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Summary

In this article, we first review the literature on dealing with missing values on

a covariate in randomized studies and summarize what has been done and

what is lacking to date. We then investigate the situation with a continuous

outcome and a missing binary covariate in more details through simulations,

comparing the performance of multiple imputation (MI) with various simple

alternative methods. This is finally extended to the case of time-to-event out-

come. The simulations consider five different missingness scenarios: missing

completely at random (MCAR), at random (MAR) with missingness depending

only on the treatment, and missing not at random (MNAR) with missingness

depending on the covariate itself (MNAR1), missingness depending on both

the treatment and covariate (MNAR2), and missingness depending on the

treatment, covariate and their interaction (MNAR3). Here, we distinguish two

different cases: (1) when the covariate is measured before randomization (best

practice), where only MCAR and MNAR1 are plausible, and (2) when it is

measured after randomization but before treatment (which sometimes occurs

in nonpharmaceutical research), where the other three missingness mecha-

nisms can also occur. The proposed methods are compared based on the treat-

ment effect estimate and its standard error. The simulation results suggest that

the patterns of results are very similar for all missingness scenarios in case

(1) and also in case (2) except for MNAR3. Furthermore, in each scenario for

continuous outcome, there is at least one simple method that performs at least

as well as MI, while for time-to-event outcome MI is best.
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1 | INTRODUCTION

Important prognostic factors, in epidemiological and clinical studies, are frequently included as covariates in the statis-
tical model for analyzing the relationship between a treatment or exposure and some health outcomes. This is done
either to improve the precision of the treatment effect estimate by reducing residual outcome variance (in clinical tri-
als), or to adjust for confounding (in observational studies), or because of interest in the covariate effects themselves (all
studies). This practice is commonly known as adjustment for covariates.1-3 However, it is often difficult to completely
observe these covariates, especially in lengthy patient interviews. This results in occurrences of missing data in the
covariates, which complicate the adjustment process.4,5 Complete case analysis (CCA), which omits all incomplete
cases (IC) from the analysis, has been shown to often produce biased and/or less powerful results, though White and
Carlin5 reported unbiasedness of CCA under some specific scenarios in the context of regression analysis.

Missing covariate data raise different issues in randomized studies than in nonrandomized studies. In the former,
unlike in the latter, the predictor of interest (treatment group) is independent of all baseline (prerandomization)
covariates (both observed and unobserved). Consequently, optimal (or suboptimal) methods for handling missing covar-
iate data in nonrandomized studies cannot necessarily be expected to be optimal (or suboptimal) in randomized stud-
ies.4 Indeed, as an example, the missing-indicator method (described in section 2.2.3 of this study) has been shown to
produce unbiased treatment effect estimates in randomized studies but can introduce bias in nonrandomized studies.6

We note that this finding was based on a scenario where the analysis of interest was linear regression, and missingness
of the covariate was independent of treatment or any postrandomization variable.

To better understand the argument above, we need to distinguish the different missingness mechanisms that can
occur. Data can be missing completely at random (MCAR), at random (MAR), or, not at random (MNAR). Data are
MCAR if participants who have missing data are a random subset of the complete sample of participants, that is, the
missingness is totally unrelated to any observed or unobserved participant data. Under MCAR, even a missing data
method as simple as CCA produces unbiased results. Data are MAR if the missingness depends only on observed data
and not on unobserved data given the observed data, for example, if missingness at a follow-up is related to the health
status of the patient at some preceding time point, or to a baseline covariate. In the latter case, MAR is sometimes called
stratified or covariate-dependent MCAR, depending on the author. In this article, we call it MAR. Under MAR, sophisti-
cated methods such as multiple imputation (MI) and maximum likelihood (ML)-based methods produce unbiased
results under appropriate conditions.7-10 Finally, data are MNAR if the missingness is (also) related to unobserved data,
for example, if the value of a participant characteristic is missing because of that value itself, such as when patients in a
trial drop out because of sudden worsening of their health just before the planned next measurement. Under MNAR,
none of the aforementioned missing data methods can universally guarantee unbiased results.

Missingness types may have different implications in randomized than in nonrandomized studies. In the former,
unlike in the latter, randomization ensures that the distribution of baseline covariates (both observed and unobserved)
will be the same in both or all treatment groups, apart from chance differences. Indeed, this holds regardless of whether
or not the covariates are complete or incomplete. Thus, in randomized studies, unlike in nonrandomized studies,
patients with any combination of missing and observed baseline values must be equally likely in each treatment group,
irrespective of the missingness mechanism if this does not depend on treatment group (as is often but not always the
case).11, p 37 Consequently, for treatments comparison, missing data methods (whose performance depend on mis-
singness types, as explained in the previous paragraph), may perform differently in randomized studies than in non-
randomized studies. Indeed, as an example, in a trial with linear regression as the analysis model of interest, CCA will
certainly be unbiased (even if the variable predictive of missingness is not included in the analysis) if the trial is ran-
domized, but not necessarily if it is not.11, p 37 Note that the argument in this paragraph, about the implications of mis-
singness types on the performance of missing data methods in randomized studies, is true for baseline covariates
measured before randomization, but not necessarily for postrandomization covariates.

Despite the preceding argument, most studies on how to appropriately handle missing covariate data have generally
based their conclusions on nonrandomized studies, when suggesting that sophisticated methods such as MI and ML-
based methods9,12,13 generally produce better results than simpler methods such as CCA and the missing-indicator
method.4 In this study, we investigate the problem of missing covariates in randomized controlled trials (RCTs). Those
interested in the topic of missing covariates in observational studies, which is beyond the scope of the present article,
are referred to the literature.5,14,15 In Section 2, we conduct a scoping review to identify the missingness scenarios and
missing data methods that have been explored to date in the literature and summarize the findings. In Section 3, we fill
some gaps in the literature by performing a simulation study with new combinations of missingness scenarios and
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missing data methods in the case of a continuous outcome. This is briefly extended to the case of a time-to-event out-
come in Section 4. We conclude with a discussion in Section 5.

2 | SCOPING REVIEW

Scoping reviews are used to identify, retrieve, and summarize literature related to a particular (emerging) research topic
in order to highlight research gaps and potential avenues for future studies on that topic.16,17 Unlike systematic reviews,
where quantitative analyses can be utilized to glean trends in literature, scoping reviews assess the qualitative content
of literature through concept and thematic mapping.18,19

2.1 | Method

The method we applied to scope review the literature involved: (1) specifying the criteria upon which articles should be
included in the review; (2) searching for relevant articles based on the inclusion criteria; (3) classifying the studies
found to highlight their differences in contents; and (4) identifying gaps in the literature. These four steps are described
below.

Inclusion criteria:

• RCTs, as opposed to nonrandomized and cluster randomized studies;
• Quantitative outcome (as opposed to categorical outcome);
• Single outcome (as opposed to multiple outcomes);
• Missingness in a covariate;
• Simulation study (as opposed to application study), to ensure that (a) the true parameter values, notably the treat-

ment effect, are known, and (b) complete data are available for comparison with the results of missing data methods
applied to the data after missingness has been created, and (c) sampling error can be assessed by having a large num-
ber of samples from the same distribution.

