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Abstract: Knowledge of the clutter rate is of critical importance in multi-target Bayesian tracking.
However, estimating the clutter rate is a difficult problem in practice. In this paper, an improved
multi-Bernoulli filter based on random finite sets for multi-target Bayesian tracking accommodating
non-linear dynamic and measurement models, as well as unknown clutter rate, is proposed for radar
sensors. The proposed filter incorporates the amplitude information into the state and measurement
spaces to improve discrimination between actual targets and clutters, while adaptively generating
the new-born object random finite sets using the measurements to eliminate reliance on prior random
finite sets. A sequential Monte-Carlo implementation of the proposed filter is presented, and
simulations are used to demonstrate the proposed filter’s improvements in estimation accuracy
of the target number and corresponding multi-target states, as well as the clutter rate.

Keywords: multi-Bernoulli filter; random finite set; multi-target tracking; amplitude information;
clutter rate estimation; sequential Monte-Carlo

1. Introduction

As a system, the radar has been widely applied in both civil and military areas due to its
all-weather, day and night capability compared with optical and infrared sensors [1]. One of its most
significant and important applications is target tracking. With the advancement of radar systems,
target tracking has focused on multi-target tracking. The objective of multi-target tracking is to jointly
estimate the unknown and time-varying number of targets and the corresponding states of multiple
targets from measurements. Since measurements produced by radars usually include dense clutters,
multi-target tracking becomes a challenging problem [2–4]. In many studies on the topic of multi-target
tracking, it is usually assumed that the clutter rate is known and time-invariant as a priori parameter.
However, in real-world applications, this parameter is often previously unknown and its value may be
time-varying as the environment changes. Therefore, the ability of tracking multiple targets with an
unknown clutter rate is very important in practice.

To solve this problem, some approaches for traditional multi-target tracking with unknown
clutter rate were proposed, such as the non-parametric Joint Probabilistic Data Association (JPDA) [5]
and the Joint Integrated Probabilistic Data Association (JIPDA) [6]. However, due to the necessary
process of associations between appropriate targets and measurements, the computational load of
the aforementioned techniques increases exponentially as the number of targets and measurements
increases. This indicates that they may be unsuitable in many situations, i.e., ground moving
targets tracking.

Mahler recently proposed a random finite set (RFS) approach, which provided an elegant and
mathematical Bayesian formulation to the multi-target tracking problem [4] and which could avoid
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associations. In particular, the development of the probability hypothesis density (PHD) [7] and
the cardinalized probability hypothesis density (CPHD) [8] filters, including sequential Monte-Carlo
(SMC) and Gaussian mixture (GM) implementations [9–11], as well as convergence analysis [12,13],
have verified the practicality of the RFS approach. Furthermore, multi-target tracking with unknown
clutter rate has been addressed with methods based on PHD and CPHD filters [14,15]. A closed form
GM implementation for linear scenarios is proposed in [15]. Although it is possible to extend this work
to general non-linear scenarios via SMC implementations, this solution may not achieve acceptable
performance due to the necessary clustering process, which has the drawback of being inherently
unreliable in state estimations.

A significant step towards addressing this problem was the multi-Bernoulli filter (MBerF), which
was itself based on RFS; it proposed by Mahler [4] and modified by Vo [16]. Recently, the MBerF
has been widely applied to audio and video tracking [17–19], sensor network tracking [20], and cell
tracking [21]. Compared with the SMC-PHD and SMC-CPHD filter, the key advantage of the SMC
implementation of MBerF is to avoid the additional clustering process, and achieve a more efficient
and reliable state estimation of multiple targets. Moreover, Vo proposed a novel MBerF with unknown
clutter rate (UCR-MBerF) which was inspired by the method used for the PHD/CPHD filters in [22].
However, this filter produced a large variance in the clutter rate and cardinality estimation and a bias
in both of them, which became noticeable as the clutter rate increased. Moreover, it was assumed that
the new-born object RFSs were known a priori. However, prior knowledge of new-born object RFSs
could not be achieved in practice.

In this paper, we propose an improved UCR-MBerF, which incorporates amplitude information
in the state and measurement spaces. The proposed filter is abbreviated as UCR-MBerF-AI. Our major
innovations are given below:

‚ We derive novel prediction and update equations which augment the state and measurement
spaces with the amplitude information. In radar sensors, measurements not only include the
object’s position, but also contain information about the signal’s amplitude. The signal amplitude
from an actual target is typically stronger than that of clutter. Therefore, it provides valuable
information, which is useful to determine whether the measurement is from an actual target or
from clutter.

‚ We adaptively generate the new-born object RFSs using the measurements so as to eliminate
reliance of the prior new-born object RFSs.

‚ We carry out the SMC implementation of the proposed filter for general non-linear multi-target
tracking scenarios.

The structure of this paper is as follows: a RFS model with amplitude for radar sensors with
unknown clutter rate is introduced in Section 2. Section 3 presents an improved MBerF without
the need of the prior clutter rate and new-born object RFSs assumptions, as well as a generic SMC
implementation of the proposed filter for non-linear multi-target scenarios. Section 4 shows the
numerical simulations with a non-linear multi-target scenario. Conclusions are finally given in
Section 5.

2. RFS Model with Amplitude Information for Radar Sensors under Unknown Clutter Rate

In this section, we show how amplitude information is incorporated into an RFS model that
accommodates unknown clutter rate scenarios. At the same time, we present the likelihood functions
for the clutter and actual target by adopting radar amplitude models.

2.1. RFS Model with Amplitude Information for Unknown Clutter Rate

Suppose that there are Npkq actual targets with states xk,1 . . . , xk,Npkq and Mpkq observations with
measurements zk,1 . . . , zk,Mpkq at time k. The multi-target states and observations are then represented

by Xk “
!

xk,1 . . . , xk,Npkq

)

and Zk “
!

zk,1 . . . , zk,Mpkq

)

, respectively [4]. In this paper, we consider an
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augmented state which includes kinematic rx, parameter A of amplitude information and label u for
actual targets and clutters, i.e., x “ prx, A, uq, and each measurement contains position rz and amplitude
r of the return signal, i.e., z “ prz, rq.

