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Abstract: Background: Parkinson’s disease is an aggressive and progressive neurodegenerative
disorder that depletes dopamine (DA) in the central nervous system. Dopamine replacement
therapy, mainly through actual dopamine and its original prodrug L-dopa (LD), faces many
challenges such as poor blood brain barrier penetration and decreased response to therapy with time.
Methods: The prodrugs described herein are ester, amide, dimeric amide, carrier-mediated, peptide
transport-mediated, cyclic, chemical delivery systems and enzyme-models prodrugs designed and
made by chemical means, and their bioavailability was studied in animals. Results: A promising
ester prodrug for intranasal delivery has been developed. LD methyl ester is currently in Phase
III clinical trials. A series of amide prodrugs were synthesized with better stability than ester
prodrugs. Both amide and dimeric amide prodrugs offer enhanced blood brain barrier (BBB)
penetration and better pharmacokinetics. Attaching LD to sugars has been used to exploit glucose
transport mechanisms into the brain. Conclusions: Till now, no DA prodrug has reached the
pharmaceutical market, nevertheless, the future of utilizing prodrugs for the treatment of PD seems to
be bright. For instance, LD ester prodrugs have demonstrated an adequate intranasal delivery of LD,
thus enabling the absorption of therapeutic agents to the brain. Most of the amide, cyclic, peptidyl or
chemical delivery systems of DA prodrugs demonstrated enhanced pharmacokinetic properties.
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1. Introduction

Dopamine (DA) is a natural neurotransmitter and neurohormone that exerts its action by binding
to five DA receptors in the brain, D1–5 [1]. DA production represents the first steps in catecholamine
synthesis and starts with phenylalanine which is hydroxylated to tyrosine, then again to levodopa (LD)
and finally, through decarboxylation, to DA (Scheme 1). This cascade is accomplished and catalysed
with the aid of three enzymes. The rate limiting enzyme is tyrosine hydroxylase. This can be inhibited
by catecholamine neurotransmitters through negative feedback to keep proper regulation of DA [2].
DA plays several and variant roles in the body systems; including central nervous system (CNS),
circulatory, renal, digestive and immune systems (Figure 1). Its role in the CNS is a cornerstone in
controlling movement and emotion [1].
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about 1% of persons over the age of 60, causing progressive neurodegenerative movement disorders 
[3], along with cognitive manifestations; making the patient neurologically disabled. PD has global 
distribution with no gender preference [4,5]. The pathological explanation of PD symptoms is 
mainly due to the diminished dopamine in the basal ganglia. In the healthy brain, exactly in the 
midbrain region, there is an area named substantia nigra where the degeneration of neuronal cells 
happens. This area communicates with the striatum using the chemical messenger DA. Whereas, in 
the diseased brain, these cells are depleted, hence, the DA deficits in striatal cells. The other major 
neuropathological symptom of PD is the existence of Lewy bodies and Lewy neuritis [6]. The exact 
cause of neuronal deathis still not completely understood but might be due to proteasomal as well as 
mitochondrial dysfunction [4,7]. 
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Scheme 1. Dopamine synthesis pathway.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about
1% of persons over the age of 60, causing progressive neurodegenerative movement disorders [3],
along with cognitive manifestations; making the patient neurologically disabled. PD has global
distribution with no gender preference [4,5]. The pathological explanation of PD symptoms is mainly
due to the diminished dopamine in the basal ganglia. In the healthy brain, exactly in the midbrain
region, there is an area named substantia nigra where the degeneration of neuronal cells happens.
This area communicates with the striatum using the chemical messenger DA. Whereas, in the diseased
brain, these cells are depleted, hence, the DA deficits in striatal cells. The other major neuropathological
symptom of PD is the existence of Lewy bodies and Lewy neuritis [6]. The exact cause of neuronal
deathis still not completely understood but might be due to proteasomal as well as mitochondrial
dysfunction [4,7].
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Pharmacologic treatment of PD is mainly symptomatic based on DA replacement therapy,
as exogenous DA and other catecholamines cannot be administered due to their poor brain blood
barrier (BBB) penetration [1]. There are a number of drugs available for the treatment of PD.
These include agonists of dopamine (rotigotine, ropinirole, and lisuride), cholinesterase inhibitors
(donepezil), antimuscarinic drugs (trihexyphenidyl, benztropine, biperiden), MAO-B inhibitors
(selegiline, rasagiline), amantadine, and other DA and LD prodrugs [8,9].