Search method:

• We used Google Scholar and Web of Science to search the relevant articles. Google Scholar is the best-known scien-
tific search engine of articles from various disciplines. Web of Science contains bibliographic data of articles from
about 9500 scientific journals. We utilized these two search tools to guarantee the comprehensiveness of our search.

• The precise keywords we utilized for our search were: missing (in the title), imputation (in the content), randomized
trials (in the content), and simulation (in the content);

• The period of search used was for all years, starting from 2017 backward;
• We screened the abstract and the methodology of the articles found, to retain only articles that satisfied the inclusion

criteria.
• To ensure that our systematic search was conducted efficiently, and that we did not miss (possibly due to our key-

words) any relevant article, we subsequently used a snowballing approach: we consulted the references of all the rele-
vant articles found in our search, starting with the most recently published article, assuming that all the authors
would have consulted and included the relevant publications in their references. Each relevant article found in the
references was subsequently consulted following the same process, and the oldest relevant article that we could find
was published in 1990.

Classification of studies found by:

• Covariate types, with as types: (i) baseline measurement of the outcome, (ii) other continuous covariate, and
(iii) categorical covariate;

• Missingness types (MCAR, MAR, and MNAR) studied;
• Methods for handling missingness applied.
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Identification of gaps in the literature:

• First, based on all the dimensions of the classification stage above, we determined all possible study scenarios (ie, sce-
narios that were investigated plus those that were not investigated), with a study scenario defined as the combination
of the covariate type (eg, categorical), missingness type (eg, MCAR) and method to deal with missing data in the
covariate (eg, CCA);

• Second, we identified as gaps the scenarios that were not investigated in the reviewed articles.

2.2 | Results

Only four articles4,6,20,21 were found to be relevant for this review based on the inclusion criteria. Table 1 gives more
details of these studies. Clearly, there has not been intensive research on this review's topic of interest.

2.2.1 | Covariate type

With respect to whether or not the covariate used was a premeasurement of the outcome (see Table 1), the covariate
used in P1 was not a premeasurement of the outcome and was categorical, while the covariate in P2, P3, and P4 was a
premeasurement of the outcome and continuous. All studies considered scenarios with only one covariate.

2.2.2 | Missingness types

For the missingness mechanisms, Table 1 shows that every article covered the MCAR and MNAR mechanisms. MCAR
was defined as the missingness being totally independent of treatment, pre-, and post-randomization variables. MNAR
was defined as the missingness being dependent only on the value of the covariate itself. In addition to MCAR and
MNAR, P1 analyzed a condition with missingness of the covariate being treatment-dependent; which is sometimes
called stratified MCAR,22 but falls under MAR in this review. We note that this scenario is possible only if the covariate
is measured postrandomization, which might have been the case but was not explicitly stated in P1. MAR in the sense

TABLE 1 Details of the relevant publications identified for the review, with the corresponding covariate types and missingness

mechanisms

No First author Year

Analysis model Missingness mechanism

Outcome

Treatment
group
(0/1 coded)

Baseline
covariates

Treatment-by-
covariate
interaction

MCAR MAR MNARY1 T Y0 X0 Z0

T * Y0

or T * X0

P1 Schemper et al20 1990 ✓ ✓ × × ✓ × ✓ ✓ ✓

P2 White et al4 2005 ✓ ✓ ✓ × × × ✓ × ✓

P3 Groenwold
et al6

2012 ✓ ✓ ✓ × × × ✓ × ✓

P4 Sullivan et al21 2016 ✓ ✓ ✓ × × × ✓ × ✓

Note: Articles, from the oldest (P1) to the most recent (P4) ones are in the first column; each article's first author is in the second column;
each article's year of publication is in the third column; the rest of the columns show, for each article, the analysis model (with variable
types) and the missingness mechanisms; Y1, continuous outcome (posttreatment measurement); Y0, continuous baseline covariate (pre-
treatment measurement of Y1); X0, continuous baseline covariate (not pretreatment measurement of Y1); Z0, binary baseline covariate. The
ticks per row indicate the setting (variables and missingness mechanisms) tackled by the article in that row, and the crosses indicate the vari-
ables and missingness mechanisms not used in that setting.
Abbreviations: MAR, missing at random; MCAR, missing completely at random; MNAR, missing not at random.
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of covariate missingness depending on other covariates does not apply here since all articles in Table 1 used a model
with only one covariate on top of the treatment itself. P2 and P4 used two variants of MNAR which were called infor-
mative missingness 1 and 2 (see P2 and P4 for details).

We emphasize that the missingness of the covariate may, or may not, depend on treatment, and that dependence
can be prevented by measuring the covariate prerandomization, which is the dominant practice in pharmaceutical tri-
als. However, measuring the covariate prerandomization is unfortunately not always done in randomized trials in
health research (eg, in cluster randomized trials,23-24 and in mental and public health research25-27) where the covariate
is measured postrandomization but before treatment. In such cases, we can have dependence of the missingness in
covariate on treatment, even if the covariate itself is not related to treatment. As an example, gender as covariate can be
measured postrandomization and still be independent of treatment, while its missingness may depend on treatment.
This may happen, for instance, in an RCT of face-to-face vs online treatment of depression, where participants skip
some items in the online questionnaire among others about their gender.

2.2.3 | Methods for handling missingness

Methods for handling missing data utilized in every reviewed article are summarized in Table 2. Unadjusted analysis
(UA) omits the incomplete covariate from the analysis so that the treatment effect is not adjusted for that covariate.
CCA removes all cases with a missing covariate value from the analysis. The probability imputation technique (PIT) is
the mean imputation of a binary covariate per treatment group, that is, missing covariate values within a treatment
group are replaced with the mean of the observed covariate values within that group.20

Unconditional mean imputation substitutes each missing value with the overall average of the observed values of
the incomplete variable (covariate). By contrast, conditional mean imputation substitutes each missing value with the
mean that is estimated conditional on the specific subgroup to which the individual with missing belongs. PIT is, in
fact, conditional mean imputation for binary covariates. In the reviewed articles, unconditional mean imputation and
conditional mean imputation were called overall mean imputation (I) and mean imputation by treatment group (IT),
respectively. When a weighted analysis (with different weights for complete cases (CC) and IC) was performed after an
imputation method, this method was referred to as weighted imputation, giving two new methods: weighted overall
mean imputation (WI) and weighted mean imputation by treatment group (WIT). Weighting was performed as follows:
CC were given a weight ωi = 1 and cases with missing baseline were given a weight ωi = 1 − ρ2, where ρ is the correla-
tion between the outcome and the baseline, and was estimated using only CC. The factor 1 − ρ2 is the ratio of
unexplained outcome variance for the CC relative to the unexplained variance for the IC. So this weighting amounts to
weighting each case by its inverse variance, which is known to be more efficient than unweighted analysis (see, eg,