Given a multi-target state Xk´ 1 at time k´ 1, state Xk is represented as the union of surviving
objects that survive from Xk´1 with the survival probability ps,k pxq, and new-born objects that appear
at time k. In order to distinguish new-born objects from the surviving objects, the label β is used, i.e.,

Xk “
Ť

β“0,1
Xk|k´1,β. Given Xk, the measurements Zk are written as Zk “

˜

Ť

xPXk

ř

pxq

¸

, where
ř

pxq is

the RFS which has a probability pD,k pxq gk pz |x q of containing a measurement tzu or is empty with
probability 1´ pD,k pxq [4]. Note that the objects contain clutters and actual targets.

In the following, it is assumed that clutters and actual targets are statistically independent, while
arbitrary functions defined on the state space will be denoted by f prx, A, uq “ fu prx, Aq. The convention
that u “ 1 denotes actual targets and u “ 0 denotes clutters as well as β “ 1 denotes surviving objects
and β “ 0 denotes new-born objects will be adopted throughout this paper.

2.2. Amplitude Likelihoods for Radar Sensors

Let us assume that the amplitude of the return signal is independent of the object’s kinematic
state. Then, the likelihood gk pz |x q is given by:

gk pz |x q “ gu,k prz |rx q gu,k pr |A q (1)

In this paper, we adopt the Rice amplitude model, in which the probability densities of the
amplitude of clutter and actual target before threshold detector are represented as in [1]:

$

’

’

’

&

’

’

’

%

g0,k pr |A q “
r

ψ2 exp
ˆ

´
r2

2ψ2

˙

r ě 0

g1,k pr |A q “
r

ψ2 I0

ˆ

rA
ψ2

˙

exp
ˆ

´
r2 ` A2

2ψ2

˙

r ě 0

(2)

where I0 p¨q is the modified Bessel function, ψ is the standard deviation of the noise.
In the radar system, a typical detection process is to find local maxima among all measurements

followed by thresholding at a certain level τ [1]. The flow diagram of signal processing sequence for a
radar receiver is shown in Figure 1.
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Figure 1. Flow diagram of signal processing for a typical radar receiver. 
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Figure 1. Flow diagram of signal processing for a typical radar receiver.

If the amplitude likelihood functions for the measurements which exceed the detection threshold
are denoted as gτ

0,k pr |A q and gτ
1,k pr |A q, then we have:

$

’

’

’

&

’

’

’

%

gτ
0,k pr |A q “

g0,k pr |A q
pτ

FA,k

gτ
1,k pr |A q “

g1,k pr |A q
pτ

D,k

(3)
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where:
$

’

’

’

’

’

&

’

’

’

’

’

%

pτ
FA,k “

8
ş

τ
g0,k pr |A q dr “ exp

ˆ

´
τ2

2ψ2

˙

pτ
D,k “

8
ş

τ
g1,k pr |A q dr “ Q

»

–

d

A2

ψ2 ,

g

f

f

e2ln

˜

1
pτ

FA,k

¸

fi

fl

(4)

are the probabilities of false alarm and detection. Q rα, βs “
8
ş

β

ζ I0 pαζqexp
`

´
`

α2 ` ζ2˘{2
˘

dζ is the

MarcumQ function and can be computed by numerical integration offline.

3. UCR-MBerF-AI and SMC Implementation

In this section, we derive an improved UCR-MBerF by incorporating the amplitude information
into a single object state and the measurement and adaptively generate the new-born object RFSs. In
Section 3.1, we describe the UCR-MBerF-AI, while further on, in Section 3.2, we present a detailed
SMC implementation of the proposed UCR-MBerF-AI.

3.1. UCR-MBerF-AI

The UCR-MBerF-AI can be derived from the UCR-MBerF with a particular chosen state and
measurement space. This approach is described below. First, analogous to the UCR-MBerF, an
unknown clutter rate is accommodated by modelling individual clutters which have their own separate
models for transitions, detections and likelihoods, as well as formation and dissolution. Second,
we incorporate amplitude information into the state and measurement variables and generate the
augmented variables which were introduced in Section 2.1. However, the UCR-MBerF assumes that
the new-born object RFSs are known a priori, which cannot be achieved in practice. To solve this
problem, we propose a method inspired by [23], namely the formulation of the new-born object RFSs
using measurement information. The UCR-MBerF-AI is fundamentally different to the approach
proposed in [23], so it solves problems that are not possible to solve with the latter. The prediction and
update step of the UCR-MBerF-AI are shown as follows:

3.1.1. UCR-MBerF-AI Prediction

The posterior multi-target density (Po-MTD) for MBerF is approximated by a finite and

time-varying number of Bernoulli RFSs
!´

rpiqk , ppiqk

¯)Mk

i“1
where rpiqk and ppiqk denote the existence

probability and the state probability density for the ith Bernoulli components, respectively [16]. Then,

at time k´ 1, the Po-MTD can be written as πk´1 “
!´

rpiqk´1, ppiqu,k´1

¯)Mk´1

i“1
.

As described in Section 2.1, the predicted objects include the new-born objects and surviving
objects. Then, the predicted multi-target density (Pr-MTD) is given by the union of surviving and
new-born Bernoulli components [22] and is calculated as follows:

πk|k´1 “
ď

β“0,1

!´

rpiqk|k´1,β, ppiqu,k|k´1,β

¯)Mk|k´1,β

i“1
(5)

where:
rpiqk|k´1,β“1 “ rpiqk´1

ÿ

u“0,1

A

ppiqu,k´1, pS,u,k

E

ppiqu,k|k´1,β“1 p
rx, Aq “

A

fu,k|k´1 prx, A |¨, ¨ q , ppiqu,k´1 pS,u,k

E

A

ppiqu,k´1, pS,u,k

E
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!´

rpiqk|k´1,β“0, ppiqu,k|k´1,β“0

¯)Mk|k´1,β“0

i“1
are the new-born object RFSs, x¨, ¨y denotes an inner product

fu,k|k´1

´

rx, A
ˇ

ˇ

ˇ

rζ, ς
¯

is the single object transition density given a previous state
´

rζ, ς
¯

, while pS,u,kp
rζ, ςq

is an object’s probability of survival given a previous state
´

rζ, ς
¯

.

