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Abstract

Ecological profiling of non-native species is essential to predict their dispersal and invasive-

ness potential across different areas of the world. Cassiopea is a monophyletic taxonomic

group of scyphozoan mixotrophic jellyfish including C. andromeda, a recent colonizer of

sheltered, shallow-water habitats of the Mediterranean Sea, such as harbors and other

light-limited, eutrophic coastal habitats. To assess the ecophysiological plasticity of Cassio-

pea jellyfish and their potential to spread across the Mare Nostrum by secondary introduc-

tions, we investigated rapid photosynthetic responses of jellyfish to irradiance transitions—

from reduced to increased irradiance conditions (as paradigm of transition from harbors to

coastal, meso/oligotrophic habitats). Laboratory incubation experiments were carried out to

compare oxygen fluxes and photobiological variables in Cassiopea sp. immature specimens

pre-acclimated to low irradiance (PAR = 200 μmol photons m−2 s−1) and specimens rapidly

exposed to higher irradiance levels (PAR = 500 μmol photons m−2 s−1). Comparable photo-

synthetic potential and high photosynthetic rates were measured at both irradiance values,

as also shown by the rapid light curves. No significant differences were observed in terms of

symbiont abundance between control and treated specimens. However, jellyfish kept at the

low irradiance showed a higher content in chlorophyll a and c (0.76±0.51SD vs 0.46

±0.13SD mg g-1 AFDW) and a higher Ci (amount of chlorophyll per cell) compared to jellyfish

exposed to higher irradiance levels. The ratio between gross photosynthesis and respiration

(P:R) was >1, indicating a significant input from the autotrophic metabolism. Cassiopea sp.

specimens showed high photosynthetic performances, at both low and high irradiance,

demonstrating high potential to adapt to sudden changes in light exposure. Such photosyn-

thetic plasticity, combined with Cassiopea eurythermal tolerance and mixotrophic behavior,

jointly suggest the upside-down jellyfish as a potentially successful invader in the scenario

of a warming Mediterranean Sea.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0248814 March 19, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mammone M, Ferrier-Pagés C, Lavorano

S, Rizzo L, Piraino S, Rossi S (2021) High

photosynthetic plasticity may reinforce

invasiveness of upside-down zooxanthellate

jellyfish in Mediterranean coastal waters. PLoS

ONE 16(3): e0248814. https://doi.org/10.1371/

journal.pone.0248814

Editor: Douglas A. Campbell, Mount Allison

University, CANADA

Received: January 10, 2021

Accepted: March 6, 2021

Published: March 19, 2021

Copyright: © 2021 Mammone et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the project

“PULMO” funded from the European Commission

Marie Sklodowska-Curie individual Fellowships

(H2020-MSCA-IF-2015) under grant agreement

No. 708698. SR wants to thank the Marie Curie

International Outgoing Fellowship project ANIMAL

FOREST HEALTH (Grant Agreement Number

https://orcid.org/0000-0002-1371-8041
https://orcid.org/0000-0002-0893-0582
https://orcid.org/0000-0002-8752-9390
https://doi.org/10.1371/journal.pone.0248814
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0248814&domain=pdf&date_stamp=2021-03-19
https://doi.org/10.1371/journal.pone.0248814
https://doi.org/10.1371/journal.pone.0248814
http://creativecommons.org/licenses/by/4.0/


Introduction

Jellyfish are among the most versatile marine invertebrates. They can form large aggregations,

thanks to a variety of reproductive and trophic strategies that allows a rapid increase in their

abundance [1–3]. During population outbreaks, jellyfish can be strong controllers of food

webs and energy flux in marine ecosystems. They can exert a top-down control through direct

predation on multi-level consumers, including sensitive fish life stages (e.g., eggs, larvae and

juveniles) [4] and/or a bottom-up control by diet competition and food limitation to upper

trophic levels [5–8]. Nowadays, direct anthropogenic stress (e.g., overfishing, coastal pollution,

coastal mismanagement) together with ocean warming may contribute to shifting some coastal

ecosystems towards increasing jellyfish populations, especially medusozoans, ctenophores,

and thaliaceans [9–11].