However, administering external dopamine to PD patients as treatment is limited, as dopamine is
a water-soluble hydrophilic drug that does not satisfy the characteristics of a substance that can enter
the brain by BBB penetration [1,10,11].

This penetration can be achieved by one of three main ways. First, a drug has to diffuse freely
through the membrane if it obeys Lipinski’s rule of five, suggested and applied since 1997 [12],
with minor exceptions. Secondly, one which can permeate via active transport through specific carriers
such as amino acid and nucleoside carriers. Thirdly, a drug or substance which can be internalised
either by electrostatic interactions with specific endothelial membranes (adsorptive-mediated transport)
or through receptor mediated endocytosis, as is the case as with proteins and peptides [13–16].

L-Dopa (LD), is the direct precursor of DA and is a suitable prodrug as it facilitates CNS
penetration and delivers DA. It has been, and still is, considerably the golden standard therapy
for PD especially in the early stages [17–19]. Nevertheless, chronic long-term treatment with LD
causes motor complications (on-off phenomenon) in the majority of patients. In addition, dyskinesia
may occur due to excess dopaminergic tone [20,21]. In the early stages of PD, LD is a very effective
treatment of PD [18,19], particularly when given in combination with carbidopa, a decarboxylase
inhibitor. Carbidopa works on the peripheral decarboxylase inhibitor and cannot pass the BBB;
its role is to decrease the peripheral breakdown of LD, thus, mostly avoiding the drug’s systemic side
effects [22,23].

In normal brain tissue the basal ganglia maintains the brain’s needs of DA for motor control and
others, but LD oral administration has low bioavailability (10% with only 1% of LD reaching the brain)
due to erratic gastrointestinal metabolism of the drug before it attaches to the L-amino acid carrier that
transports the drug actively through the duodenum where it enters the bloodstream intact [24–29].
Thus, lessened amounts of DA puts the brain under fluctuations that are hard to accommodate [30,31].
Other side effects may occur systemically, including cardiac arrhythmias, hypotension and vomiting as
a result of peripheral LD metabolism [22,24]. Strategies to overcome these problems were established
to ensure the presence of constant levels of DA in a PD patient’s brain. One strategy was to inhibit
LD breakdown in peripheral tissues, consequentially overcoming systemic side effects. Immediate
release preparations of LD have a short t 1

2
of 1–3 h [25], which can be prolonged by the inhibition of

catechol-O-methyl transferase (COMT) through entacapone and tolcapone, or dopa-decarboxylase
(DDC) through carbidopa. As a result, levels of LD reaching the BBB will be increased, therefore
increasing their entrance and maintaining near normal levels of DA in the brain [26,27,30,32].

Therefore, various strategies were applied to conquer CNS penetration. Direct administration of
the drug into the brain, temporal interruption of the BBB, addition of chemical groups to the needed
substance for enhancing its permeability (the prodrug approach) and formulation of carriers with
lipophilic surfaces including liposomes, nanoparticles, dendrimers, as well as micelles [33,34]. In the
last few decades, the use of the prodrug approach has gained increased interest. It includes editing the
drug’s physicochemical properties, through conjugation with another moiety for example, to overcome
pharmacokinetic or pharmacodynamic hurdles, with the intention of releasing the parent drug post
activation or degradation of the prodrug [11,35–38].

In this review, strategies employed in the synthesis of L-dopa and dopamine prodrugs are
highlighted based on the type of prodrug synthesized. Those strategies can be classified as: ester,
amide, dimeric amide, carrier-mediated, and cyclic prodrugs as well as chemical delivery systems and
enzyme models.
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1.1. Ester Prodrugs

A widely applied and common strategy for prodrug synthesis is the use of esters [39–41].
By exploiting ester linkages, which are susceptible to both chemical and enzymatic hydrolysis,
molecules can be synthesized with the aim of yielding the active pharmacological compound once the
linkage is cleaved.