3.1.2. UCR-MBerF-AI Update

At time k, the new-born objects are driven by measurements and are always detected, so the
probability of detection is always 1. According to the analysis in Section 2.2, for surviving clutter
and actual targets, the probability of detection only depends on the threshold τ and parameter A of
amplitude information, then the probability of detection is given by:

pD,u,k,β“1 prx, Aq “

$

&

%

pτ
D,k u “ 1

pτ
FA,k u “ 0

(6)

If the Pr-MTD is calculated in the predict step as shown in Equation (5), then for a set of receiving
measurements Zk, the Po-MTD is written as a union of legacy and updated components for the
new-born and surviving objects, respectively [22]. However, since the probability of detection is
always 1 for new-born objects, the legacy components for new-born objects can be disregarded.
Consequently, the final form can be written as:

πk “
!´

rpiqL,k, ppiqL,u,k

¯)ML
k

i“1

ď

 `

rU,k pzq , pU,u,k p¨; zq
˘(

zPZk
(7)

where:
ML

k “ Mk|k´1,β“1

rpiqL,k “
ÿ

u“0,1

rpiqL,u,k

rpiqL,u,k “
rpiqk|k´1,β“1

A

ppiqu,k|k´1,β“1, 1´ pD,u,k,β“1

E

1´ rpiqk|k´1,β“1

ř

u1“0,1

A

ppiqu,k|k´1,β“1, 1´ pD,u1,k,β“1

E

ppiqL,u,k prx, Aq “

´

1´ pD,u,k,β“1 prx, Aq
¯

ppiqu,k|k´1,β“1 p
rx, Aq

ř

u1“0,1

A

ppiqu1,k|k´1,β“1, 1´ pD,u1,k,β“1

E

rU,k pzq “
ÿ

u“0,1

rU,u,k pzq

rU,u,k pzq “

ř

β“0,1

řMk|k´1,β
i“1

rpiqk|k´1,β

´

1´ rpiqk|k´1,β

¯A

ppiqu,k|k´1,β, gu,k prz |rx q gτ
u,k pr |A q pD,u,k,β

E

´

1´ rpiqk|k´1,β

ř

u1“0,1

A

ppiqu1,k|k´1,β, pD,u1,k,β

E¯2

ř

β“0,1

řMk|k´1,β
i“1

rpiqk|k´1,β

ř

u1“0,1

A

ppiqu1,k|k´1,β, gu1,k prz |rx q gτ
u1,k pr |A q pD,u1,k,β

E

1´ rpiqk|k´1,β

ř

u1“0,1

A

ppiqu1,k|k´1,β, pD,u1,k,β

E

pU,u,k prx, A; zq “

ř

β“0,1

řMk|k´1,β
i“1

rpiqk|k´1,β
´

1´ rpiqk|k´1,β

¯ ppiqu,k|k´1,β p
rx, Aq gu,k prz |rx q gτ

u,k pr |A q pD,u,k,β prx, Aq

ř

β“0,1

ř

u1“0,1
řMk|k´1,β

i“1

rpiqk|k´1,β
´

1´ rpiqk|k´1,β

¯

A

ppiqu1,k|k´1,β, gu1,k prz |rx q gτ
u1,k pr |A q pD,u1,k,β

E
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The amplitude likelihoods gτ
u,k pr |A q are given by Equation (3).

Therefore, the UCR-MBerF-AI is different from the original UCR-MBerF in the sense that it
not only considers the amplitude information as an augmented variable to improve discrimination
between actual targets and clutters, but it also adopts a measurement-driven approach to adaptively
generate the new-born object RFSs.

3.2. SMC Implementation

In this section, we present a SMC implementation of the proposed UCR-MBerF-AI. This can
accommodate non-linear dynamic and measurement models. The convergence results for this SMC
implementation still satisfy the convergence results for the conventional MBer filter in [24]. The SMC
implementation is based on the sampling importance resampling (SIS) technique, where the transition
density fu,k|k´1

´

rx, A
ˇ

ˇ

ˇ

rζ, ς
¯

is used as the importance density. We assume the measurements include
range and bearing. The prediction, update, resample, multi-target state and clutter rate estimation
steps are given below:

3.2.1. SMC Prediction

If at time k ´ 1, the Po-MTD πk´1 “

!´

rpiqk´1, ppiqu,k´1

¯)Mk´1

i“1
is given, and each ppiqu,k´1,

i “ 1, . . . , Mk´1,, is written as ppiqu,k´1prx, Aq “
Lpiqu,k´1
ř

j“1
wpi,jqu,k´1δ

prxpi,jqu,k´1,Api,jqu,k´1q
prx, Aq, then the surviving

components of Equation (5) can be calculated as follows:

rpiqk|k´1,β“1 “ rpiqk´1

ÿ

u“0,1

Lpiqu,k´1
ÿ

j“1

wpi,jqu,k´1 pS,u,kprx
pi,jq
u,k´1, Api,jqu,k´1q (8)

ppiqu,k|k´1,β“1 p
rx, Aq “

Lpiqu,k´1
ÿ

j“1

rwpi,jqu,k|k´1,β“1δ
prxpi,jqu,k|k´1,β“1,Api,jqu,k|k´1,β“1q

prx, Aq (9)

where:

rwpi,jqu,k|k´1,β“1 “
wpi,jqu,k´1 pS,u,kprx

pi,jq
u,k´1, Api,jqu,k´1q

ř

u1“0,1

Lpiqu1 ,k´1
ř

j“1
wpi,jqu1,k´1 pS,u,kprx

pi,jq
u1,k´1, Api,jqu1,k´1q

(10)

´

rxpi,jqu,k|k´1,β“1, Api,jqu,k|k´1,β“1

¯

„ fu,k|k´1

´

¨

ˇ

ˇ

ˇ

rxpi,jqu,k´1, Api,jqu,k´1

¯

Since the new-born objects given in Equation (5) could appear anywhere with equal probability in
the state space, the new-born object RFSs must cover the entire state space. Although it is possible to
cover the entire state space with the particles for the SMC-UCR-MBerF-AI, this approach is not
possible in a practical scenario because a large number of particles would be necessary for the
algorithm to work properly. Instead, we utilize the measurements to adaptively generate new-born
object RFSs. We also find that the measurements near the predicted states X̂k|k´1 of estimated

multi-target states X̂k´1 “

"

x̂p1qk´1, x̂p2qk´1, ¨ ¨ ¨ , x̂pN̂k´1q

k´1

*

are not likely to be obtained from the new-born

object, so we remove measurements located near X̂k|k´1, and obtain the new measurement-driven set

ZΓ,k “
!

zp1qk , zp2qk , ¨ ¨ ¨ , zpΓkq
k

)

.