Jellyfish blooms can be even more damaging when alien species are involved [5] both affect-

ing marine biodiversity through predation and competition [7] and causing economic dam-

ages on several human activities in the coastal zone (e.g., tourism, coastal industry, fishery and

aquaculture) [12, 13]. Jellyfish such as Cassiopea spp., Phyllorhiza punctata, Rhopilema noma-
dica are some of the successful non-native species colonizing the Mediterranean Sea (reviewed

by Bayha and Graham [14]). The invasiveness of a species inherently depends on its life his-

tory, environmental tolerance and trophic strategy [14]. Trophic plasticity is renowned in sev-

eral marine invertebrates–including sponges, corals, and jellyfish–due to their mutualistic

relationships with single-celled, dinoflagellate algae belonging to the family Symbiodiniaceae

[15, 16]. Out of over two hundred and twenty taxa of scyphozoan jellyfish are recognized so far

[17], nearly 20–25% of them (mostly belonging to the rhizostomid Kolphophorae sub-order)

having symbiotic associations (obligatory or facultative mutualism) with Symbiodium spp. and

other Symbiodiniaceae dinoflagellates. These include several rhizostome species, such as the

Mediterranean Cotylorhiza tuberculata [18], 10 different species of upside-down jellyfish (Cas-
siopea spp.) [19, 20], the spotted jellyfish Phyllorhiza punctata [21], and the golden jellyfish

Mastigias papua, where up to 10% of its protein biomass is produced by their endosymbiotic

dinoflagellates [22]. This mutualistic association grants jellyfish a mixotrophic strategy (i.e.,

based on concurrent heterotrophic and autotrophic energy inputs) [23]. Mutualism is realized

by jellyfish providing a sheltered habitat—rich in nitrogen and phosphorus catabolites—to

microalgae that, in turn, release organic carbon products (e.g., sugars) to their host [24, 25].

Mixotrophy may be considered as the dominant feeding strategy for symbiotic jellyfish, how-

ever the relative importance of autotrophic versus heterotrophic nutrition is variable not only

among species, but also within each species’ life cycle and depending on seasonality [23]. In

most cases, photosynthesis largely covers the respiratory needs, and assimilation of additional

inorganic nutrients is required from the surrounding water column [26–28]. The benthic

behavior and bell pulsation of the upside-down jellyfish were suggested to facilitate mobiliza-

tion of nutrients from the sediment pore water, naturally enriched through the degradation of

settling organic matter [29]. Although mixotrophy is a widespread phenomenon [30], the

extent of the relative contribution of autotrophy and heterotrophy to the energetic budget of

the organisms is challenging to quantify. In particular, available information about mixotrophy

in scyphozoans is scant [20, 25, 31, 32]. In this framework, knowledge of the ecophysiology

and trophic strategies of jellyfish may contribute to understanding the mechanisms driving the

structure and organization of marine communities in a warming ocean scenario [33].

Commonly known as the upside-down benthic jellyfish, Cassiopea includes a group of 10

species native of tropical and sub-tropical, shallow-water environments, as the majority of jel-

lyfish taxa associated with Symbiodiniaceae dinoflagellates [34, 35]. However, global sea warm-

ing boosted the natural spread as well as the human-mediated translocation of Cassiopea spp.
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to new areas. Cassiopea andromeda is the earliest known lessepsian jellyfish in the Mediterra-

nean Sea and reached the basin in the early 20th century [36]. Indeed, the progressive enlarge-

ment of the Suez Canal caused the progressive dilution of the natural hyperhaline barriers of

the Bitter Lakes [37] bolstering the northern migration of Red Sea species, so that today the

Suez Canal can be considered the most potent corridor of marine bioinvasion in the world

[38]. Therefore, the indopacific C. andromeda moved into the Mediterranean Levant Sea by an

anti-clockwise migration from Israel and Lebanon [39, 40], to Cyprus, Turkey and Greece [41–

43] where its populations can form short-term outbreaks up to 20 individuals m-2. Later, C.

andromeda was observed with an episodic but increasingly common occurrence further west in

the Mediterranean: in 2009, C. andromeda was spotted in Maltese islands [44] and shortly after

in Sicily [45, 46]. The northern limit of dispersal of many Lessepsian immigrants, including the

upside jellyfish, across natural environments is controlled by the winter sea surface temperature,

and currently coincident with the winter position of the 15˚C isotherm [47–49].

Due to a predominantly benthic lifestyle, Cassiopea jellyfish live in shallow habitats with

reduced water movements, such as sandy mudflats, mangroves, estuaries, harbors and artificial

coastal sounds, laying down on the sea floor on the exumbrellar side, with an upside orienta-

tion of oral arms extended into the water column [50, 51]. These areas are characterized by

nutrient-enriched and shaded environments, due to significant anthropogenic nutrient loads

and high turbidity [52, 53]. The photosynthetic active radiation (PAR) reaching the sea floor

may be locally limited (< 100 μmol photons m−2 s−1) in transitional habitats with high anthro-

pogenic inputs, such as in the harbor of Ischia (gulf of Naples) or in the Venice lagoon [54,

55]. Conversely, in nearby but less shaded areas irradiance can be much higher (260–

1760 μmol photons m−2 s−1) [55].