TABLE 2 Details of the relevant publications identified for the review, with the corresponding methods used to handle missing

covariate

No First author Year

Methods used to handle missing covariate data

UA CCA PIT

Mean imputation Missing indicator MI LMM

I IT WI WIT M MT WM WMT O T S M

P1 Schemper et al20 1990 ✓ ✓ ✓ × × × × × × × × × × × ×

P2 White et al4 2005 ✓ ✓ × ✓ ✓ ✓ × ✓ ✓ × × × × ✓ ✓

P3 Groenwold et al6 2012 × ✓ × × × × × ✓ × × × ✓ × × ×

P4 Sullivan et al21 2016 ✓ ✓ × ✓ × ✓ × ✓ ✓ × × ✓ ✓ ✓ ×

Note: The ticks per row indicate all the methods tackled by the article in that row, and the crosses indicate the methods not tackled by that article.
Abbreviations: CCA, complete cases analysis; I, overall mean imputation; IT, mean imputation by treatment group; LMMM,
likelihood-based mixed model with missing-indicator. LMMS, likelihood-based mixed model without missing-indicator; M, missing-indicator
overall; MIO, multiple imputation overall; MIT, multiple imputation by treatment group; MT, missing-indicator by treatment group; PIT,
probability imputation technique; UA, unadjusted analysis; WI, weighted overall mean imputation; WIT, weighted mean imputation by
treatment group; WM, weighted missing-indicator overall; WMT, weighted missing-indicator by treatment group.
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Searle and Pukelsheim28) and was indeed shown to be able to improve efficiency of the estimated treatment effect
(especially for ρ ≥ 60%).4,21

The missing-indicator method replaces the missing values of a variable with a fixed value and adds a dummy indica-
tor to the analysis model to indicate whether the value of that variable is missing and thus imputed (1) or not (0) for an
individual. Given the addition of this missing-indicator, it does not matter which fixed value is used to impute, for
instance, 0 value6 or the overall mean value.4,21 But it still matters (as shown in section 3.3 of this study) whether the
same value is imputed for all individuals or a distinct value per treatment group. The analysis could subsequently be
either weighted (WM for weighted missing-indicator) or unweighted (M for missing-indicator). Weights in WM were
the same as in WI and WIT above.

MI proceeds in two stages: first, the imputation stage, and second, the analysis and pooling stage. In the imputation
stage:

1 the imputation model (with a set of parameters η) is defined as a conditional distribution of the incomplete variable
(covariate in this article), conditional on the complete variables (in this article, treatment and also outcome), produc-
ing a set of parameter estimates η̂ based on CC only;

2 a new set of parameter values η* is randomly drawn from the posterior predictive distribution of η (using the stan-
dard noninformative prior, such as a uniform distribution, which assigns equal a priori weight of 1 to every possible
value of the parameters, as in section 6.7 of Enders9 and section 3.2.2 of Van Buuren13);

3 η* is used with the imputation model to obtain the posterior predictive distribution of the incomplete variable;
4 missing values in the incomplete variable are replaced with values randomly drawn (generated) from the posterior

predictive distribution in step (3), producing one completed dataset; and
5 steps (2) to (4) are repeated several times to obtain several completed datasets. Note that, as suggested previously,7,13

the random draws in step (2) and (4) are necessary to produce sufficient uncertainty (parameter uncertainty and
inherent prediction error) in the imputed values.

In the analysis and pooling stage, first, the analysis of interest (eg, linear regression of the outcome on the covariate
and the treatment in the complete dataset) is performed on each completed datasets. Each analysis produces the esti-
mate of interest with its variance, resulting in multiple estimates and respective variances, corresponding to the number
of completed datasets. Second, these estimates and their variances are then pooled to produce the overall estimate and
its variance. Consider β̂1i as the estimate of β1 from the ith completed dataset and Wi =SE2

i its variance, with SEi its stan-
dard error (SE). The pooled estimate of β1 is calculated as β̂1 = 1=m

Pm
i β̂1i with as total variance Tvar = W+B(1 + 1/m)

and SE SE=
ffiffiffiffiffiffiffiffi
Tvar

p
; where W =1=m

Pm
i Wi, B= m−1ð Þ−1Pm

i β̂1i− β̂1
� �2

, and m the total number of completed datasets.
W is the average within-imputation variance, which measures the uncertainty in β̂1 that would have resulted had the
data been complete. B is the between-imputation variance, which measures the uncertainty due to the difference
between the completed datasets.

MI produces unbiased estimates and appropriate SEs under MAR provided that the imputation model is correct and
congenial with the analysis model. To be congenial, these two models need not be identical, but the imputation model
must generate imputations that produce the major features of the data that are the focus of the analysis.29 For example,
if the interest of the analysis is to estimate means, standard deviations, and the parameters of a linear regression model,
then the imputation model needs only to preserve the means, variances, and covariances among the variables that will
be analyzed.30 Thus, to ensure congeniality, it is recommended that the imputation model incorporates at least all vari-
ables (including the outcome) to be used in the analysis model. For example, if the analysis model contains interactions,
the imputation model should also include them. This would mean creating the product variables before doing the
imputation, and then imputing these along with the original variables.29 MI was performed overall (MIO) and sepa-
rately by treatment group (MIT), with Groenwold et al6 using only overall MI and Sullivan et al21 using both
approaches. For MIO, the imputation model was the distribution of the covariate conditional on the outcome and the
treatment. For MIT, the imputation model was the distribution of the covariate conditional on the outcome only, per-
formed within each group.

The likelihood-based estimation of a linear mixed model (LMM) is a common alternative to MI for handling missing
data in a multivariate outcome or in a repeatedly measured single outcome, here: for handling missingness of the base-
line outcome measurement. Based on the multivariate normal distribution, this approach incorporates all observed
information on the multiple outcomes or the repeated measures of an outcome to produce estimates that are valid
under a MAR assumption. No explicit imputation is involved. So if the covariate is a baseline recording of the outcome
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(as is the case in articles P2, P3, and P4) it can be treated as a repeated measure in a LMM (as is the case in articles P2
and P4) under the assumption that the repeated measurements (ie, the covariate and the outcome) are jointly bivariate
normally distributed and allowing for fixed effects of time, treatment, and time-by-treatment interaction. Due to the
randomization, the treatment effect is set at zero at baseline and the effect of interest is the time-by-treatment interac-
tion effect. Within-subject correlation due to repeated measures is accounted for through the specification of a covari-
ance structure. Several authors (including Sullivan et al21 in this review) have suggested the unstructured covariance
matrix, which allows heterogeneity of variance over time and of correlation over pairs of time points. This covariance
matrix can be easily prespecified, involves minimal power loss compared with more parsimonious choices even with as
many as 5 to 10 repeated measures, except in very small samples,11, p 53,54, 31 and guarantees that estimates are approxi-
mately identical to and slightly more efficient than those produced by a comparable MI procedure.11 MI is comparable
to LMM (in procedure) when, as LMM, MI also assumes multivariate normality and MAR data, and incorporates into
the imputation model all the variables used by LMM (including all repeated measurements and other variables predic-
tive of missingness if available). Two LMM approaches were used in P2 and one in P4: for P2, LMM with and without
missing-indicator (LMMM and LMMS, respectively); and for P4, LMMS. For both approaches, missing values were not
imputed; and LMMM only added an indicator of missingness to the model. Remember that the LMM approach is only
feasible for missingness on the outcome, or on a baseline recording of the outcome, when the baseline is treated as a
repeated outcome measure, not as a covariate.

