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Abstract: Cell death is an essential immunological apparatus of host defense, but dysregulation of
mutually inclusive cell deaths poses severe threats during microbial and parasitic infections leading
to deleterious consequences in the pathological progression of infectious diseases. Nucleotide-
binding oligomerization domain (NOD)-Leucine-rich repeats (LRR)-containing receptors (NLRs),
also called nucleotide-binding oligomerization (NOD)-like receptors (NLRs), are major cytosolic
pattern recognition receptors (PRRs), their involvement in the orchestration of innate immunity
and host defense against bacteria, viruses, fungi and parasites, often results in the cleavage of
gasdermin and the release of IL-1β and IL-18, should be tightly regulated. NLRs are functionally
diverse and tissue-specific PRRs expressed by both immune and non-immune cells. Beyond the
inflammasome activation, NLRs are also involved in NF-κB and MAPK activation signaling, the
regulation of type I IFN (IFN-I) production and the inflammatory cell death during microbial
infections. Recent advancements of NLRs biology revealed its possible interplay with pyroptotic cell
death and inflammatory mediators, such as caspase 1, caspase 11, IFN-I and GSDMD. This review
provides the most updated information that caspase 8 skews the NLRP3 inflammasome activation
in PANoptosis during pathogen infection. We also update multidimensional roles of NLRP12 in
regulating innate immunity in a content-dependent manner: novel interference of NLRP12 on TLRs
and NOD derived-signaling cascade, and the recently unveiled regulatory property of NLRP12
in production of type I IFN. Future prospects of exploring NLRs in controlling cell death during
parasitic and microbial infection were highlighted.
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1. Introduction

Pathogen recognition, an important initiator of host defense in the early stages of
infection and subsequent generation of adaptive immune responses [1,2], is mediated by a
vast repertoire of germline-encoded receptors termed pattern recognition receptors (PRR).
These receptors distinguish self from non-self-molecules, i.e., pathogen-associated molecu-
lar patterns (PAMPs) [3], such as lipopolysaccharides (LPS), peptidoglycan (PGN), Lipote-
ichoic acid (LTA), flagellin, microbial nucleic acids, Leishmania Lipophosphoglycan and
P. falciparum glycosylphosphatidylinositol (GPI) [4]. The danger/damage-associated molec-
ular patterns (DAMPs), such as extracellular ATP, High mobility group box 1 (HMGB1),
parasite hemozoin and uric acid, are recognizable by PRRs and are able to induce inflamma-
tory signaling cascades [5]. Since the earliest report of membrane-bound Toll-like receptors
(TLRs) by Jules Hoffman et al. [6] and Charles Janeway Jr [7] in Drosophila melanogaster,
as well as the demonstration of canonical toll-like receptors in Cnidarians (Hydra) in
recent decades [8], understanding of the immune system and its signal transduction have
become more comprehensive. Currently, there are four major classes of PRRs: Toll-like
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receptors (TLRs), the Nucleotide-binding oligomerization domain (NOD)-Leucine-rich
repeats (LRR)-containing receptors (NLR), the retinoic acid-inducible gene 1 (RIG-I)-like
receptors (RLR; RIG-I-like helicases—RLH) and the C-type lectin receptors (CLRs). TLRs
are considered to be critical in host defense, while non-TLRs are also able to recognize
pathogens, to cooperate and regulate the TLRs mediated-signaling cascades that orchestrate
the host immune response. Among those non-TLRs, we particularly focus on the NLR
family, a series of cytoplasmic sensors with the evolutionarily conserved property, whose
roles have rapidly emerged as central regulators of inflammation and immunity associated
with relevant human diseases (Table 1). Therefore, the regulation of their activities has be-
come therapeutic targets in most non-infectious and pathogenically-induced inflammatory
diseases [9].

Several homologous NLR genes have been discovered in both the animal and plant
kingdoms that demonstrated the plant disease-resistant genes (R gene) encoding nucleotide-
binding leucine-rich repeat (NB-LRR) proteins confer the dominant resistance against
diverse pathogens, thereby suggesting the conserved biological function of NLR proteins
in the host defense [9]. There are approximately 22 and 34 NLR family members in
humans and mice, respectively [10–12], and lack of specific amino acid sequence in their
transmembrane domain identified them as exclusive cytosolic sensors [13]. Members of
this family share common C-terminal leucine-rich repeat (LRR) domains, a central NOD
(nucleotide-binding and oligomerization (NACHT) domain) for ligand recognition and a
variable N-terminal effector domain, including caspase recruitment domain (CARD) or
pyrin domain (PYD), or the baculoviral inhibitor of apoptosis protein repeat (BIR) domain.
These receptors are chiefly expressed by immune cell lineages, such as (macrophages,
neutrophils, lymphocytes and dendritic cells), as well as non-hematopoietic cells [14]. A
myriad of functions have been associated with them beyond the detection of microbial
components; they recognize mitochondrial DNA and ATP [15], and NLRs regulate TLRs
and NOD-derived signaling cascades with the characteristic of adjuvanticity in bacteria
and parasitic infections [16,17]; they are also involved in tissue homeostasis and embryonic
development [18]. Similarly, NLR proteins have gained much attention in various chronic
inflammatory illnesses (Table 1), autophagy [19] and carcinogenesis [20].

Recently, studies have underscored the impact of NLRs in microbial and parasitic
infections. NOD1 and NOD2 play significant roles in the recognition of the bacterial
peptidoglycan and provide necessary host defense against Trypanosoma cruzi [21] and
Plasmodium falciparum [22]. Moreover, several species of microbes and parasites have been
shown to induce the production of proinflammatory cytokines via NLRP3 and NLRC4
assemblage. The recognition of Listeria monocytogenes by NLRP6 for the recruitment of
caspases and GSDMD cleavage has further potentiated NLRs as important molecules in
cell death. Similarly, NLRP12 and NLRX1 have been demonstrated to be crucial in the
regulation of interferon and cytokine productions, as well as the maintenance of immune
homeostasis. The recent discovery of direct activation of noncanonical inflammasome and
NLRs by cytosolic lipopolysaccharides (LPS), Lipophosphoglycan (LPG) and Leishmania
is critical in programmed cell death (PCD). Moreover, cell death mediated by NLR in-
flammasome activation is executed to prevent the host cells from pathogen invasion, in
which nutrient supply to pathogens is interfered [23], and the activated bystander cells
could also provide the antimicrobial factors to restrict pathogen expansion and disease
progression [24]. This review focuses on the significance of NLR proteins in the immune
regulation after the recognition of pathogens and the programmed cell death during host
defense and immune homeostasis. The potential role of type I interferon in coordinating
the inflammasome activation, including the pyroptosis and the latest findings on NLRs
as critical checkpoints in host innate immunity, cell death and systemic inflammation,
are discussed.
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Table 1. Involvement of the NLRs family in chronic inflammatory diseases.

Inflammatory Diseases Affected Organs Dysregulated NLRs Family References

Thyroiditis Thyroid gland
Over-expression and activation of

NLRC4, NLRP1, AIM2 and NLRP3
inflammasome

[25–27]

Type 1 Diabetes Pancreas Over-expression NLRP1, NOD1/2,
CIITA and NLRP3 [26,28,29]

Inflammatory bowel diseases
(IBD: Ulcerative colitis and

Crohn’s disease)
Gastrointestinal NOD1, NOD2, NLRP3 and NLRP1 [26,30–33]

Celiac diseases Small intestine Enhanced expression of NLRP3 and
CIITA, NLRP6 [26,29,34]

Autoimmune hepatitis Liver Hyperactivation of NLRP3 and
deficiency of NLRX1 [2,26,35,36]

Arthritis Joints
Excessive expression of NLRP3, NLRP2,

CIITA, NOD2, NLRC5 and NLRP12
(beneficial), and NLRP9 and NLRP11

[25,26,37–40]

Systemic Lupus
Erythematous (SLE)

Multiple organs such as
Kidney, Lung and CNS

Over-expression of NOD2, NLRP3, SNPs
in CIITA, NLRP1 and NLRX1 [26,41–44]

Vitiligo Skin Increased expression/activation of
NLRP1 and NLRP3 [26,44–46]

Psoriasis Epidermal layer (from the
limbs to eyelids)

Enhanced expression of NOD2,
PYCARD, CARD6, CARD14, NLRP3,

NLRP1 and IFI16
[47–50]

Multiple Sclerosis CNS: brain, spinal cord and
optic nerves.