Photobiology of zooxanthellate jellyfish has been studied in only a few species from tropical

areas, including Mastigias sp., Linuche unguiculata and a tropical conspecific of Cassiopea [20,

29, 56]. Welsh et al. [56] investigated the rates of photosynthesis of Cassiopea spp. collected in

a tropical mangrove of Queensland (Australia), where light ranges between 200 and 2000 μmol

photons m-2 s-1 depending on the time of the day. Saturation of photosynthesis was found at

an irradiance of 400 μmol photons m-2 s-1 while the photosynthetic compensation was

achieved at an irradiance of 50 μmol photons m-2 s-1. In addition, higher photosynthesis rates

were observed in summer than winter, and proportional to the light level and thermal regimes

[20]. Studies on Mastigias papua (Palau) and L. unguiculata (Bahamas) showed that their pho-

tosynthetic systems respectively reached saturation at 307–416 or 200–300 μmol photons m-2

s-1, and a compensation irradiance of 53–63 or 20 μmol photons m-2 s-1, [31, 32]. However, C.

andromeda seems to have a high photosynthetic efficiency also under high light intensities, as

experienced in its native habitat (the Red Sea) where irradiance may reach up to 1000 μmol

photons m-2 s-1 at noon [29]. In this framework, assessing the photosynthetic performance of

Cassiopea in the Mediterranean Sea—where light might be a limiting factor compared to

native areas–will be key to the ecological profiling of the upside-down jellyfish, required to

establish its dispersal and invasiveness potential. Eutrophic and artificial environments, such

as harbors and marinas and coastal lagoons, are known to be primary terminals of immigrant

alien species from where bioinvasions may start, by natural spillover into the surrounding,

mesotrophic open waters or by secondary, human-mediated spread in other areas, facilitating

settlement of zooxanthellate jellyfish populations, as demonstrated by the records of C.

andromeda in the central Mediterranean Sea (reviewed by Deidun et al. [57]). To counterbal-

ance the parallel reduction of light penetration in eutrophic waters, zooxanthellate jellyfish

exhibit evolutionary adaptive mechanisms, such as M. papua swimming in shallower waters

with a circadian rhythm [58] or settling at shallow depths, as for the benthic Cassiopea
jellyfish.
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In the present work we investigated the short time reaction in the mixotrophic strategy of

Cassiopea switching from a simulated eutrophic (low light, harbor-like) to meso/oligotrophic

(open water-like) conditions in order to explore its rapid acclimation potential. Photosynthesis

measurements of Cassiopea sp. exposed to different light intensities were carried out together

with Pulse Amplitude Modulated (PAM) measurements. These data were integrated with the

measurements of the endosymbiotic algal density, total chlorophyll and protein concentrations

to frame the key elements of Cassiopea autotrophic strategy with the ultimate aim of exploring

the invasiveness potential of this zooxanthellate jellyfish in new environments.

Materials and methods

Acclimation

Bred at the plankton laboratory of the Acquario di Genova (COSTA Edutainment), twenty

Cassiopea sp. jellyfish were acclimated to a baseline condition at the Centre Scientifique de

Monaco research facility one month before the start of the experiment. Abiotic factors were set

to simulate a turbid and nutrient-enriched environment: particularly, irradiance was set at

200 μmol photons m−2 s−1 and jellyfish were fed ad libitum once a day with Artemia salina
nauplii and ground fish meat. The starting PAR intensity (200 μmol photons m−2 s−1) was cho-

sen based on irradiance data of eutrophic areas such as harbors and lagoons [54, 55].

Experimental design

Five jellyfish were reared into each of four different tanks, which were continuously supplied

with natural seawater pumped through a pipeline directly from the sea, at a flow rate of 10 L

h−1, also equipped with a filtration system with a sand filter and an external biological filter

with plastic bio balls. This ensured constant pH, salinity, dissolved oxygen concentrations, and

removal of excess nitrogen and nitrites. Seawater was set up to 24˚C ± 0.2˚C (summer Medi-

terranean temperature) using computer-controlled electronic heaters.

Two aquaria were maintained at the starting irradiance of 200 μmol photons m−2 s−1 (on a

12 h light: 12 h dark photoperiod), while the two others were set at 500 μmol photons m−2 s−1,

using 400 WHQI metal halide lamps. The tested PARs were chosen based on average irradi-

ance values found in eutrophic vs meso/oligotrophic areas [54, 59] and on the evidence that

the irradiance may considerably increases from inside to outside harbor waters (up to five

times [55]). From here on, irradiance equals to 200 μmol photons m−2 s−1 will be referred as

RLP (reduced light penetration) whereas ELP (enhanced light penetration) will stand for irra-

diance equaling 500 μmol photons m−2 s−1. Jellyfish were maintained at either RLP or ELP

irradiance conditions one week before the following experimental measurements.