A series of promising LD ester prodrugs were previously synthesized in an attempt to increase
the bioavailability of LD (1–9 in Figure 2) [42–48]. However, none of those demonstrated significantly
longer duration of action or potency. XP21279 (10 in Figure 2) was a drug patented by Xenoport (later
acquired by Arbor Pharmaceuticals, Atlanta, GA, USA). The drug held potential for sustained release
formulations due to lower GI tract absorption. Originally it showed potential to reduce dopamine
fluctuations and was expected to decrease “off time” dyskinesia. In a phase II trial [49] investigating
XP21279-carbidopa combination, it was found that it could be administered 3 times daily, but failed to
show marked reductions in off time.
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Figure 2. Chemical structures of LD ester prodrugs, 1–10.

Etilevodopa (TV 1203), an ethyl ester of LD was produced [50]. The prodrug was rapidly
hydrolysed by esterases in the duodenum and absorbed as LD. Etilevodopa appeared to have increased
solubility and bioavailability with shorter time to Cmax. However, no marked improvement in on-off
fluctuations in PD patients was recorded and hence the prodrug was dropped.

Casagrande et al. [51] and Borgman et al. [52] have prepared latentiated lipophilic derivatives of
DA. The series of lipophilic 3,4-O-diesters (11–15 in Figure 3), are intended for use in the treatment
of parkinsonism, hypertension and renal failure. Unfortunately, the results demonstrated that
O-acetylation was not sufficient to allow penetration into CNS.
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Also, nasal powder preparations of the prodrug, LD methyl ester hydrochloride (LDME)
(3 in Figure 2), hold potential benefit for alternate routes of delivery with bioavailability figures
reaching 66.7% and 82.4% with and without Carbopol, respectively [53]. Combining LD methyl ester
hydrochloride with trans buccal delivery would be expected to have higher bioavailability than LD
and be capable of maintaining better plasma levels of the drug [54]. LDME is currently in Phase III
clinical trials and expected to be with decreased adverse effects [55].
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1.2. Amide Prodrugs

In addition to the abovementioned ester prodrugs, amide prodrugs are also capable of increasing
the lipophilicity of DA and hence, the ability to cross the BBB through passive diffusion, making them
a logical option in LD prodrug synthesis. Though, and in contrast to esters, amides are less susceptible
to hydrolysis. A general formula for potential amides is depicted in (16 in Figure 4) [56].

Jiang et al. [57] synthesized and tested an amide prodrug on rats (17 in Figure 4). In vivo study
results showed enzymatic hydrolysis and release of LD after oral administration with Cmax being
1980.7 ± 538.5 vs. 1936.6 ± 114.6 ng/mL, Tmax was 24.5 ± 3.5 vs. 4.5 ± 0.8 min, AUC was 217,158.9 ±
70,832.1 vs. 94,469.5 ± 7183.0 ng/mL min and the t 1

2
was 56.5 ± 14.4 vs. 30.6 ± 1.6 h for the amide

prodrug and L-dopa respectively.
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Zhou et al. [58] reported the synthesis of a series of new LD amides (L-dopamides, 18–33 in
Figure 5) studied in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats. The authors declared
that less L-dopa was obtained from compounds with more hydrophobic ester protecting groups
(structures 18–22) compared with acetyl compounds (structure 29). This is due to slower hydrolysis of
amides when compared to hydrolysis-susceptible esters which exhibit poor plasma stability. Prodrug
29 showed the best results with prolonged duration of action (147 min) vs. LD (119 min), following
oral administration.
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Denora et al. [59] proposed a series of novel amide LD prodrugs (Figure 6, 34–41),
called Dopimid compounds. The series have high BBB penetrating potential due to substituted
2-phenyl-imidazopyridine-3-acetic acid. Of these Dopimid compounds, 34, 35, 38 and 39 were found
to be stable against chemical hydrolysis, although they showed faster breakdown in diluted rat serum
at 37 ◦C, and were able to penetrate the CNS. Moreover, a dose- and time-dependent elevation of DA
levels in rat medial prefrontal cortex after intraperitoneal administration of compounds 38 and 39 was
obtained. Similar results were also obtained by Eltayb et al. after i.p. administration of LD [60].
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1.3. Dimeric Amide Prodrugs