Over-activation of NOD1, NOD2 and
NLRP1. Mutation in CIITA, NLRP3 and

regulatory role of NLRP12, NLRC3
and NLRX1

[51–54]

2. Structure, Function and Classification of NOD-like Receptors

NOD-like receptors are functionally diverse intracellular sensors with heterogeneous
signaling pathways. With the exception of NLRP10, which lacks an LRR domain, all the
NLRs families share a common NACHT and LRR domain organization. NACHT domain
possesses NTPase activity with a binding preference for GTP or ATP [55]. The structural
diversity arises from variable N-terminal, which is critical for downstream signaling
functions. Therefore, NLRs are phylogenetically divided into the acidic transactivation
domain, pyrin domain, caspase recruitment domain (CARD) and baculoviral inhibitory
repeat (BIR)-like domains, and NLRX possesses less characterized N-terminal domains
usually denoted as X [56] (Table 2).

Table 2. Structure and classification of NLRs family.

NLRs Family Sub-Family/Domain Architectures Gene

Acidic transcription-carrying domain
(NLRA)
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Functionally, NOD-like intracellular sensors are classified into four groups;

(i) Transcriptional trans-activators: members are CIITA and NLRC5, located at the
promoter region of major histocompatibility complex (MHC) II and MHC-I, respec-
tively [57,58]. CIITA, via its unique acidic domain (AD), is recruited to the MHC en-
hanceosome complex as a non-DNA binding activator to promote the transcriptional
activation of MHC-II [57]. NLRC5, on the other hand, is conserved in vertebrates,
with high expression in immune cells and mucosal epithelia. NLRC5 controls basal
MHC I gene expression and is inducible by IFNγ stimulation to trans-activate the
MHC-I gene in lymphoid and epithelial cells by reducing H3K27me3 in the MHC-I
promoter [59–61]. The cis-regulatory elements of the promoter of the MHC-I gene
interact with NLRC5 through a distinct transcriptional factor to recruit modifiers and
initiate the MHC I enhanceosome transcriptional complex [60]. Nlrc5−/− mice ex-
hibit impaired CTL responses, and NLRC5-null target cells are not efficiently cleared
by CTLs, while the immunogenic melanoma was able to activate CD8+ T cells by
restoring the expression of NLRC5 alongside with CD80 [56].

(ii) Activators of NF-κB and MAPK pathways: The NLRs in this category are the first de-
scribed NOD-like receptors; NOD1 (NLRC1) and NOD2 (NLRC2) recognize bacterial
peptidoglycans components D-glutamyl-meso-diaminopimelic acid (iE-DAP) and
muramyl dipeptide (MDP), respectively, to induce the production of proinflammatory
cytokines (TNF, IL-6 and IL-1β) via NF-κB and MAPK pathways [9,62]. Peptidogly-
cans (PGN), a constituent of the bacterial cell wall, have been demonstrated to trigger
NOD2 activity sufficiently [63]. A gain-of-function mutation in the NOD2 gene is
associated with autoinflammatory condition Blau syndrome [64] and sarcoidosis [65],
whereas its loss of function is linked to Crohn’s disease [66]. Intracellular ligands
recognition through the LRR domain induced the formation of a protein complex at
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their CARD N-terminal with an adaptor protein RIP2 for the subsequent phosphory-
lation of NF-κB. Moreover, the downstream signal may also go through the activation
of MAPKs, including the p38, extracellular signal-regulated protein kinase (ERK) and
c-Jun N-terminal kinase (JNK) pathways [10].

(iii) Inflammasome activators of the NLRs family: members of this family are involved in
the inflammasome complex, i.e., an intracellular multi-protein complex that leads to
the activation of caspase 1, required for the maturation of IL-1β and IL-18, as well as
the amplification of NF-κB, JNK and p38 MAPK-signaling pathways [67,68]. These
NLRs conduct robust secretion of proinflammatory cytokines and chemokines to the
distressing site and also mediate pyroptotic cell death [57]. NLRC4 directly recruits
pro-caspase 1 while intermediary cytosolic-resident adaptor apoptosis-associated
speck-like protein containing a CARD (ASC) is required for PYD-carrying NLRs (such
as NLRP3 and NLRP12) for the recruitment of pro-caspase 1. Aside from caspase 1,
NALP1 has also been shown to participate in the activation of caspase 5 [69].

(iv) Members of the NLR family are essentially involved in the negative regulation of
the proinflammatory responses by limiting IL-1β secretion, NF-κB and type I IFN
(IFN-I) signaling. These include NLRP2, NLRC3, NLRP4, NLRP6, NLRP7, NLRP10,
NLRP12 and NLRX1 [57]. Although the majority of NLR members here exhibit
both inflammasome activation and inhibitory functions under varying conditions,
ASC is recruited for the exhibition of inflammasome function; meanwhile, different
endogenous proteins are engaged for the inhibitory function. Information about
the NOD-like receptors in this category is scant, and their therapeutic potentials
are remarkable.

Many of these NLR proteins are, individually or collaboratively, involved in detecting
and triggering innate immune defenses against bacteria, viruses, fungi and parasites.
Therefore, here we appraised various findings to update the current understanding of
NLRs in host defense and cell death, as well as therapeutic potentials in microbial and
parasitic infections.

3. NOD1 and NOD2 in Sensing PAMP/DAMP and Inflammatory Responses

The nucleotide-binding oligomerization domain (NOD) proteins (NOD1 and NOD2)
are the first NLRs to recognize intracellular bacterial peptidoglycan directly or via im-
munostimulatory cargo (bacterial membrane vesicles (BMVs)) [70], Listeria monocytogenes,
hepatitis C virus. They play important and pleiotropic roles in not only host defense
against intracellular protozoan parasites, such as Trypanosoma cruzi [21] and Plasmodium
falciparum [22], but also controlling the inflammation and maintenance of endoplasmic
reticulum homeostasis [71]. NOD1 and NOD2 have a similar domain organization with a
single N-terminal CARD domain in NOD1, and two domains are found in NOD2 (Table 2).
At the steady-state, NODs exist in an auto-inhibitory state and dimerize via their NAHCT
domains upon the recognition of their respective cognate ligands. This initiates the recruit-
ment of a scaffold protein, called receptor-interacting serine/threonine kinase 2 (RIPK2),
into their N-terminal CARD domain [72,73] and form a NODosome complex leading to
the RIPK2 filament formation, thereby stabilizing the NODosome assemblage [74]. The
NODosome complex mediates the downstream signaling activation of NF-κB, activator
protein-1 (AP-1), interferon regulator factor 5 (IRF5) and the production of proinflammatory
cytokines required for the pathogen clearance via ERK and MAPK pathways [75,76]. The
biological functions of NOD1 or NOD2 are largely defined by posttranslational modifica-
tions, notably ubiquitination, palmitoylation and scaffolding phosphorylation [63,73,75,77].
Lu et al. found that NOD1/2 S-palmitoylation using ZDHHC5 palmitoyltransferase is
critical for membrane recruitment for the effective sensing of peptidoglycan and immune
signaling [78]. Several other E3 Ligases, such as XIAP, cIAP1/cIAP2, ITCH, PELLINO3,
LUBAC, ZNFR4, OTULIN, TRIM27 and others [63,75,79], have been reported to regulate
RIPK2 ubiquitination and NF-κB and MAPK activations during NOD1 and NOD2 signal-
ing pathways. It is observed that NOD1 is recruited to endosomal and plasma membranes
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upon sensing the outer membrane vesicles (OMVs) and bacteria, respectively, whereas
endosomal recruitment is maintained by NOD2 during bacterial infection.