Photosynthesis measurements

Oxygen fluxes were quantified using temperature-regulated Plexiglas chambers filled with

0.22 μm-filtered seawater and equipped with Unisense optodes connected to a computer with

OXY-4 software (channel fibre-optic oxygen meter, PreSens, Germany). Optodes were cali-

brated against N2-saturated and air-saturated seawater for 0% and 100% oxygen saturation

respectively. Oxygen fluxes for the estimation of net photosynthesis (Pn) were monitored over

10 to 15 min (in 1 min intervals) at 200, 400, 600, 800, 1000, 1200 and 1400 μmol photons m–2

s–1. Respiration rates (R) were quantified through a dark incubation period of 20 min before

(dark respiration, Rd) and after the last light stimulation (post-illuminatory respiration, RL). At

the end of the incubation, the volume of water inside the chamber was recorded upon jellyfish

removal. Pn and R rates were calculated by regressing oxygen data against time and
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normalized to ash free dry weight (AFDW), as described below. Gross photosynthesis (Pg) was

calculated as the sum of |Pn| and |R| and was plotted versus irradiance (P/E curves, formerly

P/I [60]). Photosynthesis to respiration ratio (P/R) was calculated by considering 12 h light at

saturating irradiance and 24 h of respiration. The highest photosynthetic rate was considered

as Pmax, while the photosynthetic efficiency (α) was calculated from the initial slope in the

light-limiting region of the P-I curve [61]. The theoretical saturation irradiance (Ek) was calcu-

lated as the intercept between the initial slope and the horizontal asymptote (Pmax/α) [62]. The

compensation irradiance (Ec), where the oxygen flux is zero (Pn = 0) was as well obtained

from the P-I curves.

A pulse amplitude modulated fluorometer (DUAL-PAM/F, Waltz,1) was used to further

investigate Cassiopea photosynthetic performances according to Ralph and Gademann [61]

after the jellyfish were maintained 20 min in the dark. The relative electron transport rate

(rETR), representing an approximation of the rate of electrons pumped through the photosyn-

thetic chain [63], was assessed using rapid light curves (RLCs). The effective quantum yield

(Y) and the rETR were recorded from the upward-oriented sub-umbrella (i.e., the concave

oral side) and oral arms of the jellyfish, with 10 seconds steps of irradiance from 0 to

1956 μmol photons m–2 s–1. Non-photochemical quenching (NPQ), which represents a mea-

sure of the heat-dissipation of the excess energy absorbed by the photosystem II was as well

recorded during RLCs. After incubations, Falcon tubes containing the experimental jellyfish

were immersed in liquid nitrogen and then stored at -80˚. Samples were freeze-dried and the

powder was used for different measurements. All applicable international, national, and/or

institutional guidelines for the care and use of animals were followed in accordance with the

ethical standards of the European Union (Directive 609/86).

DNA extraction

To characterize the symbiont genotype associated with the jellyfish, we investigated the chloro-

plast (cp) subunit rDNA sequence (Cp23S-rDNA) [64]. 18 to 20 mg of freeze-dried powder

was used for DNA extraction using the DNeasy Plant Mini Kit (Qiagen) according to manu-

facturer’s instructions. Primers 23S1M13 (5’-CACGACGTTGTAAAACGACGGCTGTAACTA
TAACGGTCC-3’) and 23S2M13 (5’-GGATAACAATTTCACACAGGCCATCGTATTGAACC
CAGC-3’), were used [64]. After performing PCR and agarose gel electrophoresis, bands of

DNA were cut out from the gel and DNA was purified using MinElute Gel Extraction Kit

(Qiagen).

Symbiont and chlorophyll quantification

A known amount (ranging 300–500 mg) of the total freeze-dried powder was resuspended in

10mL of distilled water and homogenized for 20 min with a potter tissue grinder. The total vol-

ume of the slurry was recorded. A subsample of 1 mL was stored at +4˚C for the later determi-

nation (within few hours) of the symbiont concentration, using a polarizing light microscope

Leica DM750P and a counting chamber (Neubauer-improved). The remaining slurry was cen-

trifuged at 3000g for 10 min, at 4˚C, to pellet the symbionts and extract the chlorophyll pig-

ments. The supernatant was thus removed and the pellet was re-suspended in 100% acetone

(10mL), mixed with a vortex stirrer and let for 24 h covered with aluminum foil at +4˚C. Sam-

ples were then centrifuged for 15 minutes, at 10,000 g and 4˚C and then analyzed using a

SAFAS UVmc2 double-beam UV-visible spectrophotometer. The absorbance was read at 630,

663, 750nm. Chlorophyll a and c2 concentration were calculated according to the spectromet-

ric equations reported in Jeffrey and Humphrey [65]. Total chlorophyll was computed as the
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sum of chlorophyll a and c2. The chlorophyll content per symbiont cell (Ci) was computed as

the ratio between the chlorophyll and the number of symbionts.

Protein content

A known amount of powder (ranging 10–50 mg) was resuspended in 500 μL distilled water as

described above. An equivalent volume of sodium hydroxide (NaOH) was added before sam-

ples were incubated in the oven at 60˚C for five hours. Proteins were measured by the INTER-

CHIM protein quantitation kit (following [66], with bovin serum albumin as a standard and

NaOH as blank), using a SAFAS XeniusXM spectrofluorometer.