Finally, the new-born components of Equation (5) can be calculated as follows:

rpiqk|k´1,β“0 “
ÿ

u“0,1

rpiqu,k,β“0 (11)
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ppiqu,k|k´1,β“0 p
rx, Aq “

Npiqb
ÿ

j“1

rwpi,jqu,k|k´1,β“0δ
prxpi,jqu,k|k´1,β“0,Api,jqu,k|k´1,β“0q

prx, Aq (12)

where

rpiqu,k,β“0 “ rpiqu,β“0 “
νb

k
V

rwpi,jqu,k|k´1,β“0 “
1

2Npiqb
´

rxpi,jqu,k|k´1,β“0, Api,jqu,k|k´1,β“0

¯

„ bu,k
`

¨
ˇ

ˇZΓ,k
˘

The parameter Npiqb is the number of particles per new-born object, bu,k
`

¨
ˇ

ˇZΓ,k
˘

is new-born object
density given a set of measurements. The parameter νb

k is the expected number of new-born objects.
The parameter V is the volume of the measurement space.

3.2.2. SMC Update

If at time k, the Pr-MTD Equation (5) is given, and each ppiqu,k|k´1,β, i “ 1, . . . , Mk|k´1,β, is written

as ppiqu,k|k´1,βp
rx, Aq “

Lpiqu,k|k´1,β
ř

j“1
wpi,jqu,k|k´1,βδ

prxpi,jqu,k|k´1,β ,Api,jqu,k|k´1,βq
prx, Aq, then the updated Po-MTD Equation (7)

can be calculated as shown below:
rpiqL,k “

ÿ

u“0,1

rpiqL,u,k (13)

rpiqL,u,k “ rpiqk|k´1,β“1

1´ η
piq
L,u,k,β“1

1´ rpiqk|k´1,β“1

ř

u1“0,1
η
piq
L,u1,k,β“1

(14)

ppiqL,u,kprx, Aq “

Lpiqu,k|k´1,β“1
ÿ

j“1

rwpi,jqL,u,kδ
prxpi,jqu,k|k´1,β“1,Api,jqu,k|k´1,β“1q

prx, Aq (15)

rU,k pzq “
ÿ

u“0,1

rU,u,k pzq (16)

rU,u,k pzq “

ř

β“0,1

řMk|k´1,β
i“1

rpiqk|k´1,β

´

1´ rpiqk|k´1,β

¯

η
piq
U,u,k,β

´

1´ rpiqk|k´1,β

ř

u1“0,1 η
piq
L,u1,k,β

¯2

ř

β“0,1

řMk|k´1,β
i“1

rpiqk|k´1,β

ř

u1“0,1 η
piq
U,u1,k,β

1´ rpiqk|k´1,β

ř

u1“0,1 η
piq
L,u1,k,β

(17)

pU,u,k prx, A; zq “
ÿ

β“0,1

Mk|k´1,β
ÿ

i“1

Lpiqu,k|k´1,β
ÿ

j“1

rwpi,jqU,u,k,βδ
prxpi,jqu,k|k´1,β ,Api,jqu,k|k´1,βq

prx, Aq (18)

where:

η
piq
L,u,k,β“1 “

Lpiqu,k|k´1,β“1
ÿ

j“1

wpi,jqu,k|k´1,β“1 pD,u,k,β“1prx
pi,jq
u,k|k´1,β“1, Api,jqu,k|k´1,β“1q
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rwpi,jqL,u,k “
wpi,jqu,k|k´1,β“1p1´ pD,u,k,β“1prx

pi,jq
u,k|k´1,β“1, Api,jqu,k|k´1,β“1qq

ř

u1“0,1

Lpiqu,k|k´1,β“1
ř

j“1
wpi,jqu1,k|k´1,β“1p1´ pD,u1,k,β“1prx

pi,jq
u1,k|k´1,β“1, Api,jqu1,k|k´1,β“1qq

(19)

η
piq
L,u,k,β“0 “

Lpiqu,k|k´1,β“0
ÿ

j“1

wpi,jqu,k|k´1,β“0

η
piq
U,u,k,β“1pzq “

Lpiqu,k|k´1,β“1
ř

j“1
wpi,jqu,k|k´1,β“1gu,k

´

rz
ˇ

ˇ

ˇ

rxpi,jqu,k|k´1,β“1

¯

gτ
u,k

´

r
ˇ

ˇ

ˇ
Api,jqu,k|k´1,β“1

¯

pD,u,k,β“1prx
pi,jq
u,k|k´1,β“1, Api,jqu,k|k´1,β“1q

η
piq
U,u,k,β“0pzq “

Lpiqu,k|k´1,β“0
ÿ

j“1

wpi,jqu,k|k´1,β“0
1

2πσu,rσu,θ
gτ

u,k

´

r
ˇ

ˇ

ˇ
Api,jqu,k|k´1,β“0

¯

rwpi,jqU,u,k,β“1 “

wpi,jqu,k|k´1,β“1

rpiqu,k|k´1,β“1

1´ rpiqu,k|k´1,β“1

gu,k

´

rz
ˇ

ˇ

ˇ

rxpi,jqu,k|k´1,β“1

¯

gτ
u,k

´

r
ˇ

ˇ

ˇ
Api,jqu,k|k´1,β“1

¯

pD,u,k,β“1prx
pi,jq
u,k|k´1,β“1, Api,jqu,k|k´1,β“1q

ř

β“0,1

ř

u1“0,1

Mk|k´1,β
ř

i“1

rpiqu1 ,k|k´1,β

1´ rpiqu1 ,k|k´1,β

η
piq
U,u1 ,k,βpzq

(20)

rwpi,jqU,u,k,β“0 “

wpi,jqu,k|k´1,β“0

rpiqu,k|k´1,β“0

1´ rpiqu,k|k´1,β“0

1
2πσu,rσu,θ

gτ
u,k

´

r
ˇ

ˇ

ˇ
Api,jqu,k|k´1,β“1

¯

ř

β“0,1

ř

u1“0,1

Mk|k´1,β
ř

i“1

rpiqu1,k|k´1,β

1´ rpiqu1,k|k´1,β

η
piq
U,u1,k,βpzq

(21)

Here, σu,r and σu,θ are the standard deviations of the range and bearing noise, respectively. Note

gu,k

´

rz
ˇ

ˇ

ˇ

rxpi,jqu,k|k´1,β“0

¯

“
1

2πσu,rσu,θ
due to the measurement-driven new-born objects.