Nod1−/− and Nod2−/− mice exhibited an increased susceptibility to several pathogens.
In Legionella pneumophila infection, NOD1and NOD2-deficient mice showed increased
infection susceptibility by dampening neutrophil infiltration in the lung and reducing the
production of CXCL1/KC, IL-6 and G-CSF [80]. Similarly, NOD2 has been demonstrated to
be involved in the recognition and protection against intracellular intestinal Listeria monocy-
togenes [81] and Salmonella typhimurium [82] by prolonging host survival with a remarkable
expression of α-defensins. NOD2 also recognizes RNA and DNA viruses, such as hepatitis
C virus, norovirus, respiratory syncytial virus, hepatitis B virus and cytomegalovirus [83], to
trigger the phosphorylation of NF-κB and IRF3, which synergistically promote optimal
IFN-β secretion [84,85]. However, Tschöpe et al. recently unveiled a contrasting role
that the deficiency of NOD2 protects the Coxsackievirus B3(CVB3)-infected mice from the
detrimental CVB3-mediated effects: the Nod2−/− mouse had reduced cardiac inflammation,
less cardiac fibrosis and apoptosis compared to CVB3 infected wild-type mice [86]. This is
similar to the report that NOD2 signaling contributes to intestinal inflammation and the
development of colitis in patients with inflammatory bowel disease in the absence of IL-10
signaling [87]. The loss of NOD2 in IL-10-deficient macrophages reduced the production of
IL-6, TNF and IL-12p40 in response to bacterial stimulation and thus dampened the usual
hyper-responsiveness in the colitis mice. NOD2 participates in the coordination of both
innate immune recognition and host resistance in parasitic infection. Nod2−/− mice were
susceptible to parasite invasion and displayed impaired induction of proinflammatory
cytokines during Neospora caninum infection [84]. NODs activities are also critical for IL1β,
KC and IFNγ production in Plasmodium berghei and falciparum infections [71]. However, the
pathogen recognition of NOD1 and NOD2 seems to be dispensable in certain conditions, as
both NODs and TLRs signaling pathways lead to NF-κB and MAPK activations, and NODs
impose significant impacts on innate immune signaling in the absence of TLRs. Hence
enhanced NOD-signaling by priming with TLR ligands, such as LPS or viral infection,
is also achievable in an IFN-I dependent manner in vitro and in vivo [63,88]. Together,
these reports suggest the importance of NODs in pathogen recognition, host defense and
collaboration with TLR signaling in driving innate immunity [89,90].

The link between NOD1 and ISGF3 signaling pathways is another remarkable finding
reported in Helicobacter pylori-infected human epithelial cells. This study described that the
binding of a ligand with NOD1 triggered the activation of serine-threonine kinase RICK,
which then bound to TNF receptor-associated factor 3 (TRAF3), in turn leading to the
activation of TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) for the subsequent
activation of interferon regulatory factor 7 (IRF7) [91]. IFN-β production driven by IRF7
contributes to the activation of a heterotrimeric transcription factor complex, known as
interferon-stimulated gene factor 3 (ISGF3), consisting of phosphorylated STAT1, STAT2
and IRF9, which subsequently drives the production of CXCL10 and additional IFN-I [92].
After a decade, this pathway was confirmed in the virus with the addition that NOD1 acts
as a positive regulator of the MDA5/MAVS complex downstream of the TRAF3 pathway
during spring viremia of carp virus (SVCV) infection [93]. A connection between NOD
signaling and cell death appears to be possible because their N-terminal CARD domain
may recruit caspases, and many protein complexes involved in the NOD signaling pathway
are closely associated with cell death [79,90], but no study has ever established a direct link
between NODs and Gasdermin D (GSDMD)-mediated pyroptosis [79], except autophagy.
It was shown in an overexpression system that NOD2 could bind to multiple caspases
via its CARD and was able to directly activate caspase-9 and induce apoptosis [94]. A
report also showed that MDP stimulation promotes NOD2 [95] and/or in complex with
NALP1 [96] to induce caspase-1-dependent IL-1β secretion and autocrine signaling [95,96].
These reports suggest that the dominant role of NODs is in immunomodulatory and host
defense rather than cell death.
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4. NLRP3 and NLRC4 Inflammasomes

The NLR family pyrin domain-containing protein 3 (NLRP3), a tripartite protein (as
described in Table 1), and extensively reviewed in the sub-family of inflammasomes [97,98].
Cellular events, such as ionic flux, the release of ROS, mitochondrial dysfunction and lysoso-
mal damage, have been reported to induce NLRP3 inflammasome activation. Its activation
mediates caspase 1-dependent IL-1β and/or IL-18 secretion, and GSDMD dependent py-
roptosis. NLRP3 inflammasome comprises NLRP3, adaptor molecule apoptosis-associated
speck-like protein containing CARD (ASC, also known as PYCARD) and caspase 1. The
oligomerization of NLRP3 at NACHT domains occurs upon stimulation, followed by
the recruitment of ASC through hemolytic PYD-PYD. Multiple ASCs merge to further
recruit caspase 1 via CARD–CARD interactions to enable self-cleavage and the activation
of caspase 1 [97]. The activation of NLRP3 can be through canonical and noncanonical
pathways [99]. Two steps are required in canonical activation: priming/transcription
and activation/assemblage, whereas priming is not necessary for noncanonical activation.
Priming in the canonical pathway goes through toll-like receptors (TLRs), tumor necrotic re-
ceptors (TNFR) [100], C-lectin receptors (CLRs) [101] and IFN receptors (IFNAR) [102,103]
for the activation of the nuclear factor kappa B (NF-κB) pathway; thus, leading to the
transcriptional upregulation of NLRP3 (ready for and post-transcriptional modifications
(PTMs), such as ubiquitination and phosphorylation) and pro-IL-1β proteins in the cytosol
for ASC recruitment [100]. The activation signal for conformation change comes from
pathogen and sterile activators (otherwise called PAMPs and DAMPs), examples include:
nigericin, extracellular ATP, silica, cholesterol crystals, potassium efflux and reactive oxy-
gen species (ROS). Thereafter, mature caspase 1 will simultaneously induce the cleavage of
GSDMD to promote the pyroptotic cell death and the release of mature cytokine proteins
IL-1β and IL-18. In contrast, noncanonical activation of NLRP3 bypasses the transcrip-
tional priming and based on direct activation of the noncanonical inflammasome (caspase
4/5/11) in response to the endotoxin LPS from Gram-negative bacteria [104], Leishmania
Lipophosphoglycan (LPG) [105] and oxidized phospholipid1-palmitoyl-2-arachidonoyl-
sn-glycero-3-phosphorylcholine(oxPAPC) [106,107]. Noncanonical inflammasome induces
cell death and cleavage of autoinhibited GSDMD into C- and N-terminals; the released N-
terminals oligomerize and assemble at the plasma membrane to cause membrane damage
and also facilitate potassium efflux and pyroptosis, as well as enhanced NLRP3 inflamma-
some activation [104,108]. Therefore, the intrinsic execution of pyroptosis by noncanonical
inflammasome requires NLRP3, ASC and caspase 1 for the maturation and secretion of
cytokines. Caspase 1 and caspase 4/11 can induce pyroptosis mediated-IL-1β secretion,
but caspase 4/11 cannot directly cleave pro-IL-1β and pro-IL-18, but enhance caspase 1
activation for this function instead [109]. Recently, there are new reports demonstrating a
novel role of caspase 8 and FADD in the regulation of NLRP3 inflammasome activation and
maturation of IL-1β [110–112]. Kang et al. demonstrate that caspase 8-deficient dendritic
cells (DC) exhibit enhanced LPS-induced NLRP3 assembly [113], and also similar finding
occurred in macrophage during Candida albicans infection [114]. However, non-apoptotic
caspase 8 seems to play an essential role in TLR signaling-mediated Nlrp3 priming [115].
Another study further showed that FADD-caspase 8 is a critical upstream regulator in both
canonical and noncanonical NLRP3 inflammasome signaling, as well as in transcriptional
priming [116]. In macrophages, the deletion of caspase 8 in the presence or absence of
RIPK3 inhibited the caspase 1 and caspase 11 activation by NLRP3 stimuli. FADD is
positioned upstream of caspase 8, and whose deletion prevents caspase 8 maturation. Mice
deficient in FADD and caspase 8 exhibited impaired IL-1β production during C. rodentium
infection or while being challenged by LPS [116].