Data normalization

A fraction of the dry powder of each sample was inserted into an aluminum cup and the

weight was determined using a precision balance. Samples were heated in an oven for 4 h at

430˚C. Ashes were re-weighted in order to calculate the ash free dry weight

(AFDW = DW-AW) and normalize the data.

Statistical analysis

All data were tested for assumption of homogeneity by the Cochran test and transformed

when needed (log (x+1)). All the data were tested using one-way ANOVA (analysis of vari-

ance). Two-ways ANOVA was used to test the effects of RLCs. Statistical analyses were com-

puted using STATISTICA1 software (StatSoft, Tulsa, USA). All the data are expressed as

mean and standard deviation (SD). Graphs and correlation coefficients (Pearson’s) were

obtained by using Kaleidagraph (Synergy Software, Reading, PA).

Results

Symbiont classification/taxonomy, density and chlorophyll content in

Cassiopea
All jellyfish specimen (n = 20) hosted the Symbiodiniaceae Cladocopium sp. (Clade C). No sig-

nificant difference in symbiotic cells density was observed between the RLP or ELP treatments

(F = 0.7412, p>0.05). The mean symbiont density was 1.3�108 ±0.37�108 (SD) and 1.2�108 ±
0.36�108 (SD) cell g-1 AFDW for RLP and ELP, respectively (Fig 1A). Conversely, total

Fig 1. Cassiopea symbionts density and chlorophyll content. (A) Symbiont density (B) Total chlorophyll (a+c2) and (C) Chlorophyll content per

symbiont, under the two different light conditions (RLP and ELP). Data are normalized to AFDW. Each point represents mean ± SD, n = 20.

https://doi.org/10.1371/journal.pone.0248814.g001
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chlorophyll content normalized to ash-free dry weight (AFDW) varied significantly

(F = 8.9532, p< 0.01) between the two irradiance conditions. The ELP condition was associ-

ated with a lower Chl content = 0.46±0.13 (SD) mg g-1 AFDW, compared to the RLP condition

(Chl content = 0.76±0.51 (SD) mg g-1 AFDW) (Fig 1B). Higher content of chlorophyll a than

chlorophyll c (RLP: F = 13, p<0.001; ELP: F = 19, p<0.01) occurred at both irradiances (S1A

and S1B Fig). Chlorophyll content per symbiont cell (Ci) was higher (F = 17, p<0.01) for the

jellyfish from the RLP (Fig 1C). The same trend in symbionts density and chlorophyll content

was observed using DW as normalization (S1C–S1E Fig).

Proteins and organic matter in Cassiopea
A significant difference (F = 16.169, p<0.001) was observed in the organic matter (OM) con-

tent which was 27% ±3 (SD) and 33% ± 4 (SD) for the jellyfish exposed to the RLP and ELP

irradiance conditions, respectively. The protein content was in the same range in all samples:

0.11 ± 0.03 (SD) μg g-1 AFDW in ELP-treated jellyfish and 0.14 ± 0.03 (SD) μg g-1 AFDW in

RLP-treated jellyfish, but with significant differences between the RLP and ELP conditions

(F = 8.6904, p<0.01) (Fig 2).

Photobiological performance of Cladocopium-Cassiopea association

Photosynthesis to irradiance curves. The oxygen flux increased with irradiance (Fig 3A,

PAR 200 R2 = 0.987; PAR 500 R2 = 0.988). When comparing the photosynthetic performances

of jellyfish exposed to the two irradiance conditions, no significant differences were observed

relative to their maximal rates of photosynthesis (Pmax), efficiency (α) and theoretical satura-

tion irradiance (Ek) (Table 1). A slight decrease (photoinhibition) was observed in jellyfish

Fig 2. Protein content of Cassiopea. Protein content is expressed as μg per g-1 of AFDW for each light condition (RLP

and ELP). Each point represents mean± SD, n = 20.

https://doi.org/10.1371/journal.pone.0248814.g002
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maintained at both RLP and ELP experimental conditions, when approaching 1200 μmol pho-

tons m-2 s-1. Compensation irradiance (Ec) was 196 (PAR = 200) and 238 (PAR = 500) μmol

photons m-1 s-1. Net photosynthesis followed a similar trend (S2 Fig). No significant differ-

ences (F = 3.0911, p>0.05) in dark respiration rates were observed between the RLP

(PAR = 200) and ELP (PAR = 500) conditions (Fig 3B).

