells of SLE patients. This results in the overexpression of CD11a and CD70 on
T cells of SLE patients, suggesting the immunosuppressive effect of HDAC1 and suggests the immune
repressive effect of TSA may work on HDACs other than HDAC1 [115]. HDAC9 deficiency in MRL/lpr
mice has been shown to reduce lupus symptoms and increase survival rates compared to HDAC9
intact MRL/lpr mice [116]. In the study, effector T cells in the HDAC9-/- mice switched from a Th1
and Tfh into a Th2 phenotype with increased acetylation of histone proteins globally at the IL-4 gene
locus, suggesting HDAC9 inhibition may benefit SLE patients. However, TSA is a pan HDAC inhibitor.
Another study, using a selective class I and II HDAC inhibitor (ITF2357) demonstrated reduced disease
in NZB/W F1 mice, suggesting that class I and II HDAC are involved in lupus pathogenesis [117].
In addition to regulating protein-translating genes, HDACs have also been reported to regulate
microRNAs that suppress B cell responses [118]. We have recently reported that HDAC6 inhibition
upregulated microRNA targeting AID and Blimp-1, which are critical factors in B cell responses,
resulting in reduced lupus disease in MRL/lpr mice. Furthermore, we found, reduced germinal center
B cells, T follicular cells and IFN-gamma secreting cells suggesting HDAC6 inhibition contributed to
the downregulation of adaptive immune response in lupus nephritis [119]. In our studies, we have
shown that selective HDAC6 inhibition decreases IFN-alpha production in initiation stage of the
disease. Furthermore, we found that administration of the selective HDAC6 inhibitor ACY-738
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in vitro led to decreased IFN-alpha production in a dose-dependent manner [119]. HDACs also
promote neutrophil extracellular traps (NETs) which act as an important source of self-antigens [120].
Our previous studies have shown MRL/lpr mice have increased levels of HDAC6 and HDAC9
compared to non-autoimmune B6 mice. However, B6 animals showed increased expression of HDAC10
compared to MLR/lpr lupus prone mice in splenic B and T cells [9]. As HDAC6 is primarily localized
to the cytosol, the selective HDAC6i, ACY-738, blocks HDAC activity in the cytoplasm while not
affecting nuclear histones [121]. We found that HDAC6i treatment of B cells increased NFkB acetylation,
prevented translocation to the nucleus, and suppressed B cell development at the pre-B cell stage [122].
Further treatment with ACY-738 in NZB/W F1 mice reduced lupus nephritis, sera anti-dsDNA level
associated with increased splenic Tregs, and decreased Th17 cells [103,122]. These studies suggest that
HDAC6 is involved in lupus development by various mechanisms. Transcription factor Fli-1 regulates
G-CSF production to control neutrophil infiltration into the kidneys, causing kidney inflammation
in lupus [123–125]. Deacetylation at aa380 decreases Fli-1 driven activation of the G-CSF promoter
to decrease inflammatory cytokine secretion in lupus prone mice [126]. In human studies, Th17 cells
play a pivotal role in the contribution to the pathogenesis of SLE via secreting the IL-17 inflammatory
cytokine. Increasing HDAC3 acetylation led to overexpression of IL-17A through downregulating
expression of transcription factor RFX1, which suggests HDAC3 acts as a nuclear epigenetic regulator
in SLE patients [127].

5. Metabolism and Epigenetic Crosstalk in Lupus

The methylation/demethylation of DNA and histones and acetylation/deacetylation of histone
and nonhistone proteins alter gene expression and immune cell function in lupus. However,
these epigenetic reactions are reversible and can be affected by the availability of substrates from
metabolic pathways. Advancements in the field of immunometabolism have suggested that aberrant
metabolic pathways may also play a critical role in the pathogenesis of lupus disease [128].

Lupus patients have been reported to exhibit a depletion of intracellular glutathione, a vital cellular
antioxidant [129]. Glutathione depletion has been reported to increase the target of the rapamycin
(mTOR) signaling pathway [130,131]. The mTOR signaling pathway acts as a central regulator in cell
metabolism, growth, proliferation and survival by mainly controlling energy utilization and protein
synthesis, and this pathway exists in almost all immune cells [132,133]. Activation of mTOR occurs in
T cells and other cell types in lupus and is responsible for multiple pathogenic processes [134–138].
Recent studies have suggested that the addition of N-acetyl L-cysteine (NAC), which helps to replenish
intracellular glutathione, decreases lupus through blocking mTOR [139].

The kynurenine pathway is a metabolic pathway leading to the production of nicotinamide
adenine dinucleotide (NAD+) from the degradation of the essential amino acid tryptophan.
Disruption in the pathway is associated with certain genetic disorders [140–142]. In lupus patients,
it was reported that NAC significantly reduced kynurenine, which also decreased mTOR signalling.
These results suggest that reversal of glutathione depletion by the amino acid precursor or inhibition
of the kynurenine pathway may reduce the activation of mTOR in SLE [130,143,144]. Rapamycin,
a specific mTOR inhibitor, can effectively decrease lupus disease in both lupus-prone mice and
patients [135]. Rapamycin was shown to promote demethylation of genes at the 5-position of cytosine
(5mC) in the mTOR pathway in naïve CD4+ T cells. This inhibited the differentiation of Th1 and Th17
cells that can both contribute to lupus development [145].

The activation of mTOR promotes glycolysis and lipogenesis to generate acetyl-CoA, which the
substrate histone acetylation relies on to provide an acetyl group and complete the reaction. Indeed,
one of the targets of mTOR is the acetylation of histone proteins. However, the consequence of
this is not clear. In one study, it was shown that acetylation of histone H3 at lysine 56, H3K56ac,
was directly inhibited by rapamycin [146,147]. However, H3K56ac was activated by mTOR and
promoted mTOR-dependent growth, suggesting positive feedback between mTOR activation and
histone acetylation [148]. Furthermore, histone deacetylation is mediated by the nicotinamide adenine
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dinucleotide (NAD) dependent sirtuin deacetylase. The bio-generation of NAD from the kynurenine
pathway is upregulated in lupus. Additionally, it has been shown that the kynurenine pathway also
promotes mTOR activation which, as discussed above, promotes histone acetylation [142,149–151].
Therefore, an overall balance and availability of metabolic substrates may determine opening or closing
of gene transcriptions by affecting the level of histone acetylation or deacetylation, respectively.

6. Summary

Aberrant epigenome gene regulation and modification plays a crucial role in the pathogenesis of
SLE. Comprehensive understanding of how epigenetic modification and acetylation/deacetylation
of non-histone proteins corrects or promotes autoimmune disease will enable us to gain further
insight into the pathogenic mechanisms of autoimmune disorders. By understanding how
acetylation/deacetylation and methylation/demethylation modulate gene expression and cell
signaling, we will be able to more effectively target the signaling cascades and gene expressions
that initiate and promote aberrant cell function in SLE.
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