NLRP3 inflammasome activation has been overwhelmingly reported to mediate innate
immune response in many intracellular pathogens. In gram-positive bacterial infections,
NLRP3-dependent caspase 1 regulates the acidification of phagosome buffering by NADPH
oxidase NOX2 to modulate innate immune response [117]. Hyperactivation of NLRP3
via gain-of-function mutation in the Nlrp3 gene (Nlrp3R258W) promotes the clearance
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of virus H1N1 IAV infection. This efficacy is ascribed to IL-1β dependent neutrophil
recruitment [118], but this response was deleterious in the H7N9 viral challenge [119].
Pyroptosis mediated by NLRP3 inflammasome plays an essential role in HIV-1–infected
patients whose CD4+ T cells are lost [120]. This is similar in parasitic infections, such
as Trichuriasis [121], Neosporosis [122], Leishmania [123,124], Chagas disease [125,126], Tox-
oplasmosis [127], Trichomoniasis [128] and invasive Entamoeba histolytica [129], as well as
in fungal infections [130–132]. A variety of the corresponding cognate ligands and post-
transcriptional modifications exhibited by NLRP3 have been extensively reviewed else-
where [97,98]. In parasitic infection, the recognition of Trichuris antigen and exosome by
NLRP3 conciliates the secretion of IL-18 that promotes parasite persistence. Nlrp3−/− mice
with reduced proinflammatory type 1 cytokine responses and augmented protective type 2
immunity results in worm expulsion [121]. Extracellular Entamoeba histolytica also induces
NLRP3-dependent caspase 1 via its contact with α5β1 integrin at the Macrophage-Amebae
intercellular junction. The α5β1 integrin induced ATP release into the extracellular space
through the opening of pannexin-1 channels that signaled through P2X7 receptors to deliver
a critical co-stimulatory signal that activates the NLRP3 inflammasome for the induction
of IL-1β [129]. Likewise, ROS production was induced after Neospora caninum to mediate
NLRP3 activation and the production of proinflammatory cytokine in macrophages [122].

A recent finding on PANoptosis (concomitant activation of three autonomous cell
deaths: pyroptosis, apoptosis and necroptosis) also identified NLRP3 as one of the in-
dispensable components of PANoptosome (Figure 1). PANoptosis is a programmed cell
death (PCD) common in macrophages infected with intracellular pathogens, such as in-
fluenza A virus, vesicular stomatitis virus, Listeria monocytogenes, Salmonella enteric serovar
Typhimurium, Candida albicans and Aspergillus fumigatus, to circumvent pathogen-mediated
inhibition [133,134]. The recognition of pathogens or their products by ZBP1 mediates the
assemblage of a cytoplasmic multimeric protein complex, known as PANoptosome, and
induces PCD called PANoptosis. This complex comprises NLRP3, ASC, CASP8, RIPK3,
CASP6 and Z-DNA binding protein 1 (ZBP1) [134–136]. ZBP1, which is a DNA-dependent
activator of IFN-regulatory factors (DAI) [137], interacts with NLRP3 inflammasome, and
together with CASP8, to form a PANoptosome [138,139]. Simultaneous deletion of NLRP3
inflammasome components and caspase 8 largely rescued multiple PCDs than an indi-
vidual deletion, which provided reduced or no redemption of PCD in pathogen-infected
macrophages [140]. This is simply because caspase 8 can exhibit non-apoptotic function to
directly cleave pro-IL-1β, pro-IL-18 and GSDMD as well as promotes GSDME-mediated
pyroptosis via downstream caspase 3 and caspase 7 activations [136]. However, even
though caspase 8 is an essential modulator of PANoptosis, its shifting towards necroptosis
and pyroptosis is possible alongside RIPK3 and NLRP3 activation, respectively [141,142]
(Figure 1).
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Figure 1. NLRP3 is an essential component of PANoptosome, and activation of a complex of ZBP1-FADD-RIPK3-caspase
8 drives PANoptosis inflammatory cell death. Activated caspase 8 simultaneously induces apoptosis via downstream
activation of caspase 3/7 and directly promotes the assemblage of NLRP3 inflammasome activation complex to initiate
pyroptosis via the cleavage of pro-IL1β, pro-IL18 and GSDMD. The reduced activity of the activated caspase 8 drives
phosphorylation of MLKL for the induction of necroptosis, while pathogen surface recognition through TLR and TNFR
leads to the nuclear binding of NF-κB for inflammation and PANoptosome-independent necroptosis. NLRP3, Nucleotide-
binding oligomerization domain; GSDMD, Gasdermin D; GSDME, Gasdermin E; ZBP1, Z-DNA-binding protein 1; RIPK,
Receptor-interacting serine/threonine kinase; MLKL, mixed lineage kinase domain-like pseudokinase; FADD, fas-associated
death domain; MyD88, myeloid differentiation primary response 88; NF-κB, nuclear factor kappa light chain enhancer
of activated B cells; IRAK, interleukin receptor-associated kinase; TAK1, transforming growth factor b-activated kinase 1;
TRAF, TNF receptor-associated factor; cFLIP, Cellular caspase-8 (FLICE)-like inhibitory protein.

NLRC4, NLR family CARD domain containing 4 formerly called IPAF (ICE protease-
activating factor) for its ability to activate caspase 1, is another canonical inflammasome that
is tightly regulated by transcriptional and posttranscriptional mechanisms. Its expression
is upregulated by TNF and the stress-mediated p53 activation [143–145]. NLRC4 contains
a CARD domain, and therefore, can directly recruit pro-caspase 1 via CARD–CARD inter-
action to activate caspase 1, associates or co-localizes with ASC [143,146] for proteolytic
cleavage of proinflammatory cytokines (pro–IL-1β and pro–IL-18) and GSDMD [147,148].
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The pathogen recognition of NLRC4 is usually via a sensor NAIP (NLR family, apoptosis
inhibitory proteins) [149]. Mouse NAIP5/NAIP6, NAIP2 and NAIP1 specifically recog-
nize bacterial flagellins, TTSS rod and T3SS needle proteins, respectively, to induce the
activation of NLRC4 inflammasome [149–151]. Human NAIP merely recognizes T3SS rod
protein PrgJ [152], and its splice variant senses flagellin to promote NLRC4 inflammasome
activation in humans [153]. The NLRC4-dependent caspase 1 activation and cell death are
cell-specific. NLRC4 activation is critical in macrophages infected by intracellular invasive
bacteria Salmonella typhimurium and Burkholderia thailandensis, which mediates pyroptotic
cell death and the release of proinflammatory cytokines: IL-1β and IL-18 [154–156]. How-
ever, unlike macrophages, NLRC4 activation in neutrophils was found to be critical for
caspase 1-dependent IL-1β production but not pyroptotic cell death [104,154]. Pyroptotic
cell death in neutrophils is majorly coordinated by noncanonical inflammasomes (caspase
4/5/11). A study also revealed that NLRC4 mediates IL-18 secretion necessary to drive
IFN-γ, which subsequently primes both macrophages and neutrophils for caspase 11 ac-
tivation during Burkholderia thailandensis infection in mice [155]. In addition, leucine-rich
repeat kinase 2 LRRK2 is an intrinsic regulator of NLRC4 and LRRK2 formed a complex
with NLRC4 for its optimal phosphorylation at Ser533, which promotes inflammasome
activation during S. typhimurium infection in macrophages [157]. Interestingly, just as
a report showed, acetylation-induced NLRP3 activation can be reversed by SIRT2 [158];
also SIRT3 was found to promote NLRC4 inflammasome activation by deacetylation [148].
The involvement of NLRC4 in pathogen recognition was largely thought to be restricted
to bacterial infections but recent studies revealed that dendritic cell NLRC4 regulates T
cell response during influenza A virus infection. Similarly, NLRC4 was demonstrated to
promote the susceptibility of Paracoccidioides brasiliensis (pathogenic fungus infection) by
regulating NLRP3 activities to dampen the late IL-18 production and CD8+ IFN-γ+ T cell
responses [159].