Rapid light curves. No significant difference was found concerning the rETR (F = 1.37,

p>0.05; Fig 4A), NPQ (F = 0.678, p>0.05; Fig 4B) and Y (F = 1.447, p>0.05; Fig 4C) at the two

experimental conditions. Jellyfish exposed to both conditions showed no saturation also under

high light intensities. rETR showed a linear increase at irradiance conditions up to 800 μmol

photons m-1 s-1 (PAR 200 R2 = 0.998; PAR 500 R2 = 0.999), while at higher light intensities the

rETR increased at reduced rate, almost asymptotically (Fig 4A). The NPQ values (Fig 4B)

showed a quick increase at RLP but slowed down at ELP irradiance conditions (PAR 200 R2 =

0.932; PAR 500 R2 = 0.902). The photosynthetic Y of photosystem 2 (Fig 4C) showed a

decrease with increasing PAR (PAR 200 R2 = 0.952; PAR 500 R2 = 0939). When considering

Table 1. Summary of the one-way ANOVA testing different photosynthetic parameters (O2 measurements) on

Cladocopium-Cassiopea association under different light conditions.

Parameter RLP ELP p-value

Pmax 125±12 120±14 >0.05

α 0.18±0.02 0.16±0.03 >0.05

Ek, 689±50 748±70 >0.05

ELP (= 500 μmol photons m–2 s–1); RLP (= 200 μmol photons m–2 s–1). Pmax = maximal photosynthetic rate, Ek =

saturation irradiance, α = photosynthetic efficiency. Data expressed as mean value ± SD. Pmax and Ek expressed

as μmol photons m–2 s–1.

https://doi.org/10.1371/journal.pone.0248814.t001

Fig 3. Cladocopium-Cassiopea photobiological performance. (A) Gross photosynthesis versus irradiance and (B) gross photosynthesis at

saturating irradiance (800 μmol photons m-1 s-1) and dark respiration of the two RLP and ELP conditions. Data are normalized to AFDW. Each

point represents means ± SD, n = 20.

https://doi.org/10.1371/journal.pone.0248814.g003
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the sub-umbrella for PAM measurements, no differences in the NPQ (F = 5, p<0.05) were

observed, while ETR (F = 0.19, p>0.05) and Y (F = 6, p<0.01) showed significant differences

between the two irradiance conditions (S3 Fig).

Discussion

Cassiopea is well adapted to a highly seasonal environment like the Mediterranean Sea. In the

present study, for the first time, the potential autotrophic strategy of Cassiopea sp. adapted to a

eutrophic environment (i.e., harbors) has been assessed, and sights of early adaptation mecha-

nisms to oligotrophic coastal waters have been explored. In the forthcoming scenario of a

warmer Mediterranean Sea, to anticipate mitigation countermeasures against bio-invasions, it

is of paramount importance to predict invasiveness potential of non-indigenous species by

their ecological profiling through assessment of the key biological traits that may grant individ-

ual success in terms of growth and reproduction in a given ecosystem. Life in fluctuating envi-

ronments requires species to evolve traits and feedforward strategies [67] ensuring

ecophysiological plasticity, i.e., the ability to detect, predict, and adjust individual functioning,

to ultimately cope with a changing environment. So far, information on the regulatory func-

tioning of the photosynthetic machinery of the Cassiopea holobiome in response to light pene-

tration constraints is missing. Here, changes in light penetration were reproduced in

laboratory experiments to assess the physiological plasticity of the photosynthetic machinery

of Cassiopea jellyfish in response to a simulated transition from a harbor-typical high turbidity

condition to a meso-oligotrophic, coastal open water condition. In addition to its eurythermal

tolerance [68, 69], our results indicate that Cassiopea autotrophic system is highly adaptive.

Harbors and other anthropogenic sheltered areas can therefore act as initial settling terminals

for upside-down early founder jellyfishes; also, it is foreseeable that the progressive northward

displacement of the 15˚ isotherm will be paralleled by Cassiopea population spillover in the

surrounding natural habitats of the Western Mediterranean Sea, as it already happened into

the Levantine basin [47, 49].

Symbionts in Cassiopea specimens were identified as belonging to the Cladocopium genus

(formerly clade C), the taxon with the highest species richness and the most ecologically and

physiologically diversified within the family Symbiodiniaceae, hosted also by sponges, corals

and other cnidarians, flatworms and bivalves, as well as by protists (ciliates and foraminifer-

ans) [15]. In Cassiopea, Cladocopium is often associated to Symbiodinium and Breviolum
(reviewed by Djeghri et al. [23]). Incubation at the two different light conditions (irradiance

Fig 4. Rapid light curves (RLCs). (A) Relative electron transport rate (rETR) (B) Non-photochemical quenching (NPQ) (C) Yield of PSII (Y) of

Cladocopium-Cassiopea association at the different light conditions (RLP and ELP). Data expressed as mean value ± SD, n = 20.

https://doi.org/10.1371/journal.pone.0248814.g004
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200 vs 500 μmol photons m-1 s-1) did not produce a significant difference in symbiont abun-

dance (Fig 1). Our results are in line with the observations by Mortillaro et al. [25] who did not

detect significant change in symbiont density in jellyfish displaced from high (750 μmol pho-

tons m-1 s-1) to low light (~200 and ~75 μmol photons m-2 s-1) conditions, even after an incu-

bation period > 2 weeks. This suggest that symbiont cell division is a process too slow to

produce significant changes in symbiont abundances after only one-two week of exposure.