Dimeric prodrugs are, in essence, two identical molecules attached directly or indirectly using
a spacer [61–65]. Felix and co-workers [66] have efficiently synthesized LD dimer prodrug without
a spacer (42 in Figure 7). On the other hand, Stefano and co-workers have synthesized various LD
dimers [67–70] with different spacers used for each molecule (43–50 in Figure 7).
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All dimeric prodrugs made have shown stability in buffer solution (pH 1.3 and pH 7.4), as well
as a slow release of LD when tested in human plasma. Moreover, after oral administration of these
compounds, the concentration of dopamine decreased much more slowly than that revealed with LD
oral administration.

1.4. Carrier-Mediated Prodrugs

In this approach drugs are linked to an endogenous transporter substrate like amino acids,
glucose, and other hexoses. This is aimed at the utilization of active transport mechanisms to ease
BBB penetration, followed by bioconversion to yield the parent drug [35,71]. Most widely used
transport systems in the prodrugs approach are glucose transporter (GLUT1), large neutral amino acid
transporter (LAT1), monocarboxylic acid transporter (MCT) and peptide transport systems [72–75].

Novel DA glycosyl derivatives which can be transported by GLUT1 have been synthesized.
Fernandez and co-workers [76,77] have synthesized glycosyl derivatives by attaching sugar and
dopamine through a succinyl linker, carbamate bond, glyosidic, and ester bonds. They linked the
amino group of DA to the C-6, C-3 and C-1 of the sugar through a succinyl linker (51–53, Figure 8) or a
carbamate bond (compounds 54–56). In another series, the sugar was linked to the phenolic groups of
dopamine through a glyosidic bond (59 and 60) and ester (61–63) bonds, and then the affinity of these
prodrugs for glucose carrier GLUT1 was tested using human erythrocytes. When DA-glycoconjugates
were incubated with the brain extracts, the nature of the bond attaching DA with glucose affected the
rate of DA release. The glycosyl conjugates substituted at the C-6 position of the sugar were more
potent inhibitors of glucose transport in contrast to C-1 and C-3 substituted prodrugs. Among the
studied compounds, the carbamate derivatives 52, 56 and 57 were the prodrugs of choice, in particular
compound 54, which showed the best affinity for GLUT1, even higher than glucose itself.
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In another study, Bonina et al. and Ruocco et al. [78,79] have prepared sugar-DA prodrugs in
which DA was attached to the C-3 position of glucose (64 in Figure 9) and to C-6 of galactose (65 in
Figure 9) by a succinyl spacer. Pharmacological studies showed that both prodrugs were more active
than LD in reversing reserpine-induced hypolocomotion in rats.
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1.5. Peptide Transport-Mediated Prodrugs

Giannola et al. [80] have proposed a 2-amino-N-[2-(3,4-dihydroxyphenyl)-ethyl]-3-
phenyl-propionamide dopamine prodrug (DA-PHEN) (Figure 10) [81]. It was synthesized by
condensation of dopamine with a neutral amino acid to interact with the BBB endogenous transporters
and readily enter the CNS. DA-PHEN undergoes slow cleavage by cerebral enzymes (t 1

2
460 min)

and yields free dopamine in the brain, but it is rapidly hydrolyzed in human plasma (t 1
2

28 min).
Chemical stability studies on DA-PHEN proved that no DA release happened in the gastrointestinal
tract, also the prodrug can cross through a simulated intestinal mucosal membrane.

Molecules 2018, 23, 40 9 of 17 

 

 
Figure 9. Chemical structures of glycosuccinyl-derivatives of DA, 64 and 65. 