5. NLRP6 and NLRP10 in Regulatory and Inflammatory Responses

NLRP6: It is originally called PYRIN-containing Apaf-1-like proteins 5 (PYPAF5), a
cell-specific function receptor that coordinates a synergistic activation of NF-κB and the
activated caspase 1-dependent cytokine processing when co-expressed with ASC [160]. It is
chiefly expressed in epithelial cells, fibroblasts, granulocytes, dendritic cells, macrophages
and CD4+ and CD8+ T cells [161]. Human and mouse epithelial cells treated with TNF
and rosiglitazone, an agonist of PPARγ (transcriptional factors peroxisome proliferator-
activated receptor-γ), exhibited enhanced NLRP6 expression. NLRP6 is transcription-
ally regulated by a series of stimuli, including synthetic polyinosinic:polycytidylic acid
(poly(I:C)), encephalomyocarditis virus, LPS, MDP and iE-DAP, as well as IFN-α in many
types of cells [162,163]. As an NLR inflammasome, NLRP6 has been shown to form
multi-protein complexes with ASC for the maturation and production of IL-1β and IL-
18 [161,164], as evident in a dextran sulfate sodium (DSS)-induced colitis model [164,165].
Excessive inflammation by NLRP6-dependent IL-18 production could be regulated by
CYLD, which mechanistically deconjugates the K63-linked ubiquitin chains on NLRP6
to prevent an NLRP6–ASC inflammasome complex [166]. The impact of NLRP6 inflam-
masome activation is cell- and pathogen-dependent. In pulmonary S. aureus infection,
deleterious pyroptotic and necroptotic cell deaths exhibited by wild-type macrophages
were attributed to the uncontrolled NLRP6 inflammasome activation that mediates caspase
1 activation and IL-1β production [167]. In contrast, NLRP6 inflammasome activation
mediated IL-1β production is required for host survival and bacterial clearance, as well as
neutrophil in-flux in a Klebsiella pneumoniae-induced pneumonia-derived sepsis [18].

Intriguingly, Hara et al. recently reported that Listeria and Lipoteichoic acid (LTA)
sensed by NLRP6 promotes the IFN-I-dependent noncanonical inflammasome (caspase
11), as well as caspase 1 activation, via ASC adaptor protein [168]. The induction of NLRP6-
ASC-caspase 11 complex by LTA can further promote caspase 1 activation and inflammatory
cytokines’ (IL-1β and IL-18) maturation in macrophages. The reconstitution of IL-18 caused
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an outrageous outcome in Nlrp6−/− and Casp 11−/− mice by Listeria infection, suggesting
that the involvement of IFN-I and caspase 11 in the production of IL-18 may worsen Listeria
infection outcome. Similar reports revealed that the recruitment of caspase 1 and caspase 11
by NRLP6 activation occurred in the Streptococcus pneumoniae infected macrophages [169],
with the addition that the activation of NLRP6 reduced the activation of NF-κB and ERK
signaling pathways. In parasitic infection, severe inflammation ascribed to soluble Egg
Antigen (SEA) of Schistosoma mansoni (causative agent of gastrointestinal schistosomiasis)
is crucially mediated by NLRP6 inflammasome activation, which intensifies chemokines
production (CXCL1/KC, CCL2, CCL3, IL-5 and IL-10) and immune cell recruitment into
the liver. Caspase 1 and IL-1β in the liver dendritic cells are critical for GSDMD-dependent
hepatic granuloma, resulting in periovular inflammation and collagen deposition [170]. In
contrast, the release of IL-18 via enterocyte NLRP6 inflammasome activation is necessary
for parasite clearance in intestinal infection caused by Cryptosporidium tyzzeri [171]. The
detection of Cryptosporidium sporozoite and trophozoite induces ASC-dependent NLRP6
inflammasome activation, and GSDMD-dependent IL-18 is deficient in NLRP6-deficient
mice, leading to the increased susceptibility to Cryptosporidium infection [171].

The clarification on possible redundancy of NLPR6 in the presence of an NLRP3
inflammasome study revealed that inflammasome assemblage of NLRP6 is independent of
NLRP3 with the observation that NLRP3 activation was intact in Nlrp6−/− bone marrow-
derived macrophages (BMDMs) and enhanced IL-1β production is obtainable in these
macrophages when challenged with NLRP3 agonists (ATP and Nigericin) [167]. Moreover,
unlike NLRP3, which activates caspase 1 alone, NLRP6-dependent pyroptosis is also
regulated by IFN-I. In addition, NLRP6 also senses viral RNA (encephalomyocarditis virus
and murine norovirus), leading to ATP-dependent interactions between RNA helicase
DEAH (Asp-Glu-Ala-His) box helicase 15 (Dhx15) and mitochondrial antiviral signaling
protein for the induction type I/III interferons (IFNs) and IFN-stimulated genes (ISGs),
such as the transcription factors IRF3 and IRF7 [162,163]. Similarly, some reports have
also described NLRP6 as a negative regulator of innate immunity through NF-κB and
MAPK signaling pathways to limit the inflammation and pathological damage upon
the recognition of pathogen and pathogen products in most of the myeloid cells, such
as neutrophil, macrophage and inflammatory monocyte [172,173]. Anand et al. [173]
demonstrated that NLRP6 specifically inhibits TLR2- and TLR4-downstream signaling
cascade to limit excessive production of TNF and IL-6 inflammatory cytokines. A report
further showed that inflammasome activation of NLRP6 results in the reduced NF-κB and
ERK signaling pathways [169]. Therefore, this suggests that inflammasome activation and
immunity regulatory functions may occur concurrently.

NLRP10: It is one of the less-studied NOD-like receptors and is widely expressed
in myeloid cells, epithelial cells and keratinocytes [174]. The unique feature of NLRP10
is the lack of a leucine-rich repeat domain to participate in ligand sensing or binding;
thus, it is speculatively thought to be involved in the regulation of other NLRs. The
earliest report showed that it interferes with the ASC domain of NLRP3 to inhibit caspase
1 and IL1β-mediating cell death and also interacts with NOD1 pathways (such as RIP2,
TAK1 and NEMO) to regulate the induction of proinflammatory responses via NF-κB
activation during S. flexneri infection [175,176]. However, recent reports have challenged
these speculations in NLRP3 inflammasome: it was found that IL1β, IL-6 and TNF were not
affected in macrophages from Nlrp10−/− mice treated with NLRP3 agonist but significant
impairment in the adaptive immunity was observed in Nlrp10−/− mice instead [177].
This result suggests that NLRP10 does not function to regulate NLRP3 inflammasome.
It would rather be critical in T-helper cells and systemic antibody production because a
loss of NLRP10-impaired DC migration to the lymph node due to intrinsic defect [177]
also correlates with Candida-specific Th1 and Th17 defects [178]. Until now, the role of
NLRP10 in host immune responses during microbial infection and cell death is controversial
and thus requires further investigations. A study has described its involvement in the
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inflammatory resolution during cutaneous Leishmania major infection by the regulation of
neutrophil homeostasis [174].