3.2.3. Resampling

Similar to the UCR-MBerF [22], the number of particles for each Bernoulli component is
re-allocated in scale to its existence probability, i.e., Lpiqk “ max

´

rpiqk Lmax, Lmin

¯

. In order to reduce
the number of Bernoulli components, components with existence probability below a threshold G
are discarded.

3.2.4. Multi-Target State and Clutter Rate Estimation

Analogous to the UCR-MBerF [22], the estimated number of actual targets is N̂k “
řMk

i“1 rpiq1,k.

The estimated individual actual target states X̂k “
!

x̂p1qk , x̂p2qk , ¨ ¨ ¨ , x̂pN̂kq
k

)

are obtained from the

means of the corresponding posterior density x̂piqk “
řLpiq1,k

j“1 wpi,jq1,k rxpi,jq1,k . The estimated clutter rate is

λ̂c,k “
řMk

i“1 rpiq0,k
řLpiq0,k

j“1 wpi,jq0,k ppi,jqD,0,k.

The processing steps of the proposed SMC-UCR-MBerF-AI are given in Algorithm 1.
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Algorithm 1. Processing Steps of the SMC-UCR-MBerF-AI
Initialization:

Let π0 “
!´

rpiq0 , ppiqu,0

¯)M0

i“1
and ppiqu,0prx, Aq :“

!

wpi,jqu,0 ,
´

rxpi,jqu,0 , Api,jqu,0

¯)Lpiqu,0

j“1
represent the initial state.

Input:

1. Given πk´1 “
!´

rpiqk´1, ppiqu,k´1

¯)Mk´1

i“1
, ppiqu,k´1prx, Aq :“

!

wpi,jqu,k´1,
´

rxpi,jqu,k´1, Api,jqu,k´1

¯)Lpiqu,k´1

j“1
, the

estimated multi-target states X̂k´ 1 and the current measurement set Zk,

Prediction:

2. Compute the surviving Bernoulli components
!´

rpiqk|k´1,β“1, ppiqu,k|k´1,β“1

¯)Mk|k´1,β“1

i“1
.

(a) Compute the existence probability rpiqk|k´1,β“1 using Equation (8), for i “ 1, 2, ¨ ¨ ¨ , Mk´ 1.

(b) Compute the weight rwpi,jqu,k|k´1,β“1 using Equation (10), for j “ 1, 2, ¨ ¨ ¨ , Lpiqk´1,
i “ 1, 2, ¨ ¨ ¨ , Mk´ 1 and u “ 0, 1.

(c) Draw the particle
´

rxpi,jqu,k|k´1,β“1, Api,jqu,k|k´1,β“1

¯

„ fu,k|k´1

´

¨

ˇ

ˇ

ˇ

rxpi,jqu,k´1, Api,jqu,k´1

¯

, for

j “ 1, 2, ¨ ¨ ¨ , Lpiqk´1, for i “ 1, 2, ¨ ¨ ¨ , Mk´ 1 and u “ 0, 1.

3. Compute the new-born Bernoulli components
!´

rpiqk|k´1,β“0, ppiqu,k|k´1,β“0

¯)Mk|k´1,β“0

i“1
.

(a) Remove measurements near the predicted states X̂k|k´1 of the estimated multi-target states

X̂k´ 1 and obtain the rest of the measurements ZΓ,k “
!

zp1qk , zp2qk , ¨ ¨ ¨ , zpΓkq
k

)

, Mk|k´1,β“0 “

Γk.

(b) Compute the existence probability rpiqk|k´1,β“0 “
ř

u“0,1
rpiqu,k,β“0, for i “ 1, 2, ¨ ¨ ¨ , Γk, and

u “ 0, 1.

(c) Compute the weight rwpi,jqu,k|k´1,β“0 “
1

2Npiqb

for j “ 1, 2, ¨ ¨ ¨ , Npiqb , for i “ 1, 2, ¨ ¨ ¨ , Γk and

u “ 0, 1.
(d) Draw the particle

´

rxpi,jqu,k|k´1,β“0, Api,jqu,k|k´1,β“0

¯

„ bu,k
`

¨
ˇ

ˇZΓ,k
˘

, for j “ 1, 2, ¨ ¨ ¨ , Nb, for
i “ 1, 2, ¨ ¨ ¨ , Γk and u “ 0, 1.

4. Using the union of the Bernoulli components, obtain the Pr-MTD as

πk|k´1 “
Ť

β“0,1

!´

rpiqk|k´1,β, ppiqu,k|k´1,β

¯)Mk|k´1,β

i“1

Update:

5. Compute the legacy Bernoulli components
!´

rpiqL,k, ppiqL,u,k

¯)ML
k

i“1

(a) Compute the existence probability rpiqL,k “
ř

u“0,1
rpiqL,u,k via Equation (14), for i “ 1, 2, ¨ ¨ ¨ , ML

k .

(b) Compute the weight rwpi,jqL,u,k|k via Equation (19), for j “ 1, 2, ¨ ¨ ¨ , Lpiqu,k|k´1,β“1, for

i “ 1, 2, ¨ ¨ ¨ , ML
k and u “ 0, 1.

(c) Obtain the particle
´

rxpi,jqL,u,k|k, Api,jqL,u,k|k

¯

“

´

rxpi,jqu,k|k´1,β“1, Api,jqu,k|k´1,β“1

¯

, for

j “ 1, 2, ¨ ¨ ¨ , Lpiqu,k|k´1,β“1, for i “ 1, 2, ¨ ¨ ¨ , ML
k and u “ 0, 1.

30393



Sensors 2015, 15, 30385–30402

Algorithm 1. Processing Steps of the SMC-UCR-MBerF-AI

6. Compute the updated Bernoulli components
 `

rU,k pzq , pU,u,k p¨; zq
˘(

zPZk

(a) Compute the existence probability rU,k pzq “
ř

u“0,1
rU,u,k pzq via Equation (17), for

i “ 1, 2, ¨ ¨ ¨ , |Zk|.

(b) Compute the weight rwpi,jqU,u,k|k,β via Equations (20) and (21), for j “ 1, 2, ¨ ¨ ¨ , Lpiqu,k|k´1,β, for

i “ 1, 2, ¨ ¨ ¨ , Mk|k´1,β, β “ 0, 1 and u “ 0, 1. Obtain the weight rwpi,jqU,u,k|k, “
Ť

β“0,1
rwpi,jqU,u,k|k,β.