1.5. Peptide Transport-Mediated Prodrugs 

Giannola et al. [80] have proposed a 2-amino-N-[2-(3,4-dihydroxyphenyl)-ethyl]-3-phenyl- 
propionamide dopamine prodrug (DA-PHEN) (Figure 10) [81]. It was synthesized by condensation 
of dopamine with a neutral amino acid to interact with the BBB endogenous transporters and readily 
enter the CNS. DA-PHEN undergoes slow cleavage by cerebral enzymes (t½ 460 min) and yields free 
dopamine in the brain, but it is rapidly hydrolyzed in human plasma (t½ 28 min). Chemical stability 
studies on DA-PHEN proved that no DA release happened in the gastrointestinal tract, also the 
prodrug can cross through a simulated intestinal mucosal membrane.  

 
Figure 10. Structure of 2-amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenylpropionamide 
(DA-PHEN), 66. 

Recently, De Caro et al. [81] studied in vitro the ability of DA-PHEN to penetrate the CNS. The 
team used in their study parallel artificial permeability assay (PAMPA) and Caco-2 models. Despite 
the relatively low molecular weight (300.35 Da) and the estimated experimental value [80] of  
log DPh 7.4 (0.76) of DA-PHEN which indicates good potential for passage through biological 
membranes, they noticed very limited transport through PAMPA-BBB [81]. In fact, the apparent 
permeability was 3.2 × 107 cm/s, indicating low capacity of DA-PHEN to penetrate BBB by passive 
transcellular route. Transport trials via Caco-2 cells showed marked increase of DA-PHEN flux with 
regard to that calculated in PAMPA-BBB system. However, high penetration rates seen in 
DA-PHEN cannot be obtained only by the simple diffusion, but may also involve carrier mediated 
transport [82]. 

In another study, More and Vince [83] focused on the glutathione uptake transporters that are 
located on the luminal side of the BBB in attempt to increase BBB penetration of dopamine. The 

Figure 10. Structure of 2-amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenylpropionamide
(DA-PHEN), 66.

Recently, De Caro et al. [81] studied in vitro the ability of DA-PHEN to penetrate the CNS.
The team used in their study parallel artificial permeability assay (PAMPA) and Caco-2 models.
Despite the relatively low molecular weight (300.35 Da) and the estimated experimental value [80]
of log DPh 7.4 (0.76) of DA-PHEN which indicates good potential for passage through biological
membranes, they noticed very limited transport through PAMPA-BBB [81]. In fact, the apparent
permeability was 3.2 × 107 cm/s, indicating low capacity of DA-PHEN to penetrate BBB by passive
transcellular route. Transport trials via Caco-2 cells showed marked increase of DA-PHEN flux with
regard to that calculated in PAMPA-BBB system. However, high penetration rates seen in DA-PHEN
cannot be obtained only by the simple diffusion, but may also involve carrier mediated transport [82].
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In another study, More and Vince [83] focused on the glutathione uptake transporters that are
located on the luminal side of the BBB in attempt to increase BBB penetration of dopamine. The broad
substrate specificity displayed by these transporters provides ample opportunity for rational prodrug
design. The design of glutathione transporter targeted prodrug involved three components: the carrier,
glutathione (GSH), the active drug, and a suitable linker for conjugation of the carrier with the drug
molecule. The prodrug 67 (Figure 11) in which the dopamine is covalently linked via an amide bond to
glutathione (GSH) demonstrated a high affinity for the GSH transporter at the BBB, liberated dopamine
at the active site, and showed good stability balance between the periphery and brain.
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1.6. Chemical Delivery Systems

Ishikura and co-workers synthesized LD prodrugs by an esterification of LD carboxylic acid with
a thiazolium moiety [84]. Four novel compounds were made (Figure 12). Ishikura and his team’s
novel compounds rely on redox ring closure reactions of cis-2 formylaminoethenylthio derivatives to
quaternary thiazolium derivatives and LD liberation after hydrolysis of the ester bond, as illustrated
in (Scheme 2). The disposition of the prodrugs was evaluated by measuring the concentrations of DA
regenerated after intravenous administration of the prodrugs and the results were compared with those
for LD itself. The plasma levels of DA demonstrated no significant differences between DA and the
prodrugs. In contrast, however, brain levels of DA were remarkably elevated following administration
of the prodrugs. These findings suggest that a redox ring-closure system to a quaternary thiazolium
can be used as an alternative chemical delivery system to the brain.
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1.7. Cyclic Prodrugs