6. NOD-Like Receptors in the Regulation of IFN-I and Proinflammatory Responses

NLRX1: is a non-inflammasome and negative regulator of NF-κB and IFN-I. It reg-
ulates the reactive oxygen species (ROS) production, as well as amplifying NF-κB and
JNK activations [2,179]. This mitochondrially-located intracellular receptor lacks a well-
characterized N-terminus and serves as the central gatekeeper between mitochondrial
biology and immunological response. NLRX1 has been implicated in many infectious and
sterile inflammatory diseases; however, its connection to autoimmunity and cancer biology
is raising NLRX1 as a strong therapeutic target [41]. NLRX1 is structurally complex, a less
characterized N-terminus (often denoted as “X”) and seven LRRs followed by an uncharac-
terized three-helix bundle. The enigmatic structure termed X in the N-terminus contains
only one identified domain, called the mitochondrial targeting sequence (MTS), which
attaches NLRX1 to the mitochondrial membrane [180]. Similar to other NLRs, NLRX1 can
shuttle within the cellular compartments, from the cytosol to the mitochondria to initiate
and complete its signal pathways [1,2]. The subcellular relocalization is prompted by
infections; NLRX1 is reported to be translocated from the cytoplasm to the mitochondria
of epithelial cells during Rhinovirus infection [181] and phagosome in fungal (Histoplasma
capsulatum) infection [182].

The interaction of NLRX1 with other proteins informs a specific function in dif-
ferent cell compartments: it interacts with UQCRC2 for ROS production in the mito-
chondrial matrix [178] and FASTKD5 for the maturation of mitochondrial precursor
transcripts [183]. It sequesters the DNA-sensing adaptor STING from TANK-binding
kinase 1 (TBK1) in the endoplasmic reticulum to modulate an innate immune response
to HIV-1 and DNA viruses [184] and interferes with TRAF6 and IKK complexes in the
cytoplasm for the attenuation of NF-κB [185,186]. Essentially, NLRX1 halts the interaction
between dsRNA-activated RIG-I and MAVS to negatively regulate mitochondrial antiviral
signaling protein (MAVS)-mediated type I IFN signaling via TRAF3 and TRAF6 ligase
ubiquitination [2,186,187]. This is evidently observed in Nlrx1−/− mice that exhibited in-
creased expression of IFN-β, STAT2, OAS1 and IL-6 after influenza virus infection [187].
Similar studies also reported that NLRX1 interacts with mitochondrial Tu translation elon-
gation factor (TUFM) to attenuate IFN-I and enhance autophagy in Vesicular stomatitis virus
(VSV) infection [188].

NLRP12: (also known as CLR19.3, Monarch1, NALP12, PAN6, PYPAF7 and RNO2)
is another pyrin domain-containing NLR receptor that is predominantly expressed in
cells of the myeloid lineage, chiefly neutrophils, dendritic cells and monocytes. Similar
to NLRP6, it has inflammasome and non-inflammasome dependent functions, though its
specific stimuli are still unknown, its expression is often down-regulated by pathogens,
pathogen products and inflammatory cytokines [57,189,190], especially the agonists of
Toll-like receptors (TLRs) [191]. Mutation of the NLRP12 gene has been associated with
NLRP12AD (autosomic dominant disease), characterized by recurring cold fever with
headache, lymphadenopathies, oral ulcers and abdominal pain [192]. Studies so far have
categorized the functions of NLRP12 under the following headings:

(i) Regulator of canonical and noncanonical NF-κB and MAPK signaling pathways:
NLRP12 is a negative regulator protein that inhibits canonical and noncanonical acti-
vations of NF-κB and ERK (Figure 2A). Nlrp12–/– mice show exaggerated NF-κB acti-
vation and ERK phosphorylation in colitis-associated colorectal cancer models [193],
osteoclast differentiation [194] and in bone marrow-derived macrophages treated with
Mycobacterium tuberculosis [190] and Salmonella LPS but not flagellin [195]. Canonical
interference of NLRP12, as demonstrated by Zaki et al., is via the suppression of hy-
perphosphorylation of IRAK1 to limit of IκBα and ERK phosphorylation downstream
of TLR-MyD88, thus reducing nuclear translocation of NF-κB and secretion of proin-
flammatory cytokines in macrophage stimulated with S. typhimurium [195]. Similarly,
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its interaction with NF-κB-inducing kinase (NIK) and TRAF3 was through its NOD
and LRR domains, leading to proteasomal degradation of NIK in noncanonical NF-κB
signaling [33,57,190] in microbial and parasitic (Leishmania major) infections [196].
Therefore, the constitutive elevation of NIK, processing of p100 to p52 and reduced
degradation of TRAF3, was observed in Nlrp12–/– cells [33]. These studies recapitu-
late NLRP12 as a potential checkpoint for NF-κB signaling in murine macrophages
and human THP-1 monocytic cells by negatively regulating both TLR and TNFR
pathways [33]. In fact, NLRP12 also exhibits its inhibitory role by degrading NOD2
through the ubiquitin–proteasome pathway to raise host tolerance towards bacterial
muramyl dipeptide (MDP) by sequestering heat-shock protein 90 (HSP90). Seques-
tration of HSP90 prevents the stabilization of NOD2/RIPK2 complex in response to
MDP, thus repressing NOD2 signal transduction of NF-κB and subsequent activity
of the JAK/STAT signaling pathway [197]. The physiological impact of NLRP12
regulation in the immune response is still elusive, for instance, the loss of NLRP12
in BMDC induces IL-6 and TNF upon M. tuberculosis or Klebsiella pneumonia without
conferring resistance against these bacteria [198]. In hepatocellular carcinoma (HCC),
however, NLRP12 downregulates the JNK-dependent inflammation and prolifera-
tion of hepatocytes and NLRP12 deficient mice were highly susceptible to diethyl
nitrosamine (DEN)-induced HCC with increased inflammation, hepatocyte prolifer-
ation and tumor burden. In contrast, the upregulation of NLRP12 was reported in
response to Porphyromonas gingivalis LPS in RAW264.7, and its depletion in the cell
line corresponds to an increase in TNF production and iNOS expression [199].

(ii) A negative regulator of Type-I interferon and proinflammatory responses: This is an-
other remarkable function of NLRP12 that was recently demonstrated by our research
group; we reported an interference of NLRP12 on RIG-I-mediated IFN-I production
during vesicular stomatitis virus (VSV) [200]. We found that VSV infection downreg-
ulates NLRP12 expression, and its deletion in BMDC provokes severe transcription
and production of IFN-I (IFNα/β) and TNF that corresponds with reduced viral
titer and relative genomic copy in Nlrp12–/– DCs upon infection. In the infected DCs,
TRIM25, an E3 ligase required for Lys63-linked polyubiquitination and activation of
RIG-I, mediates the downstream activation of MAVS (Figure 2C). MAVS associates
with the adaptor protein TRAF3 and TRAF family member-associated NF-κB acti-
vator (TANK) to trigger the activation of TANK-binding kinase 1 (TBK1) and IκB
kinase, leading to the activation of IRFs and production of IFN-I and TNF; thus,
enhanced immune signaling cascades were observed in Nlrp12–/– DCs treated with
VSV and 5′ppp dsRNA. However, the presence of NLRP12 relieved the binding of
TRIM25 with RIG-I to suppress IFN-I production. Mechanistically, NLRP12 promotes
RNF125-mediated degradation of RIG-I by associating with ubiquitin ligase TRIM25
to reduce K63-linked ubiquitination of the antiviral innate immune receptor RIG-I
(Figure 2C). This will ultimately prevent RIG-I association with MAVS to checkmate
the transcription and secretion of interferon and cytokine induction in response to
RNA viruses. Domain mapping analysis showed that the NBD domain is presumably
a critical target for TRIM25 interaction [200]. Nlrp12–/– mice are more resistant to VSV
infection with lower viral loads in the brain and recover faster than WT mice with
less neuronal loss in the ventral striatum and hypothalamus in in vivo study.