(c) Obtain the particle
´

rxpi,jqU,u,k|k, Api,jqU,u,k|k

¯

“
Ť

β“0,1

´

rxpi,jqu,k|k´1,β, Api,jqu,k|k´1,β

¯

, for

j “ 1, 2, ¨ ¨ ¨ , Lpiqu,k|k´1,β, for i “ 1, 2, ¨ ¨ ¨ , Mk|k´1,β and u “ 0, 1.

7. Using the union of the Bernoulli components, obtain the Po-MTD as

πk “
!´

rpiqL,k, ppiqL,u,k

¯)ML
k

i“1

Ť
 `

rU,k pzq , pU,u,k p¨; zq
˘(

zPZk

Resample:

8. Discard the Bernoulli components with existence probability below a threshold G and obtain

πk “
!´

rpiqk , ppiqu,k

¯)Mk

i“1
, and ppiqu,kprx, Aq :“

!

rwpi,jqu,k|k,
´

rxpi,jqu,k|k, Api,jqu,k|k

¯)Lpiqu,k|k

j“1
.

9. Resample Lpiqk “ max
´

rpiqk Lmax, Lmin

¯

times from
!

rwpi,jqu,k|k,
´

rxpi,jqu,k|k, Api,jqu,k|k

¯)Lpiqu,k|k

j“1
to obtain

!

wpi,jqu,k ,
´

rxpi,jqu,k , Api,jqu,k

¯)Lpiqu,k

j“1
with weights wpi,jqu,k “ 1{Lpiqk and Lpiqu,k “ Lpiqk .

Multi-target state and clutter rate estimation:

10. Estimate number of actual targets N̂k “
řMk

i“1 rpiq1,k

11. Estimate actual targets’ state X̂k “
!

x̂p1qk , x̂p2qk , ¨ ¨ ¨ , x̂pN̂kq
k

)

with x̂piqk “
řLpiq1,k

j“1 wpi,jq1,k rxpi,jq1,k .

12. Estimate clutter rate λ̂c,k “
řMk

i“1 rpiq0,k
řLpiq0,k

j“1 wpi,jq0,k ppi,jqD,0,k.

Output:

πk “
!´

rpiqk , ppiqu,k

¯)Mk

i“1
, ppiqu,kprx, Aq :“

!

wpi,jqu,k ,
´

rxpi,jqu,k , Api,jqu,k

¯)Lpiqu,k

j“1
, X̂k, λ̂c,k

4. Simulation

In this section, we demonstrate the performance of the proposed UCR-MBerF-AI using a
non-linear multi-target tracking scenario. We also compare it with the UCR-MBerF and the PHD filter
for unknown clutter rate with amplitude information (UCR-PHDF-AI), whose new-born object RFSs
are known a priori. The Optimal Subpattern Assignment (OSPA) metric [25] is used to evaluate the
filters’ performance.

4.1. Simulation Scenario

A non-linear multi-target scenario with the unknown clutter rate was used to demonstrate the
performance of the UCR-MBerF-AI. The observation region is a half disc with a radius of 2000 m and
has a total of ten targets. It is assumed that all of the targets have the same signal-to-noise ratio (SNR),

defined in dB as SNR “ 10log
ˆ

A2

2ψ2

˙

. Figure 2 shows the targets’ true trajectories, where the start

and stop positions of each trajectory are indicated by the symbols ∇ and ˝, respectively.
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Figure 2. True target trajectories.

4.1.1. Actual Target Model

The actual target motion follows a coordinated turn model. The dynamics of an actual target’s
state are written as:

#

rxk “ F1pωk´1qrxk´1 ` G1wk´1

Ak “ Ak´1 ` Tδk´1

(22)

where rxk “

”

px,k,
.
px,k, py,k,

.
py,k, ωk

ıT
contains the actual target’s position, velocity and turn

rate, the transition matrix is F1pωq “

»

—

—

—

—

—

—

—

–

1
sinωT

ω
0 ´

1´ cosωT
ω

0

0 cosωT 0 ´sinωT 0

0
1´ cosωT

ω
1

sinωT
ω

0

0 sinωT 0 cosωT 0
0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, process noise

matrix is: G1 “

»

—

—

—

—

—

—

—

—

–

T2

2
0 0

T 0 0

0
T2

2
0

0 T 0
0 0 T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, the process noise distributions follow wk´1 „ N p¨; 0, Q1q

Q1 “ diag
´”

σ2
1,w, σ2

1,w, σ2
1,ω

ı¯

and δk´1 „ N
´

¨; 0, σ2
1,δ

¯

with σ1,w “ 5 m{s2, σ1,ω “ π{180 rad{s
and σ1,δ “ 3, while the sampling time is T “ 1. Then, we have f1,k|k´1 prxk, Ak |rxk´1, Ak´1 q “

N
´

rxk; rxk´1, G1Q1G1
T
¯

N
´

Ak; Ak´1, σ2
1,δ

¯

. The survival probability of an actual target is fixed at
pS,1,k “ 0.98. The measurements of actual targets include bearing, range and amplitude with
likelihoods given by:

g1,k przk |rxk q “ N
`

rzk; m
rz,1,k prxkq , R

rz,1,k
˘

(23)

gτ
1,k prk |Ak q “

rk
ψ2 I0

ˆ

rk Ak
ψ2

˙

exp

˜

´
rk

2 ` Ak
2

2ψ2

¸

Q

»

–

d

Ak
2

ψ2 ,

g

f

f

e2ln

˜

1
pτ

FA,k

¸

fi

fl

(24)

where m
rz,1,k prxq “

”

arctan
´

px,k{py,k

¯

,
b

p2
x,k ` p2

y,k

ı

and R
rz,1,k “ diag

ˆ

”

σ2
1,θ , σ2

1,r

ıT
˙

with

σ1,θ “ π{180 rad, σ1,r “ 5 m and ψ “ 1. For every measurement zpiqk P ZΓ,k, the new-born actual
target particle position is given by [23]:

$

’

&

’

%

ppi,jqx,k “ px,s `
´

zpiqk r2s ` σ1,rν
pjq
1

¯

cos
´

zpiqk r1s ` σ1,θν
pjq
2

¯

ppi,jqy,k “ py,s `
´

zpiqk r2s ` σ1,rν
pjq
1

¯

sin
´

zpiqk r1s ` σ1,θν
pjq
2

¯

(25)
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where j “ 1, . . . , Npiqb , zpiqk r1s and zpiqk r2s are the bearing and range measurement respectively, and

ν
pnq
1 , ν

pnq
2 „ N p¨; 0, 1q.