Cingolani and co-workers [85] have prepared l-3-(3-hydroxy-4-pivaloyloxybenzyl)-2,5-
diketomorpholine ring (Figure 13), to enhance the stability toward GI hydrolysis and to liberate
LD in human plasma after enzyme-catalysed hydrolysis. Further, Giorgioni et al. [86,87] synthesized
three cyclic compounds through the introduction of LD functional groups into animidazoline-4-one
ring. The use of this ring particularly was based on its previously assured efficiency in protecting
enkephalins from aminopeptidase degradation. The cyclic compounds were sufficiently stable in the
acidic environment of the stomach; their absorption occurred in the intestine, and were capable to
release LD to the brain in a slow manner.

Molecules 2018, 23, 40 11 of 17 

 

 
Scheme 2. Activation mechanism of carboxylic acid-thiazolium prodrugs of LD. 

1.7. Cyclic Prodrugs 

Cingolani and co-workers [85] have prepared l-3-(3-hydroxy-4-pivaloyloxybenzyl)-2,5- 
diketomorpholine ring (Figure 13), to enhance the stability toward GI hydrolysis and to liberate LD 
in human plasma after enzyme-catalysed hydrolysis. Further, Giorgioni et al. [86,87] synthesized 
three cyclic compounds through the introduction of LD functional groups into animidazoline-4-one 
ring. The use of this ring particularly was based on its previously assured efficiency in protecting 
enkephalins from aminopeptidase degradation. The cyclic compounds were sufficiently stable in the 
acidic environment of the stomach; their absorption occurred in the intestine, and were capable to 
release LD to the brain in a slow manner. 

 
Figure 13. Chemical structures of cyclic prodrugs of LD, 73–75. 

1.8. Enzyme Model (Intramolecular Processes) 

Despite some success that has been achieved using derivatives of DA and LD to supply DAin 
adequate concentrations and sustained release manner, the prodrugs chemical approach requiring 
enzyme catalysis has many limitations including many intrinsic and extrinsic factors that can alter 
the process. For example, the efficiency of many prodrug-activating enzymes may be different 
according to age-related physiological changes, drug interactions, or genetic polymorphisms, 
causing variation in clinical activity. Therefore, new derivatives for treatment of PD with drugs 
having higher bioavailability than the existing medications, and with the ability to liberate 
dopamine in a sustained fashion through chemical conversion without a need for enzyme catalysis 
is crucially needed [88]. 

Figure 13. Chemical structures of cyclic prodrugs of LD, 73–75.

1.8. Enzyme Model (Intramolecular Processes)

Despite some success that has been achieved using derivatives of DA and LD to supply DAin
adequate concentrations and sustained release manner, the prodrugs chemical approach requiring
enzyme catalysis has many limitations including many intrinsic and extrinsic factors that can alter the
process. For example, the efficiency of many prodrug-activating enzymes may be different according
to age-related physiological changes, drug interactions, or genetic polymorphisms, causing variation in
clinical activity. Therefore, new derivatives for treatment of PD with drugs having higher bioavailability
than the existing medications, and with the ability to liberate dopamine in a sustained fashion through
chemical conversion without a need for enzyme catalysis is crucially needed [88].

In the past ten years, Karaman’s group have utilized molecular orbital methods such as ab
initio and density functional theory (DFT) for the design of a large number of prodrugs which have
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the potential to undergo intramolecular cleavage to furnish the parent drugs and non-toxic linkers.
The cleavage inintramolecular chemical rate is solely dependent on the nature of the linker and the
physiologic environment to which the prodrug is exposed.