Except for LMM and UA, the analysis model used in all the articles in Tables 1 and 2 was linear regression of the
outcome on treatment and covariate without an interaction term.

2.2.4 | Comparison of methods for handling missingness

Schemper and Smith20 compared PIT to UA and CCA, and found that PIT preserved the correct type I error rate, pro-
vided that the incomplete covariate was independent of treatment. In general, PIT yielded more power than UA and
CCA. However, the power of PIT was lower than the power of UA for the scenarios with missingness rate of 60%; and
hence, it was advised not to use PIT in such situations. PIT was shown to have more power for situations with the
covariate missing under MAR (missingness dependent on treatment only) than for situations with the covariate missing
under MNAR (missingness dependent on the covariate itself only), because in the latter situations, unlike in the former,
PIT leads to biased estimates of the covariate effect. Biased estimates of the covariate effect lead to increased residual
variances, which reduce the power of all tests (for the treatment effect and covariate effect) in the model, even in ran-
domized trials. PIT was said to produce unbiased treatment effect estimates when the covariate is uncorrelated with
treatment (as in all randomized trials), regardless of the missingness types described above.

White and Thompson4 compared UA, CCA, I, IT, WI, M, WM, LMMS, and LMMM. They found that all the
methods produced unbiased treatment effect estimates, irrespective of the missingness types. This was because the
covariate was uncorrelated with treatment (because of randomization) and missingness was also uncorrelated with
treatment (under MCAR missingness was totally independent, and under MNAR missingness depended only on the
covariate) and so the missingness could not bias the estimation of the treatment effect. Almost any method was more
precise than CCA; and LMMM, followed by LMMS, were slightly better than other methods. CCA was more precise
than UA only for scenarios where the baseline covariate was strongly correlated with the outcome. Imputation per
treatment group was shown to underestimate SEs and was therefore discouraged. Weighted approaches were shown to
be more efficient than unweighted ones, and were advised, especially if the baseline covariate is correlated at least 0.6
with the outcome.

Though White and Thompson4 did not implement MI, they, however, questioned its suitability in RCTs. They
argued that the use of MI to impute a missing covariate would require the inclusion of the outcome in the imputation
model, as commonly advised for general regression models. In a randomized trial, this would seem to compromise the
principle that adjustment should be made only for prerandomized covariates, as these covariates are unaffected by
treatment. In other words, using an outcome that has already been affected by treatment to impute a covariate mea-
sured pretreatment, would amount to transferring part of the treatment effect to the covariate; and adjusting for that
covariate in the outcome analysis would then lead to underestimation of the treatment effect. For MI to produce unbi-
ased results, the outcome and the treatment would have to be simultaneously included in the imputation model. How-
ever, this would still seem to violate the randomization procedure. As a solution, White and Thompson4 advocated the
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use of mean imputation and missing-indicator method for practical purposes. They argued that LMM and MI were
unnecessarily complex, with little benefit in RCTs, when compared with simpler methods.

Groenwold et al6 analyzed the performance of the missing-indicator method (M) in randomized and non-
randomized trials. For this review, however, we only focus on the results drawn from randomized trials. The authors
compared M with CCA and MI. For MI, imputation was performed overall (MIO), and the imputation model was a lin-
ear regression of the covariate (prerandomization score) on the outcome (postrandomization score) and treatment. The
authors, unlike White and Thompson,4 did not discuss the risk of breaching the randomization principle when the out-
come and treatment are included in the imputation model of a prerandomized covariate. They demonstrated that M,
MIO, and CCA produced unbiased treatment effect estimates with reasonable coverages. However, CCA generated
wider confidence intervals (CIs), reflecting its loss of statistical power due to reduced sample size. They concluded, as
the focus was on M, that M was appropriate to handle missing baseline covariates in randomized trials, regardless of
the missingness type (note, however, that the authors only studied MCAR, where missingness was totally independent,
and MNAR, where missingness was dependent only on the covariate itself). They noted that when the missing-
indicator method is used in the analysis model to adjust for an incomplete covariate, the estimated association between
the outcome and treatment is a weighted average of two associations: (1) the association between the treatment and
outcome, adjusted for all covariates, using only CC; (2) the association between the treatment and outcome, adjusted
only for complete covariates, using only cases for which the incomplete covariate was missing. In randomized trials
(with missingness as described above in this paragraph), these two associations are unbiased, because the complete and
incomplete covariates, and the missingness of the incomplete covariate, are all uncorrelated with treatment. Since the
two associations are unbiased, their weighted average is also unbiased.

Sullivan et al21 analyzed all the missingness types and methods covered by White and Thompson.4 In addition, Sul-
livan et al21 evaluated the performance of MI, which was the focus of their study; as in White and Thompson,4 they also
highlighted the violation of the randomization principle when MI of a prerandomization covariate uses the outcome
and/or treatment in the imputation model. MI was performed overall (MIO) and per treatment group (MIT). For MIO,
the imputation model included the outcome and treatment. For MIT, the imputation model included only the outcome.
Sullivan et al21 found that MI produced unbiased treatment effect estimates and was more efficient than CCA and
UA. MIO and MIT performed similarly, with the former being slightly more efficient than the latter. Since MI did not
outperform the other methods studied as alternatives to CCA and UA, Sullivan et al21 concluded that MI should not be
considered as the gold standard method for handling missing baseline covariates in randomized trials. They, like White
and Thompson,4 advocated the use of simpler methods such as mean imputation combined with a missingness indica-
tor, especially if baselines are not MCAR; Under MCAR, mean imputation without missingness indicator was also said
to be a good approach.

2.3 | Identifying gaps

Using Tables 1 and 2, gaps can be identified as those combinations of analysis model, missingness types and methods
for handling missing data that were not explored in the reviewed articles. For instance, the first row of Tables 1 and 2
combined shows that the following scenario has not yet been investigated: an RCT with continuous outcome and
binary baseline covariate, where missingness (defined separately as MCAR, MAR, and MNAR) of the covariate is han-
dled with any method (eg, MI, missing-indicator, and so on) other than PIT, UA, CCA, and LMM, since PIT, UA, and
CCA have already been studied in P1, and in practice, LMM is commonly fitted if the covariate is a baseline recording
of the outcome variable (although an LMM can also be used for other continuous covariates, as long as the LMM model
allows the covariate to have a very different mean and variance than the outcome (see, eg, Carpenter and Kenward11).