`

px,s, py,s
˘

is the position of the sensor. The particle velocities follow
.
ppi,jqx,k ,

.
ppi,jqy,k „

N
`

¨; 0, σ2
V
˘

, where σV “ 50 m/s, the particle turn rates are distributed as ω
pi,jq
1,k ,„ N

`

¨; 0, σ2
ω

˘

, with

σω “ 0.1 rad/s, while the particle amplitudes follow Api,jqk ,„ N
`

¨; mA, σ2
δ

˘

, where σδ “ 5, mA “
b

2ψ2 ˚ 10SNR{10. The expected number of new-born actual targets at each scan is νb
k “ 0.32.

4.1.2. Clutter Model

The clutters are only modelled by their positions rxk “
”

px,k, py,k

ıT
, while their turn rates and

velocities are ignored and parameter Ak are set to zero. The positions of clutters follow a random
walk model, with a transition density given by f0,k|k´1 prxk |rxk´1 q “ N

´

rxk; rxk´1, Px,0,k|k´1

¯

, where

Px,0,k|k´1 “ diag
´”

σ2
x , σ2

y

ı¯

with σx “ 1000 m and σy “ 500 m. The survival probability of clutters is
fixed at pS,0,k “ 0.90. The measurements of clutters are also include bearing, range and amplitude.
Their corresponding likelihoods are given by:

g0,k przk |rxk q “ N
`

rzk; m
rz,0,k prxkq , R

rz,0,k
˘

(26)

gτ
0,k prk |Ak q “

rk
ψ2 exp

ˆ

τ2 ´ rk
2

2ψ2

˙

(27)

where m
rz,0,k prxq “

”

arctan
´

px,k{py,k

¯

,
b

p2
x,k ` p2

y,k

ı

and R
rz,0,k “ diag

ˆ

”

σ2
0,θ , σ2

0,r

ıT
˙

with

σ0,θ “ 20π{180 rad, σ0,r “ 400 m. The clutter birth process is similar that of the actual targets, but we
only consider their position.

4.1.3. Filter Parameters

In the proposed SMC implementation of the UCR-MBerF-AI, the maximum and minimum number
of the particles per Bernoulli component are set to be Lmax “ 1000 and Lmin “ 300, respectively.
The number of particles for each new-born object is Npiqb “ max

´

rpiqu,β“0 ˚ Lmax, Lmin

¯

. Additionally,

G “ 10´3 is the threshold of the probability of existence, while a maximum Tmax “ 100 is used for
pruning the number of Bernoulli components.

4.2. Results

4.2.1. Multi-Target Tracking with the Fixed Clutter Rate

In this section, we evaluate the performance of the proposed UCR-MBerF-AI with a fixed clutter
rate. There were 100,000 clutter measurements before thresholding. We assume that the measurements
can be generated from anywhere within the observation region. The probability of a false alarm is set
as pτ

FA,k “ 1ˆ 10´ 4, and the corresponding clutter rate after thresholding is λ “ 10. The SNR of all
targets was fixed at 13 dB. According to Equation (4), the probability of detecting actual targets in this
case is pτ

D,k “ 0.98. Other scenario parameters are given in Section 4.1. Figure 3 shows the observations
immersed in the clutters, while Figure 4 shows the estimated position output of the UCR-MBerF-AI
from a single run. Compared with the true trajectories, the results indicate that the UCR-MBerF-AI
can correctly determine actual target appearance, motion and disappearance, and achieve accurate
multi-target tracking without the need of the new-born objects’ prior RFSs. Moreover, it should be
noted that, although false estimates occur occasionally, due to the fact that new-born objects are driven
by the measurements, the false estimates die out very quickly.
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Figure 4. Position estimations of the UCR-MBerF-AI.

To validate the performance of the UCR-MBerF-AI, it was compared to that of the UCR-MBerF [22]
over 100 Monte Carlo (MC) trials. The target trajectories shown Figure 2, along with random clutters
were used for each trial. Figures 5 and 6 show the cardinality and clutter rate statistics versus time for
the UCR-MBerF-AI and the UCR-MBerF, respectively. These results confirm that the UCR-MBerF-AI
produces more accurate estimations of both the number of actual targets and the clutter rate than
the UCR-MBerF. In addition, the UCR-MBerF has a negative bias in the clutter rate estimate and a
corresponding positive bias in the cardinality estimate. This is because some clutters are treated as
actual targets, while the UCR-MBerF-AI uses amplitude information to distinguish between actual
targets and clutters.
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Figure 5. Cardinality statistics for the fixed clutter rate scenario. (a) UCR-MBerF-AI; (b) UCR-MBerF.
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Figure 6. True and estimated clutter rates for the fixed clutter rate scenario. (a) UCR-MBerF-AI; (b) 
UCR-MBerF. 

We assessed the performance of the given multi-target filters using the OSPA metric, which can 
jointly evaluate the localization and cardinality error between two finite sets [25]. The OSPA metric 
is given by Equation (28) with 1, 300p c= = : 

( )

1

( ) ( )

1

1
( , ) min ( , ) ( )

n

m p
c c p p
p i i

i

d X Z d x z c n m
n ππ∈ =

  = + −  ∏  
  (28) 

We compared the UCR-MBerF-AI with the UCR-PHDF-AI and the UCR-MBerF. Figure 7 
shows the mean estimation errors obtained using the OSPA metric for the 100 MC simulations over 
time. It can be seen that the performance of the UCR-MBerF-AI is better than the UCR-PHDF-AI, 
while the UCR-MBerF performs significantly worst among the three filters. The main reason is that 
the UCR-MBerF-AI performs more accurate estimations and obtains a smaller variance of the 
cardinality than the UCR-MBerF, as shown in Figure 5, while being free of the reliance on clustering 
that is a necessary step in the implementation of the UCR-PHDF-AI. Due to the change of the 
cardinality, both the UCR-MBerF-AI and the UCR-MBerF produce significant peaks at 10, 20, 30, 50, 
70 and 82 s, however the UCR-PHDF-AI only produces significant peaks at 10, 20 and 30 s. This is 
because there are more targets in the second half of the simulation, and the UCR-PHDF-AI 
performs worse due to the clustering process. 
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Figure 6. True and estimated clutter rates for the fixed clutter rate scenario. (a) UCR-MBerF-AI;
(b) UCR-MBerF.