However, our Cassiopea specimens exposed to enhanced irradiance (ELP) showed a lower

content in chlorophyll a and c, and thus a lower Ci than in specimens exposed to reduced light

conditions (RLP). The chlorophyll pool increment in RLP compared to ELP condition did not

correspond to an enhanced photosynthetic capacity. These results demonstrate a highly effi-

cient acclimation potential and photosynthetic plasticity of Cladocopium in response to

changes in light conditions. Also, modifications in pigment concentration and composition

(including production of photoprotecting pigments) represent a consequence of an exposure

from hours to days to an enhanced light condition [70, 71] Our results therefore suggest that

the cell size and chlorophyll content of symbiotic Cladocopium undergo rapid changes with

short-time environmental variations. This ecophysiological plasticity represents a strong com-

petitive advantage in habitats with rapid variations in the environmental conditions, such as

harbors and sheltered waters, which may turn from turbid to transparent to turbid again

within few hours. Indeed, the shift from high to low irradiances causes an increased chloro-

phyll content to harvest a higher quantity of light [25]; at the opposite condition, in response

to enhanced light conditions, the photosynthetic pigment production is reduced to avoid

photoinhibition [72]. Chlorophyll contents per symbiont (Ci) found in Cassiopea jellyfish are

comparable to that observed in other Mediterranean cnidarians, such as the scleractinian Cla-
docora caespitosa and the octocoral gorgonian Eunicella singularis [73–75]. Also, the organic

matter content of Cassiopea, mainly represented by proteins, ranged between 27% and 33% of

the jellyfish dry weight, in line with values observed in other symbiotic jellyfish [76–79].

The different RLP or ELP irradiance conditions (200 vs 500 μmol photons m-1 s-1) did not

influence the photosynthetic rates of Cassiopea specimens (Fig 3). The analysis of photosyn-

thetic performances showed similar trends and photosynthetic parameters (Pmax, α, Ek)

between the two experimental groups. The saturation and the compensation irradiance levels

were higher than previously recorded by Welsh et al. [56] on Australian Cassiopea sp.; in our

experiment, in both RLP- and ELP- photosynthesis curves, saturation was reached at irradi-

ance of 800 μmol photons m-1 s-1 (instead of 400 μmol photons m-1 s-1; [56]) and compensa-

tion was reached at 196 and 238 μmol photons m-1 s-1 under PAR 200 and PAR 500,

respectively (instead of approx 50 μmol photons m-1 s-1; [56]). These variations might be due

to the shorter dark incubation time in our experiment (20 minutes) compared to a longer

incubation (overnight) in Welsh and colleagues [56]. With a longer dark incubation, as occur-

ring at night within a circadian cycle, the light harvesting capacity can be reduced due to peri-

odical oscillations of light-harvesting protein synthesis on the thylakoid membranes [80].

Photosynthesis to respiration ratio (P/R) can be used as proxy for autotrophic contribution

[81]. Our findings (PAR = 500, P/R = 1.4; PAR = 200, P/R = 1.9) are in accordance with the

values observed in C. andromeda (P/R = 1.4) [82] and in other zooxanthellate jellyfish such as

Linuche and Mastigias (P/R of 1.7 and 1.1–1.8 respectively) [31, 32]. Nevertheless, much higher

P/R values were found in Cassiopea sp. from Australian shallow waters (P/R of 2.04; [56]). In

all cases, P/R>1 indicates that the production of symbiotic photosynthates overcome the oxy-

gen consumption so that the autotrophic input may be used for sustaining both metabolic

maintenance costs and growth of the host, as the symbiont organic carbon production can sat-

isfy up to 169% of the host respiratory demand (CZAR) [20]. Rapid light-response curves

(RLCs) represent the short-term (few minutes) actual photosynthetic capacity of photosystem
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II [61]. The high photosynthesis rates of Cassiopea sp. are confirmed also by its photosynthetic

efficiency measured as relative electron transport rate (ETR), a relationship not always

observed in corals [83]. As showed in Fig 4A, RLCs showed no saturation of the ETR at maxi-

mum light natural condition (2000 μmol photons m-1 s-1), in line with the observation by Jant-

zen et al. [29], indicating there is no photoinhibition of photosystem II [84]. The unsaturation

of the ETR in our experiment is not fully reflected by the P-I curve, which indeed shows a satu-

ration point, reaching a plateau. The mismatch between respirometry and fluorometry has

been studied mostly for corals [75]; however, differences in the photosynthetic performances

of symbiotic anthozoans may be due to the ecological plasticity of the symbiont clades shared

among cnidarians, in tropical as well as temperate environment [85, 86]. In our experiment,

the respirometry- fluorometry relationship was not linear, except at moderate light. This result

indicates that less oxygen was produced per charge separation under high light. The nonlinear-

ity could be due to an under-estimation of the light-enhanced respiration rates of the animal