3 | SIMULATION STUDY WITH A CONTINUOUS OUTCOME AND MISSING
BINARY COVARIATE

3.1 | Introduction

We studied a new scenario in RCT to fill some of the gaps identified in the reviewed articles. This scenario has in com-
mon with P1 the case of a binary covariate (so the analysis model is Y1 = β0 + β1T + β2Z0 + ε based on first row of
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Table 1). But, unlike P1, in our study (1) we consider a wider range of simulation scenarios as presented in section 3.2;
(2) in addition to the methods used in P1 (ie, PIT, UA, and CCA), we evaluate all other methods (eg, MI), except LMM,
considered in P2, P3, and P4; and (3) the binary covariate is not necessarily measured prerandomization: we consider
both, and clearly distinguish, scenarios with a prerandomization covariate and those with a postrandomization covari-
ate so that in the latter, missingness on the covariate can be allowed to depend on treatment. We repeat here that the
situation where the baseline covariate is measured after randomization (so that its missingness can depend on treat-
ment) is unlikely in pharmaceutical trials, but is unfortunately sometimes encountered in RCTs in other domains, for
instance, in mental and public health (see Kole-Snijders et al,25 Brug et al,,26 and Peters et al27), and in cluster random-
ized trials (see Kraag et al23 and Slok24). Henceforth, in this study, the linear regression model above is replaced with
Y = β0 + β1T + β2Z + ε (note that Z0 and Y1 are replaced with Z and Y, respectively); where Y, T, and ε are, respec-
tively, the posttest outcome, treatment group, and standard normal error; and Z is a binary covariate which is measured
pre- or post-randomization, according to the missingness mechanism under study, but is never itself affected by treat-
ment. The effect of interest is β1, defined as treatment effect; β2 is the covariate effect and was not the concern of this
study. We note that this analysis model may seem restrictive (ie, with only one missing covariate) in practice. The use
of this model is, however, motivated by the following: We are interested in the comparison of a wide range of methods
that have been used and are still being used in literature, to find out which are best and which break down as mis-
singness increases or becomes MNAR. We use a simple model for this comparison to keep things clear and transparent,
and select promising vs inferior methods based on this, to be studied further for more complex scenarios/models (with
more than one covariate).

3.2 | Method

We conducted a simulation study under various conditions. The basic steps of the simulation design were as follows.

3.2.1 | Generating complete data

We first created complete data from a hypothetical RCT with 50:50 allocation to treatment (T = 1) and control (T = 0).
Two total sample sizes were considered: small (n = 100) and large (n = 400). The covariate Z was Bernoulli distributed
with P(Z = 1) = P(Z = 0). Four combinations of the treatment effect and covariate effect were considered, that is
(β1, β2) = (1, 1); (1, 2); (2, 1); and (2, 2). The intercept β0 was always set to 0. The error ε was standard normally
distributed.

3.2.2 | Generating incomplete data

We obtained incomplete data by creating missing values in Z from the complete data generated in the previous step.
Missing values were created based on the missingness model logit{Pr(R = 1)} = α0 + α1Z + α2T + α3Y + α4ZT; where
R = 1 if Z is observed, and R = 0 if Z is missing. Five missingness mechanisms were considered, that is, MCAR, MAR,

TABLE 3 An overview of the

missingness mechanisms in this article

with their parameter values, based on

the missingness model logit{Pr(R = 1)}
= α0 + α1Z + α2T + α3Y + α4ZT;

where R = 1 if Z is observed, and R = 0

if Z is missing

Parameters MCAR MAR
MNAR1 MNAR2 MNAR3

– – – a b a b a b

α0 (intercept) 6¼ 0 6¼ 0 6¼ 0 6¼ 0 6¼ 0 6¼ 0 6¼ 0 6¼ 0

α1 (coefficient of Z) 0 0 0.5 2 0.5 2 0.5 2

α2 (coefficient of T) 0 0.5 0 0 0.5 0.5 0.5 0.5

α3 (coefficient of Y) 0 0 0 0 0 0 0 0

α4 (coefficient of ZT) 0 0 0 0 0 0 1 1

Note: (MCAR, MNAR1) can always apply and (MAR, MNAR2, MNAR3) can only apply when
the covariate is measured after randomization (but before treatment).
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MNAR1, MNAR2, and MNAR3, with their parameters as given in Table 3. For MCAR, the missingness was unrelated
to all variables. For MAR, the missingness was related only to T. For MNAR1, the missingness was related only to Z.
For MNAR2, the missingness was both related to Z and T. For MNAR3, the missingness was both related to Z, T, and
ZT. For each missingness mechanism, α0 was calculated based on the missingness rates required. Three missingness
rates were considered, that is, 20%, 40%, and 60%. To obtain these rates, the value of α0 was adjusted accordingly. For
example, under MNAR1b (ie, MNAR1 with α1 = 2), setting α0 = 0.3862944, α0 = −0.5945349, and α0 = −1.405465, pro-
duced approximately 20%, 40%, and 60% missingness rates, respectively. The missingness rates 40% and 60% may be
unrealistic for a baseline covariate. We, nevertheless, include them in order to investigate what happens to the missing
data methods in situations of substantial missingness rates.

Note that α3 was set to 0 for all missingness mechanisms, so that missingness of Z is always independent of Y, as it
is unlikely that missingness of the covariate, Z, which is measured before the outcome, Y, depends on this outcome.
Where α2 6¼ 0, we assumed that the covariate was unrelated to treatment due to randomization, but its missingness
depended only, or also, on treatment. This may happen if participants are first randomized to treatment groups, and
the covariate, Z, is measured postrandomization (see section 2.2.2). Where α2 =. 0.5 (odds ratio 1.65), and α2 = 2 (odds
ratio 7.39), missingness on the covariate is moderately and very strongly related to treatment, T, respectively

Note that of all missingness scenarios above, only MNAR2 and MNAR3 introduce weak, respectively, stronger (for
the values of α1 and α2 as given in Table 3) confounding, as expressed by an odds ratio (OR) unequal to one, between
the covariate (Z) and treatment (T) within the CC sample, and likewise within the IC sample. In fact, it can be proven
(see Table 4 in the supplements) that:

1 OR for CC=OR for IC = 1 if (α1 = 0 or α2 = 0) and α4 = 0
2 OR for CC 6¼ 1 and OR for IC 6¼ 1 if (α1 6¼ 0 and α2 6¼ 0) or if α4 6¼ 0

Thus, for MCAR (α1 = 0, α2 = 0, α3 = 0, α4 = 0), MAR (α1 = 0, α2 6¼ 0, α3 = 0, α4 = 0), and MNAR1 (α1 6¼ 0, α2 = 0,
α3 = 0, α4 = 0), there is no confounding (ie, OR for CC=OR for IC = 1), but for MNAR2 (α1 6¼ 0, α2 6¼ 0, α3 = 0, α4 = 0)
and MNAR3 (α1 6¼ 0, α2 6¼ 0, α3 = 0, α4 6¼ 0), there is confounding, that is (OR for CC=OR for IC 6¼ 1), respectively
(OR for CC 6¼ OR for IC 6¼ 1). Consequently, this means that the treatment effect estimate under MCAR, MAR, and
MNAR1 should be unbiased (since Z is not a confounder), but can be biased (since Z is a confounder within the CC
and within the IC subgroups) under MNAR2 and MNAR3 depending on the methods and the value of α's. For the ORs
in each scenario under MNAR2 and MNAR3 see Table 5 in the supplements.

3.2.3 | Imputing the missing data

We imputed the missing values to produce the completed data to be used in the analysis, except for UA (remove Z) and
CCA (remove IC) analysis. For each dataset, we implemented the following missing data methods: UA; CCA; overall
mean imputation (I); mean imputation per treatment group (IT); weighted overall mean imputation (WI); weighted
mean imputation per treatment group (WIT); overall missing-indicator (M), missing-indicator per treatment group
(MT); weighted overall missing-indicator (WM); weighted missing-indicator per treatment (WMT); MI overall (MIO);
and MI per treatment group (MIT).