(iii) NLRP12 inflammasome and its positive regulatory property in other inflammasomes:
The foremost inflammasome functions of NLRP12 were reported in an overexpres-
sion system where NLRP12 co-expressed with ASC for caspase 1 and IL-1β produc-
tion [201]. In primary cell and animal study, NLRP12 is involved in the caspase
1-mediating production of inflammatory cytokines (IL-18) and is crucial for the host
defense against Yersinia pestis infection; thereby, deficiency of NLRP12 causes the
susceptibility to Yersinia pestis infection as it occurred in the IL-18 deficient mice [202].
The actual ligand sensed by NLRP12 in Yersinia for its activation is not known, but
it was noted that ligand generation requires a complex type III secretion system
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(T3SS) (Figure 2B).The inflammasome assemblage of NLRP12 was demonstrated in
the dendritic cells from spleen and bone marrow treated with Plasmodium chabaudi,
where NLRP12 was collaboratively required for ASC-dependent caspase 1 for the
systemic production of IL-1β and pyroptosis [203]. Similarly, collaboration of NLRP12
with other inflammasomes was reported in pyroptosis mediating ganglion cell death
of acute glaucoma, NLRP12 collaborates with NLRP3 and NLRC4 to elicit pyrop-
totic processes and IL-1β maturation through caspase 1 activation [204]. Not only
that, simultaneous expression of the NLRP3, NLRP12 and IFI16 inflammasomes in
cornea infection induced by virulent HSV-1 strains is ascribed to the enhanced cas-
pase 1, IL-1β and IL18 alongside with co-expression of dense specks of the adapter
molecule ASC [205]. However, a contrary report was obtained during Brucella abortus
infection that portends NLRP12 as an anti-inflammatory regulator that inhibits not
only NF-κB and MAPK signaling but also caspase 1 activation in BMDMs, and its
absence conferred the host resistance in murine brucellosis [206]. All these indicate
that the function of NLRP12 is stimuli-dependent, and its collaboration with other
NLRs may be partially ascribed to dearth of specific ligands to be sensed. However,
evidence-based reports have described it as a critical checkpoint in innate immunity
in microbial and parasitic infections by regulating innate immune signaling cascades
negatively or positively. Since its function varies with pathogens, it is pertinent to
investigate the role of NLRP12 in other pathogens.
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Figure 2. NLRP12 negatively regulates innate immune signaling in a pathogen-dependent manner. (A) NLRP12 inhibits
IRAK1 and TRAF3/NIK to further inhibit canonical and noncanonical NF-κB signaling and the MAPK/ERK inflammatory
signaling pathway in bone marrow-derived macrophages (BMDMs). (B) NLRP12 participates in the recruitment of ASC for
the processing of caspase 1 and maturation of IL-1β and IL-18 to positively regulate innate host defense during Yersinia
pestis and Plasmodium chabaudi. (C) NLRP12 associates with TRIM25 to reduce polyubiquitination of RIG-I and inhibits the
RIG-I-mediated IFN response during VSV infection in bone marrow-derived dendritic cells. RIG-, Retinoic acid-inducible
gene I; MAVS, Mitochondrial antiviral-signaling protein; TBK1, TANK-binding kinase 1.

7. NOD-Like Receptors in the Regulation of Pyroptosis Cell Death

Pyroptosis is a lytic programmed cell death (PCD) that involves cell swelling and
the rupturing of the plasma membrane, and it remains a major pathway for the release
of proinflammatory proteins in macrophages [207], dendritic cells and partially in neu-
trophils [208,209]. This cell death was first observed by Friedlander et al. in 1986 in primary
mouse macrophages with anthrax lethal toxin (LT) treatment leading to the rapid release
of cell contents [210] and later established in Shigella flexneri-infected macrophages by
Zychlinsky and his co-workers in 1922 [211].

The establishment occurred after the discovery of ICE (interleukin-1β-converting
enzyme) otherwise called caspase 1 [212] as a critical weapon for the maturation of IL-1β
from the precursor [213,214]. However, the phenomenon was first thought to be apoptosis
until 2001 when D’Souza et al. coined the term pyroptosis as proinflammatory programmed
cell death to distinguish it from non-inflammatory cell death called apoptosis [215,216].

The discovery of inflammasome in 2002 [217] made it clearer that efficient execu-
tion of pyroptosis requires the activations of the intracellular inflammasome signaling
complex to activate inflammatory caspase 1 necessary for the process of IL-1β and IL-18
from pro-IL-1β and pro-IL-18, respectively. Until 2015, when gasdermin D was discov-
ered as a substrate target of caspase 1/4/5/11, the pyroptosis effector molecule was
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unknown [218,219]. The oligomerization of the cleaved active form of gasdermin protein
(N-terminal of GSDMD) [217,218] results in the lysis of cells and facilitates the release of
proinflammatory cytokines (such as IL-1β, IL-18 and TNF) and alarmins, such as high
mobility group box 1 (HMGB1) [207,208]. It is noteworthy to mention that the first report
of the gasdermin gene (now GSDMA) in the gastrointestinal tract (tightly restricted to
the esophagus and stomach) and skin of a mouse was 2000 [220], and since then, many
members of the gasdermin family have been reported; GSDMB, GSDMC, GSDMD, GS-
DME (also known as DFNA5) and PJVK (also known as DFNB59), with different activating
enzymes both in human and mouse [221–223]. This expansive advancement in the un-
derstanding of the gasdermin family and its activating protease enzymes, such as inflam-
matory caspase 4/5/11 [112,221], non-inflammatory caspase 3/7/8 [222,223], Cathepsin
G [224] and neutrophil elastase [225], as well as inflammasome activation [226,227], has
further broadened the concept of cell death as critical therapeutic targets [228,229] in
host immunity [230,231], microbial-induced hyperinflammation [140,232], cytokine storm
syndrome [228] and autoimmune diseases [209,233], as well as in severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) [228,234]. Today, program cell deaths (PCD),
particularly pyroptosis along with others, such as Necroptosis [235], Ferroptosis [236], NE-
Tosis [104,237], Parthanatos [238] and PANoptosis [133,135], have received a lot of attention
from all facets of research disciplines. Fortunately, in spite of scrupulous attention to un-
ravel the underlying molecular mechanism, the phenomenon of immunological cell death
is still progressively complicated [239]. Considering the impact of cell death in microbial
(viral, bacterial and fungal) and parasitic infections, PCD appears to be a double-edged
sword for host and pathogen survival [240]. Therefore, tight regulation of the phenomenon
is crucial for immune homeostasis. In this part of the review, we focus on the interplay
of the afore-listed group of NLRs (trans-activator, inflammasome and regulatory NLRs)
and other critical molecules, such as type 1 interferon (IFN-I) and inflammatory caspases
(Caspase 1/4/5/11), on the initiation, execution and regulation of pyroptosis (Figure 3).