Among others, they designed and synthesized a number of DA prodrugs to be used in
the treatment of Parkinson’s disease with higher bioavailability than the existing medications.
The synthesized prodrugs have moderate hydrophilic lipophilic balancewhich is important for their
absorption and distribution [89], are soluble in physiological environment, their linkers are non-toxic,
and have the potential to release DA in a sustained release manner (76–77 in Figure 14). Kinetics study
on 76 revealed that the prodrug was intraconverted to DA with t 1

2
values of 60.3, 54.66, 99.93 and

138.13 h in 0.1 N HCl, buffer pH 2.2, buffer pH 5.5 and buffer pH 7.4, respectively. On the other hand,
prodrug 77 was readily converted in 0.1 N HCl, buffer pH 2.2, pH 5.5 and pH 7.4 with t 1

2
values of

48.34, 54.22, 131.98 and 193.42 h, respectively. The in silico and in vivo (rat) results demonstrated that
both prodrugs are tolerable with low toxicity.

In vivo pharmacokinetics study is underway and it is believed that an oral enteric coated dosage
form (to avoid conversion in acidic medium) will give pharmacokinetics profile with improved
bioavailability than the current marketed drug [83–86].
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2. Summary and Conclusions

Till today, PD treatments were based mostly on exogenous dopamine substitution within the
striatum and LD is still the drug of choice to manage symptoms of PD. However, long-term therapy
with L-dopa is associated with significant side effects. The main challenge in improving LD therapy
is to reduce or remove the motor complications created or aggravated by noticeable LD plasma
circulating level fluctuations.

Dopamine and LD provide several sites in their chemical structures where it is possible to perform
chemical alteration, this helped to have derivatives with enhanced physicochemical characteristics.
In the past few years, researchers have conveyed their awareness towards designing targeted
dopamine and LD prodrugs to replace exciting marketed drugs which have poor physicochemical
and pharmacological properties. As mentioned above, dopamine and LD prodrugs should be soluble
in both water and lipid, fully absorbed by gastrointestinal tract without any chemical degradation
or metabolism, and have the ability to cross the BBB and hence to produce dopamine at the brain
at consistent therapeutic level. Furthermore, an ideal prodrug should have sufficient and constant
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plasmatic levels to be able to provide continuous dopaminergic stimulation, thus preventing the
manifestation and severity of LD-induced motor fluctuations and dyskinesia.

There is promising data regarding using prodrugs for the treatment of PD. For example, ester
prodrugs of LD have demonstrated to be suitable for intranasal delivery of LD [42,90]. This approach
is considered as one of the administration routes that appear to enable the absorption of therapeutic
agents to the brain bypassing the limitations of the BBB; most of the amide, cyclic, peptidyl or chemical
delivery systems of DA prodrugs haveshown decreased enzymatic and hydrolytic susceptibility
together with enhanced pharmacokinetic properties.

A promising and interesting approach suggested by Karaman’s group to overcome the limitation
of the existing targeting prodrugs is model in which a parent drug is connected to enzyme model
(intramolecular chemical device) and when the prodrug reaches the blood circulation within CNS, it
undergoes intramolecular chemical conversion—without any regiment of enzyme allowing the active
parent drug to be released in a sustained manner. The conversion rate of the prodrug to its parent drug
is solely determined on the chemical features of the linker (enzyme model). This approach has the
potential to, provide effective drug delivery system having selective targeting of DA and LD prodrugs
to the striatum.
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Abbreviations

PD Parkinson’s disease
DA Dopamine
LD LevoDopa
BBB Blood brain barrier
CNS Central nervous system
AUC Area under the curve
6-OHDA 6-hydroxydopamine
i.p. Intraperitoneal
COMT Catechol-O-methyltransferase
DDC Dopa-decarboxylase
MAO Mono amino oxidase
GSH Glutathione
DA-PHEN 2-Amino-N-[2-(3,4-dihydroxy-phenyl)-ethyl]-3-phenyl-propionamide
PAMPA parallel artificial permeability assay
GLUT1 glucose transporter
MCT monocarboxylic acid transporter
PDDP dopamine-3-(dimethylamino) propanamide
LAT1 large neutral amino acid transporter
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