For overall imputation (methods I, WI, M, WM, and MIO), the values used to impute the missing values were calcu-
lated and imputed across treatment groups. For I, WI, M, and WM, for example, the missing values were always rep-
laced with the mean of all the observed covariate values, irrespective of treatment group. For imputation per treatment
group (methods IT, WIT, MT, WMT, and MIT), the values used to impute the missing values were calculated and
imputed within each treatment group. For IT, WIT, MT, and WMT, for example, the missing values were always rep-
laced with the mean of all observed covariate values within each treatment group.

For MI overall, the imputation model included both Y and T. For MIT, the imputation model within each group
included only Y. Within MI overall as well as within MIT, two MI approaches were used: (1) specifying logistic regres-
sion of Z on Y and T as imputation model and proceeding as described in section 2.2.3; and (2) imputing based on pre-
dictive mean matching (PMM), which is similar to (1) in the analysis and pooling stage, but slightly different in the
imputation stage. The difference is that, for PMM: (i) predicted values for Z are generated for all cases, both those with
Z missing and those with Z observed; (ii) for each case with missing Z, a set of cases is drawn from all cases with
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observed Z whose predicted values are close to the predicted value for the case with missing Z; and (iii) from those
drawn cases, one is randomly drawn and its observed value is used to replace the missing value.

3.2.4 | Analyzing the completed data

We applied the analysis of interest (linear regression of Y on T and Z) on the completed data to produce the treatment
effect estimate (β̂1) and its SE, and 95% confidence interval (CI). For each method, the analysis of interest was applied
on each dataset, overall and not by treatment group. For UA, the analysis model included Y and T, but not Z. For all
the other methods, the analysis model included Y, T, and Z. The missing-indicator method and weighting were as in
White and Thompson.4

3.2.5 | Compare the missing data methods performances

We compared the performance of the methods using datasets generated under each of 192 distinct scenarios, obtained
by crossing the design factors (treatment and covariate effects, total sample size, missingness mechanisms, and mis-
singness rates) defined in sections 3.2.1 and 3.2.2.

We generated 1500 different datasets (runs) for each scenario. For each dataset, estimates of the treatment effect, its

SE and 95% CI were obtained with each missing data method, resulting in 1500 values of β̂1, its SE and CI under each
scenario condition and each missingness method. These values were subsequently used to compute the mean and SD of

β̂1 and of the estimated SE, as well as the coverage of the CI. Note that the SD of β̂1 estimates the true SE of β̂1 against
which the mean of the estimated SE can be compared with check bias in SE estimation. The results for each missing
data method were compared with those from the complete data, which served as the gold standard or reference method
(REF). Thus, five performance criteria were calculated as follows. Consider that the ith simulated dataset (i = 1 to s)

produces a treatment effect estimate β̂1i with ŜEi and CIi; and Ki = 1 if β1�CIi or Ki = 0 otherwise. Compute

�̂β1 =
Ps
i
β̂1i=s; Var β̂1

� �
=
Ps
i

β̂1i−
�̂β1

� �2
= s−1ð Þ; �cSE=

Ps
i

cSEi=s; Var cSE� �
=
Ps
i

cSEi−
�cSE� �2

= s−1ð Þ. The performance criteria

were as follows:

• Bias of β̂1: Bias β̂1
� �

= �̂β1−β1;
• Relative precision (RP) of β̂1 resulting from missingness method Meth (eg, CCA) compared with REF:

RP β̂1
� �

= VarREF β̂1
� �

=VarMeth β̂1
� �� �

× 100;
• Coverage of 95% CI = Coverage 95%CIð Þ= Ps

i=1
Ki=s

	 

× 100;

• Relative bias (RB) of cSE of β̂1: RB cSE� �
=

�cSE= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var β̂1

� �q	 

−1

� �
× 100;

• Relative precision of cSE of β̂1 from Meth compared with REF: RP cSE� �
= VarREF cSE� �

=VarMeth cSE� �n o
× 100

Simulations were conducted in R 3.3.3. MI was performed using the MICE package version 2.30. MI is commonly
implemented according to the rule of thumb that the number of imputations (completed datasets based on one incom-
plete dataset), m, should at least be equal to the percentage of missingness.21 We used m = 100 in this study. The com-
puter processor used was IntelCorei5-6500 cpu@3.20ghz 3.20GHz.

3.3 | Results

We compare the methods, first per performance criterion, and then summarize this comparison per missingness sce-
nario. We start by presenting the results of sample size n = 100 and the a-scenarios in Table 3. Subsequently, we discuss
the effect of increasing the sample size from 100 to 400, and the difference between a- and b-scenarios in Table 3. In the
sequel, the label non-MNAR3a will be used as an abbreviation for “all missingness mechanisms other than MNAR3a”.
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Concerning bias of the treatment effect estimates (Figure 1), all methods had no or negligible bias under all non-
MNAR3a mechanisms. Under MNAR3a, only UA, CCA, and overall mean imputation (I and WI) had no bias; all other
methods showed bias, but the bias of the missing-indicator methods (M, MT, WM, and WMT) was substantially larger
than that of the other methods.

For coverage (Figure 2), there was no noticeable difference between all non-MNAR3a mechanisms. Under non-
MNAR3a, all methods except mean imputation per treatment (IT, WIT), and the missing-indicator method per treat-
ment (MT, WMT), provided coverages close to 95% in all scenarios; methods (IT, WIT) and methods (MT, WMT)
showed substantial undercoverage when the missingness rate was 60% combined with strong covariate effect (β2 = 2).
Under MNAR3a, only mean imputation per treatment (IT, WIT) and all versions of the missing-indicator method (M,
MT, WM, WMT) showed undercoverage when missingness was at least 40%. This was worst for the missing-indicator
methods, especially for strong covariate effect (β2 = 2).

With respect to RP of the treatment effect estimates (Figure 3), which is the variance of the estimated treatment
effect for REF (complete data) divided by the variance of the estimated treatment effect for the missing data method at
hand, there was no noticeable difference between the missingness mechanisms, only between the methods. More spe-
cifically, UA was the least precise method when the missingness rate was 20% or 40% and the covariate effect was
strong (β2 = 2). CCA was the least precise method when the missingness rate was 60%, or 40% and the covariate effect
was modest (β2 = 1). Imputations overall were more precise than imputations per treatment, although the difference

FIGURE 1 Bias of the treatment effect estimate (β̂1) (Y-axis) as a function of missingness method (X-axis), for each scenario as defined

by missingness rate (left/middle/right columns), missingness mechanism (curves), true treatment effect (β1) and covariate effect (β2) (rows),
and sample size 100. Note that (MCAR, MNAR1a) can always apply and (MAR, MNAR2a, MNAR3a) can only apply when the covariate is

measured after randomization (but before treatment)
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was negligible for MI. Weighted methods were slightly more precise than methods without weights. Mean imputation
overall (I, WI) and the missing-indicator method overall (M, WM) were most precise, in general. MI was as precise as
the best methods only when the missingness rate was 20%. For all methods except UA, precision decreased with
increased missingness rate; and for all methods except CCA, precision decreased with increased covariate effect.