In the previous sections of this review, we have emphasized that caspase 1/4/5/11
specifically cleaved the linker between the amino-terminal gasdermin-N and carboxy-
terminal gasdermin-C domains in GSDMD, which was required and sufficient for pyropto-
sis [109,241]. During microbial and parasitic infections, regulated cell death (RCD) [103]
mediated by appropriate secretion of IFN-I [242] and activation of the inflammasome is
vital for the host to cope with either foreign pathogens or tissue damage. Uncontrolled
activities of these players can cause aberrant tissue damage, autoinflammatory disorders,
cardiometabolic diseases, cancer and neurodegenerative diseases. IFN-I was previously
recognized as a crucial molecule that is involved in the protection against viral infec-
tions [243,244]; the current paradigm shift has shown its impact on a range of microbial
infections, such as parasites, fungi and bacteria. Similar to cell death, IFN-I is also a
double-edged sword that exhibits context-dependent functions in relation to the intrinsic
and extrinsic factors in cells [242,245]. Protective host defense of IFN-I was demonstrated
in Acinetobacter baumannii [246], Escherichia coli [247], Helicobacter pylori [91], Legionella
pneumophila [248] Mycobacterium abscesssus [249], Plasmodium berghei [250] and Aspergillus
species, A. fumigatus, A. nidulans and A. tanneri [251]. Other reports also shown that it
promotes detrimental infection outcome in bacteria, such as Chlamydia muridarum [252],
Mycobacterium bovis [253], Escherichia coli [254], Francisella tularensis [255], Haemophilus
influenza [256] and Salmonella typhimurium-viral [257], likewise in fungal and parasitic
infections, such as Candidiasis [258], as well as in Chagas parasitic infection caused by Try-
panosome cruzi [259]. In Listeria monocytogenes [260,261], Pseudomonas aeruginosa [262,263],
Salmonella enterica serovar Typhimurium [264,265] and Yersinia pestis [266], IFN-I confers
dual functions depending on the IFN-stimulated genes (ISGs) involved and the route of
infection. For instance, contrary to what is obtainable during foodborne transmission of
listeriosis, IFN-I promotes bacterial susceptibility during intravenous route infection by
creating a growth-tolerable intracellular microenvironment [261]. Mechanistically, Frantz
et al. and Pagliuso et al. recently and respectively described secRNome and RNA-binding
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protein (Zea) secreted by L. monocytogenes were sensed by RIG-I to mediate IFN-I secretion
and signaling pathways [260,267], and this is explored by bacteria to its advantage.
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prime NLRP6 for caspase 11 activation, and then caspase 11 further enhances the caspase 1-mediated pyroptosis. Members
of regulatory NLRs act to suppress the pathway of each critical molecule; for instance, NLRP12 and NLRX1 interfere
with RIG-I signaling cascade, canonical and noncanonical NF-κB pathways. TLRs, Toll-like receptors; CLRs, C-type lectin
receptors; TNFR, Tumor necrosis factor receptor 1; RIG-I, Retinoic acid-inducible gene I; TLR3/7, Toll-like receptor 3/7;
IFNs, Type 1 interferon; NOD1/2, Nucleotide-binding oligomerization domain-containing protein 1/2; NLRP1/3/6/12,
NOD-like receptor family pyrin domain-containing 1/3/6/12; NLRX1, Nucleotide-binding oligomerization domain, leucine-
rich repeat containing X1; IRF3, Interferon regulatory factor 3; ASC, Adapter apoptosis-associated speck-like; GSDMD,
Uncleaved Gasdermin-D; N-GSDMD, Cleaved N-terminal Gasdermin-D.
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The interplay between type I IFN and cell deaths, such as apoptosis, necroptosis and
pyroptosis, is obviously evident by their interconnectivity with inflammasome activities
in controlling the tissue homeostasis and host defense mechanism [61,246,268] (Figure 3).
NLRP3 [269], NLRP6 [168] and NLRP12 [200] and caspase 4/5/11 inflammasomes etc.,
possessed upstream regulatory property on caspase 1-mediated GSDMD cleavage, canoni-
cal and noncanonical NFκB activation, as well as the IFN signaling cascades depending on
the pathogen and cell type. Accordingly, inflammasome NLRs positively regulate caspase
1 activation and the maturation of pyroptotic mediating cytokines (IL1β and IL18) via ASC,
except NLRC4 activation, which can proceed independently of ASC for the enzymatic
processing of pro-caspase 1 without autoproteolysis and efficient cytokine processing [270].
IFN-I dependent NLRP6 inflammasome activation also induces the activation of caspase
11 along with caspase 1 activation via ASC for boisterous IL18 processing and enhanced
pyroptosis mediated by caspase 1 and GSDMD [168,169] in Listeria and Streptococcus Pneu-
moniae infections. Pathogen recognition via TLRs, CLRs [101] and TNFR transduces signals,
which may or may not go through NODosome to orchestrate nuclear translocation of NFκB,
being essential for NLRP3 priming and promotes transcription of caspase 11, pro- IL1β and
pro-IL18 [103,269]. Although cytosolic recognition of NOD1/2 may not be evidently linked
directly to caspase 1 activation, their signaling complex influences the phosphorylation
of NFκB, and this presumably elicits caspase 11 transcriptional expression. The antiviral
potency of IFN-I is mediated via several receptors, such as TLRs (TLR3, TLR7 and TLR4)
and cytosolic receptors (such as RIG-I, cGAS, STING and others) via TBK1 and phospho-
rylation of interferon regulatory factors, such as IRF3 and IRF7 [200,271]. Interestingly,
recent studies revealed that regulatory NLRs, such as NLRXI, NLRC3 [272,273], NLRP12
and NLRP6, suppress NFκB and IFN-1, which mediate principal actors of cell death, as
shown in Figure 3, though the link between these receptors and cell death is still unfath-
omable and thus requires further investigations. NLRP12 [193–195], NLRX1 [2,4,177,179]
and NLRP6 [169,173] have been demonstrated to suppress proinflammatory cytokines
chiefly orchestrated by NFκB, ERK and MAPK signaling pathways. NLRP12 also degrades
NODosome to limit nuclear translocation of NFκB during bacterial infection [197]. Var-
ious studies have described NLRP12 as a critical innate immune checkpoint in cancer
and pathogenic infections. The latest mechanistic study from our research group showed
that NLRP12 regulates RIG-I mediated IFN-I signaling; thus, its possible expansion may
encompass pyroptotic cell death, interferonopathy-based autoimmunity and associated
autoinflammatory diseases based on that key rationale.

8. Conclusions

Microbial and parasitic infections provoke immunological responses upon their recog-
nition by immune receptors; these include the activation of the innate immune system, the
induction of systemic inflammation and cell death. Regulated cell death mediates minimal
consequences; therefore, apoptosis, pyroptosis, necroptosis, ferroptosis and PANoptosis, as
well as others, required tight regulation to avert uncontrolled inflammation and autoim-
mune conditions. The activities of NOD-like receptors play vital roles in the initiation and
execution of cell death, and therefore, become crucial targets not only in mounting the regu-
lated protective innate immunity but also as an antidote for the uncontrolled inflammatory
conditions. Since December 2019, the entire world has been facing the lethal challenge
of pandemic transmission of severe acute respiratory syndrome coronavirus 2 (SAR-CoV-
2) critically mediated by the overproduction of proinflammatory cytokines leading to
multi-organ dysfunction and virus-induced cytokine storm. Cell death and inflammatory
responses have been closely linked to the pathological progression of SAR-CoV-2; thus,
exploring regulatory NLRs will help in the development of a good therapeutic apparatus
and also provide detailed molecular mechanisms underlying this pandemic outbreak.
However, despite extensive studies on NLRs, more investigations are still outstanding,
such as their impacts on drug resistance and regulation of adaptive immunity.
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