We assessed the performance of the given multi-target filters using the OSPA metric, which can
jointly evaluate the localization and cardinality error between two finite sets [25]. The OSPA metric is
given by Equation (28) with p “ 1, c “ 300:

d
pcq
p pX, Zq “

˜

1
n

˜

min
πP

ś

n

m
ÿ

i“1

dpcqpxi, zπpiqq
p
` cppn´mq

¸¸

1
p

(28)

We compared the UCR-MBerF-AI with the UCR-PHDF-AI and the UCR-MBerF. Figure 7 shows
the mean estimation errors obtained using the OSPA metric for the 100 MC simulations over time.
It can be seen that the performance of the UCR-MBerF-AI is better than the UCR-PHDF-AI, while
the UCR-MBerF performs significantly worst among the three filters. The main reason is that the
UCR-MBerF-AI performs more accurate estimations and obtains a smaller variance of the cardinality
than the UCR-MBerF, as shown in Figure 5, while being free of the reliance on clustering that is a
necessary step in the implementation of the UCR-PHDF-AI. Due to the change of the cardinality,
both the UCR-MBerF-AI and the UCR-MBerF produce significant peaks at 10, 20, 30, 50, 70 and 82 s,
however the UCR-PHDF-AI only produces significant peaks at 10, 20 and 30 s. This is because there
are more targets in the second half of the simulation, and the UCR-PHDF-AI performs worse due to
the clustering process.
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Figure 7. OSPA metrics of UCR-PHDF-AI, UCR-MBerF-AI and UCR-MBerF for the fixed clutter
rate scenario.
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4.2.2. Multi-Target Tracking with the Time-Varying Clutter Rate

To demonstrate the performance of the UCR-MBerF-AI in clutter rate estimation, we consider the
scenario with the target trajectories shown in Figure 2 and a time-varying clutter rate. The scenario
parameters are as same as in Section 4.1, except for the number of the clutters before thresholding.
Figure 8 shows the UCR-MBerF-AI output of the estimated target positions from a single run.
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Figure 8. Position estimations of the UCR-MBerF-AI.

The averaged cardinality and clutter rate statistics versus time for the 100 MC simulations using
the UCR-MBerF-AI and UCR-MBerF are shown in Figures 9 and 10 respectively. It can be seen that
UCR-MBerF-AI can estimate the number of actual targets accurately, whereas the UCR-MBerF has
a positive bias which affects its performance adversely as the clutter rate increases. Moreover, the
UCR-MBerF-AI provides a more accurate estimation in the clutter rate, while the UCR-MBerF shows a
comparatively accurate estimation when the clutter rate is below 5 but demonstrates a negative bias
when the clutter rate is larger; this bias becomes more noticeable as the clutter rate increases.
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Figure 9. Cardinality statistics for the time-varying clutter rate scenario. (a) UCR-MBerF-AI;
(b) UCR-MBerF.
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Figure 10. True and estimated clutter rates for the time-varying clutter rates scenario. (a) UCR-MBerF-AI; 
(b) UCR-MBerF. 
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Figure 10. True and estimated clutter rates for the time-varying clutter rates scenario. (a) UCR-MBerF-AI;
(b) UCR-MBerF.

Figure 11 shows the mean estimation errors obtained using the OSPA metric for the 100 MC
simulations over time. The UCR-MBerF-AI, UCR-PHDF-AI and UCR-MBerF produce approximately
average errors of 25, 36 and 50 m per target, respectively. This is due to the more accurate estimation
of the number of actual targets and clutter rate of the UCR-MBerF-AI. These experimental results
further suggest that the UCR-MBerF-AI outperforms the UCR-PHDF-AI, which in turn outperforms
the UCR-MBerF.
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Figure 11. OSPA metrics of the UCR-PHDF-AI, UCR-MBerF-AI and UCR-MBerF for the time-varying
clutter rates scenario.

4.2.3. Multi-Target Tracking at Various SNR Levels

To discuss the effect of the noise on the UCR-MBerF-AI, 100 MC trials were performed for various
SNR values. The same target trajectories shown in Figure 2 with random clutters for each trial were
also adopted, with an average of 10 clutters per scan after thresholding. The average OSPA metrics and
corresponding estimated clutter rate for the three filters versus the SNR are shown in Tables 1 and 2
respectively. As expected, the average OSPA metrics increase and the accuracy of estimated clutter rate
decreases as the SNR decreases for the three filters. This is because the detection probability decreases
with the lower SNR, and these filters are all more sensitive to increased noise levels, which make
detection more difficult. However, the UCR-MBerF-AI still performs better than the UCR-PHDF-AI
and UCR-MBerF, as seen by the lower location and cardinality errors.

30400



Sensors 2015, 15, 30385–30402

Table 1. Time-averaged OSPA metrics for various SNR with pτ
FA,k “ 1 ˆ 10´ 4.

SNR 10.50 dB 11.12 dB 11.85 dB 13.00 dB 14.50 dB

pτ
D,k 0.70 0.80 0.90 0.95 0.99

UCR-MBerF-AI 102.63 74.72 49.25 26.39 24.85
UCR-PHDF-AI 116.54 91.83 64.61 37.72 34.95

UCR-MBerF 129.88 107.48 87.98 63.47 57.84

Table 2. Time-averaged estimated clutter rate for various SNR with pτ
FA,k “ 1 ˆ 10´ 4.

SNR 10.50 dB 11.12 dB 11.85 dB 13.00 dB 14.50 dB

pτ
D,k 0.70 0.80 0.90 0.95 0.99

UCR-MBerF-AI 9.65 9.72 9.85 9.94 9.98
UCR-PHDF-AI 9.03 9.17 9.26 9.35 9.53

UCR-MBerF 8.56 8.73 8.90 9.15 9.32

5. Conclusions

In this paper, we have presented an improved MBerF, named the UCR-MBerF-AI, which not
only achieves more accurate and steady estimations of the clutter rate and the number of actual
targets, but also relaxes the requirement on the a priori knowledge of the new-born object RFSs.
The proposed improved filter retains the mathematical structure of the conventional MBerF, while
additionally incorporating the signal amplitude information into the MBerF recursion loop to enhance
the discrimination between actual targets and clutters, and utilizing measurements to adaptively
generate the new-born object RFSs. Moreover, the SMC implementation of the proposed filter was
studied using numerical simulations. The results demonstrate that the UCR-MBerF-AI improves the
estimation accuracy of the target number and the corresponding multi-target states, as well as the
clutter rate, over previous approaches.
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