Regarding RB of the estimated SE (Figure 4), which for each method is the difference between the estimated SE
(model-based SE) and the empirical SE divided by the empirical SE, there was no noticeable difference between the mis-
singness mechanisms. Methods differed noticeably only for 60%, and for the combination of 40% missingness with strong
covariate effect (β2 = 2), as follows: IT, WIT, MT, and WMT produced almost equal downward biases, while their respective
counterparts (I, WI, M, and WM) had almost no bias; MIT_l showed some upward bias; whilst all other methods showed
almost no bias. For methods with bias, biases increased with missingness rate and with covariate effect.

With respect to RP of the estimated SEs (Figure 5), which is the variance of the estimated SEs for REF (complete
data) divided by the variance of the estimated SEs for the missingness method at hand, there was no substantial differ-
ence between the missingness mechanisms, except that MNAR3a showed slightly lower precisions compared with non-
MNAR3a when missingness was 40% or 60%. Methods differed as follows. UA was almost as precise as the best methods
(I, WI, M, and WM), especially when missingness was 40% or 60%. CCA was least precise in all scenarios. Single impu-
tations overall (I, WI, M, and WM) were more precise than their per treatment counterparts (IT, WIT, MT, and WMT):
the differences were substantial when missingness was at least 40%. For MI, however, the differences between overall

FIGURE 2 Coverage (%) of the 95% CI for the treatment effect estimate (Y-axis) as a function of missingness method (X-axis), for each

scenario as defined by missingness rate (left/middle/right columns), missingness mechanism (curves), true treatment effect (β1) and
covariate effect (β2) (rows), and sample size 100. Note that (MCAR, MNAR1a) can always apply and (MAR, MNAR2a, MNAR3a) can only

apply when the covariate is measured after randomization (but before treatment)
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and per treatment versions were negligible. MI (all versions) was about as precise as the best methods (I, WI, M, and
WM) only when missingness was 20%. For all methods except UA, precision decreased with increased missingness rate;
and for all methods except CCA, precision decreased with increased covariate effect.

The effect of sample size on each of the five criteria (discussed above) was tested by increasing the sample size from
100 to 400. The results (Figures 6-10 in the supplements) for each criterion were as follows. There was (1) little effect on
bias of the treatment effect estimate; (2) negligible effect on coverage, apart from even lower coverages of the methods
suffering from undercoverage in MNAR3a in Figure 2; (3) negligible effect on RP of the treatment effect estimate;
(4) no noticeable effect on bias of the estimated SE of the treatment effect estimate, apart from the disappearance of the
slight upward bias of MIT_l in Figure 4 (see panels with 60% missingness and covariate effect β2 = 2); and (5) substantial
effect on RP of the estimated SE, but only for mean imputation and the missing-indicator methods per treatment (IT,
WIT, MT, WMT), which became almost as precise as their overall counterparts (I, WI, M, WM).

Increasing the effect of the covariate on its own missingness by increasing α1 from 0.5 to 2, corresponding to a- and
b-scenarios, respectively, gave no substantial differences, apart from bias of the treatment effect estimate under MNAR2
(Figures 11-20 in the supplements), as follows. The mean imputation and MI methods showed a slight upward bias,
and the missing-indicator methods across treatments gave a slight downward bias, but only when missingness was 60%
combined with covariate effect β2 = 2.

FIGURE 3 Relative precision of treatment effect estimate (β̂1) (Y-axis) as a function of missingness method (X-axis), for each scenario

as defined by missingness rate (left/middle/right columns), missingness mechanism (curves), true treatment effect (β1) and covariate effect

(β2) (rows), and sample size 100. Note that (MCAR, MNAR1a) can always apply and (MAR, MNAR2a, MNAR3a) can only apply when the

covariate is measured after randomization (but before treatment)
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In summary, the pattern of results was nearly the same for all non-MNAR3a scenarios, but different for the
MNAR3a case. Pursuant to this, the comparison of the methods above is briefly done, first for non-MNAR3a scenarios,
and then for the MNAR3a scenario, as follows.

Under non-MNAR3a scenarios, all methods gave no or negligible bias of the treatment effect estimate (β̂1 )
(Figure 1). Bias of the estimated SE, however, was substantial for mean imputation per treatment and the missing-
indicator methods per treatment (IT, WIT, and MT, WMT) when missingness was at least 40%, and small or nonexis-
tent for all other methods (Figure 4). Coverages (Figure 2) mirrored the pattern shown by bias of the estimated SE
(Figure 4), being close to 95% wherever bias was negligible and lower wherever bias was substantial. Mean imputation
and the missing-indicator methods overall (I, WI, and M, WM), generally gave better precisions of β̂1 (Figure 3) and
estimated SE (Figure 5) than all other methods; moreover, the differences increased with the missingness rate and the
covariate effect. The precisions of MI were lower than those of methods (I, WI, M, WM) when missingness was at least
40%. The precisions of UA were the lowest for 20% missingness combined with strong covariate effect (β2 = 2); and the
precisions of CCA were the lowest for at least 40% missingness.

Under MNAR3a, the missing-indicator methods (M, MT, MW, WMT) gave substantial bias of β̂1; and mean imputa-
tion per treatment (IT, WIT) and MI showed some bias when missingness was at least 40%. For bias of the estimated
SE, however, the differences between methods were the same as under non-MNAR3a. Coverages for all methods except
missing-indicator were similar to those shown under non-MNAR3a. The missing-indicator methods suffered from

FIGURE 4 Relative bias of estimated standard error (ŜE) (Y-axis) as a function of missingness method (X-axis), for each scenario as

defined by missingness rate (left/middle/right columns), missingness mechanism (curves), true treatment effect (β1) and covariate effect (β2)
(rows), and sample size 100. Note that (MCAR, MNAR1a) can always apply and (MAR, MNAR2a, MNAR3a) can only apply when the

covariate is measured after randomization (but before treatment)

854 KAYEMBE ET AL.



substantial undercoverage under MNAR3a. In terms of precisions (of β̂1 and the estimated SE), the differences between
methods under MNAR3a were similar to those under non-MNAR3a.

4 | EXTENSION TO TIME-TO-EVENT OUTCOME

We extended the simulation study to RCTs with a time-to-event outcome to evaluate the performance of all proposed
missing data methods for such outcomes. This is important since nonlinear regression models (eg, the Cox model for
time-to-event outcome) behave differently from linear regression models for a continuous outcome concerning estima-
tion of treatment effects even when there is no missingness.32-34 For example, in nonlinear (unlike in linear) regression
models, unadjusted (unconditional) and adjusted (conditional) treatment effect estimates differ numerically and are
interpreted differently.34 Here we are interested in the conditional treatment effect since all the missing data methods
(except UA) are based on covariate adjustment in the analysis model. Because of this and for simplicity, UA is not con-
sidered in this extension.