[87] or to non-photosynthetic electron transport [88]. Such process can be due to the develop-

ment of the Mehler cycle or photorespiration processes or to a cyclic flow of electrons around

PSII [89]. Cyclic electron transport could play an important role in photoprotection as it has

been observed for diatoms [90, 91]. Rapid light curves (RLCs), showed an increase with

increasing light intensities (both experimental conditions) in the non-photochemical quench-

ing (NPQ) which measures the thermal dissipation of the excess excitation energy. Conversely,

the quantum yield (Y) showed a decrease with increasing irradiances, underlying that the

incoming energy is channeled into the non-photochemical pathway. The same behavior was

observed in other Cnidaria from the Mediterranean Sea, such as Cladocora caespitosa [75];

however, further studies are essential to understand Cassiopea symbionts light tolerance

through relaxation kinetics.

Thus, no matter the acclimation period at low light level, in our experiment, Cassiopea jelly-

fish maintained high photosynthetic efficiency (confirmed by RLCs curves). This may be inter-

preted as the potential of the upside-jellyfish to easily withstand different light conditions, and

to colonize a wide range of shallow water environments. Therefore, it is likely that in habitats

with reduced light penetration conditions (e.g., harbors, marinas) a basal photosynthesis is still

carried out even if the main trophic strategy is based on heterotrophic resources. As a corollary

hypothesis, it is possible to speculate that summer surface heating of confined habitats, such as

harbors, may support introduction and establishment of warm-water affinity species, such as

Cassiopea. Within the current scenario of a warming Mediterranean Sea, the upside-down jel-

lyfish seem to possess suitable requisites to spill over from harbors into open coastal waters,

where high symbiont photosynthesis will be maintained also at increased irradiance levels.

Shifts between autotrophy and heterotrophy have been studied in temperate scleractians

corals and gorgonians. While corals seem to shift their nutrition mode depending on the sea-

son, gorgonians are able to maintain in parallel both strategies [73, 86]. In Cassiopea sp., only

the shift from autotrophy to heterotrophy has been studied so far [25], showing how photosyn-

thesis in an essential part of the autoecology of the species even at low light level (75 μmol pho-

tons m-1 s-1). Under that condition, no shift towards heterotrophy was observed (through fatty

acid transfer analysis) and shrinking of the medusa occurred. However, in order to better

understand the relative contribution of autotrophy and to what extent jellyfish can rely on het-

erotrophy, carbon translocation should be quantified by stable isotopes analyses (e.g., [92]).

Further translocation studies could shed light in the autotrophic-heterotrophic balance of the

species.

In conclusion, the photosynthetic performance of Cassiopea was high—no matter the accli-

mation–even in environments where photosynthesis is not well supported, such as turbid har-

bor habitats. Harbors as well as other artificial, coastal habitats, as coastal shrimp farms, may
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represent suitable environments for Cassiopea settlement and rapid growth by sustaining a

constant, heterotrophic jellyfish metabolism [51]. In the present work, we tested the ability of

Cassiopea sp.to react to a change towards meso-oligotrophic waters. Variable light exposure is

only one of the environmental factors that plays a role in the population establishment and

persistence. However, the ability to cope with fast changes in abiotic conditions, such as light

exposure and temperature, together with their dual nutrition mode make the upside-down

Cassiopea potential winners in a changing Mediterranean Sea scenario, to the detriment of less

tolerant taxa, such as indigenous species, which are already struggling with these sudden

changes.

Supporting information

S1 Fig. Chlorophyll and symbionts. (A) Chlorophyll a (B) Chl c2 and (C) Total chl and (D)

Symbionts count and (E) Chlorophyll content per symbiont of Cassiopea based on two differ-

ent light conditions (RLP and ELP). Data are normalized to DW. Data represent mean ± SD,

n = 20.

(TIF)

S2 Fig. Cladocopium-Cassiopea photobiological performance (net photosynthesis vs. irra-

diance). Data are normalized to AFDW. Each point represents means ± SD, n = 20. PAR

200R2 = 0.976; PAR 500 R2 = 0.976.

(TIF)

S3 Fig. Rapid light curves (RLCs). (A) Relative electron transport rate (rETR) (B) Non-photo-

chemical Quenching (NPQ) (C) Yield of PSII (Y) of Cassiopea at the different light conditions

(RLP and ELP) measured from the sub-umbrella. Data represent mean ± SD, n = 20.

(TIF)
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