Except for the outcome, we used the same simulation setup (as in Section 3) to generate complete data as well as
missing data. Survival times (X) were generated from a Weibull distribution: hX(x) = λXkxk − 1exp(β1T + β2Z), where λX
and k are the scale and shape parameters, respectively. Random censoring times were generated from a Weibull

FIGURE 5 Relative precision of estimated SE (ŜE) (Y-axis) as a function of missingness method (X-axis), for each scenario as defined

by missingness rate (left/middle/right columns), missingness mechanism (curves), true treatment effect (β1) and covariate effect (β2) (rows),
and sample size 100. Note that (MCAR, MNAR1a) can always apply and (MAR, MNAR2a, MNAR3a) can only apply when the covariate is

measured after randomization (but before treatment)
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distribution with the same shape parameter: hC(x) = λCkxk − 1. The parameter values used were λX = 0.002; k = 1 (as in
White and Royston35); and λC = 0.0055 (corresponding to 50%; 41%; 41%; 33% censoring if (β1, β2) = (1, 1); (1, 2); (2, 1);
(2, 2), respectively. The analysis model of interest used was the Cox proportional hazards (PH) regression model hX(x|
T, Z) = h0(x)exp(β1T + β2Z) with h0(x) as baseline hazard.35,36 Using this model, all the methods were implemented as
described in section 3.2, except for MI. The imputation model for MI overall included T, X, and S (event indicator: 1 for
event, 0 for censored observations).35 For MI per treatment (MIT), the imputation model within each group included
only X and S. Using the five performance criteria described in section 3.2.5, all the methods were compared under all
the missingness scenarios described in Table 3. Below we only present the key results for scenarios with sample size
100 (Figures 21-25 in the supplements). The other results are provided in the supplements too (Figures 26-30).

Like the case of a continuous outcome, the pattern of results under non-MNAR3a was different from that under
MNAR3a. In addition, there was no noticeable difference between non-MNAR3a mechanisms, only between the
methods, as discussed below.

Under non-MNAR3a mechanisms, only CCA and MI per treatment (MIT_p, MIT_l) showed no or negligible bias
for treatment effect estimates (Figure 21 in supplement). All other methods (I, IT, WI, WIT, M, MT, WM, WMT, MI_p,
MI_l) had substantial downward bias, but only when the covariate effect was strong (β2 = 2), or when there was 60%
missingness. Under MNAR3a, this pattern was the same, but the bias was larger. These results differ a bit from those
for continuous outcomes (Figure 1) with respect to the various simple imputation methods and overall MI, but confirm
the unbiasedness of CCA and MI per treatment.

Only CCA and MI gave coverage close to 95% under non-MNAR3a (Figure 22 in supplement). Mean imputation
and missing-indicator methods generally showed acceptable coverage when β2 = 1, but undercoverage when β2 = 2.
Under MNAR3a, coverage for CCA and MI was similar to the non-MNAR3a cases. The other methods showed even
worse undercoverage under MNAR3a as compared with non-MNAR3a. These results differ from those for continuous
outcomes in that serious undercoverage there only occurred under MNAR3. We get back to this difference in the dis-
cussion section.

For RP of β̂1 (Figure 23 in supplement), only CCA behaved as in the case of continuous outcome (Figure 3) by hav-
ing lower precision than REF in all scenarios. Generally, imputation methods were about as precise as REF, except for
lower precision of imputation per treatment methods under 60% missingness. The RB of the estimated SE (Figure 24 in
supplement) for all methods was generally as in the case of a continuous outcome (Figure 4), except for slightly bigger
upward bias of MI overall (MI_p, MI_l). With respect to RP of the estimated SE (Figure 25 in supplement), only preci-
sion for CCA and MI was clearly at least 10% below that of REF in all scenarios. A difference with the case of a continu-
ous outcome (Figure 5) is that the simple imputation methods now tend to have higher precision than REF in case of a
strong covariate effect or a high missingness rate. This finding will also be discussed in the following section.

5 | DISCUSSION

In this article, we investigated the problem of missing covariates in RCTs. We first conducted a review of studies on
methods to handle missing covariates in a RCT with a continuous outcome. The review revealed that the case with a
covariate as a baseline measurement of the outcome had received considerable attention in the literature.4,6,21 However,
the situation with a binary covariate had received only scant attention. Schemper and Smith20 performed a limited sim-
ulation study comparing only three methods: UA, CCA, and mean imputation by treatment. In the present study, we
covered a wider range of simulation scenarios with more methods for handling missing data and more missingness
mechanisms than in all the reviewed articles.

Our simulations showed that the pattern of results was very similar for all non-MNAR3 scenarios, but different for
MNAR3. This underlines the importance of investigating whether the covariate (Z) is missing based on a MNAR3
mechanism, before prescribing a method to deal with missingness of Z. MNAR3 means that missingness of Z is a non-
additive function of Z and treatment (T), and can therefore be detected as follows: Randomization ensures the absence
of a treatment group difference on Z, and this holds for complete data as well as for MCAR, MAR, MNAR1 and
MNAR2 missingness where Z and T have no or only additive effects on missingness. By contrast, it does not hold for
MNAR3. So if CCA is performed with Z as outcome and T as predictor, ignoring the real outcome Y, then finding a
treatment effect on Z indicates MNAR3.

For non-MNAR3, the key finding is that all methods have no or negligible bias for the treatment effect estimate (β̂1), but
differ in other respects depending on the scenarios, as subsequently discussed. UA loses substantial precision when the
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covariate effect is strong. This makes sense because, when the covariate is strongly associated with the outcome, the
residual outcome variance can be strongly reduced by adjusting for the covariate, thus also reducing the SE of the treat-
ment effect. CCA loses substantial precision if the proportion of missingness is high (here at least 20%). This is also not
surprising because the more cases are removed from the analysis, the more information and, hence, precision is lost.
This agrees with all the reviewed articles.

Mean imputation overall (I, WI) and the missing-indicator method overall (M, WM) are superior to their by treat-
ment counterparts (IT, WIT, and MT, WMT) and give acceptable results in all respects. The by treatment methods lose
precision, produce biased SE estimates and undercoverage, depending on the scenarios. Weighted methods are slightly
more precise than unweighted methods only if the covariate effect is strong. This agrees with White and Thompson4

and Sullivan et al21: when the covariate effect is strong, the difference in residual outcome variances between cases with
and without missingness is likely to be substantial. Weighting takes that into account by giving more weight to CC than
to IC, thereby improving precision.

MI (all versions) performs roughly as well as mean imputation overall with or without missingness indicator: this
holds in all respects except precision, which is noticeably lower for MI when missingness is very high. This is not sur-
prising as MI, unlike single imputation methods, accounts for uncertainty due to imputation, resulting in increased var-
iance. Single imputation methods, on the other hand, in general results in underestimated variance (overestimated
precision). Furthermore, there is no substantial difference between MI overall and per treatment, although the former
was slightly more precise in the majority of scenarios. This makes sense as long as the analysis model is correctly speci-
fied (as in this study). But if the analysis model were to be misspecified (as was the case in some scenarios studied by
Sullivan et al21 for missingness on the outcome), MI per treatment might be beneficial. Finally, there is no noticeable
difference between MI with logistic regression and MI with PMM either.

For MNAR3, the key finding is that only UA, CCA and mean imputation overall give no or negligible bias for the
treatment effect estimate, and that the missing-indicator method yields substantial bias and undercoverage depending
on the scenarios. MI shows some bias only when the missingness proportion is high. In all other respects, results for all
methods mirrored those produced under non-MNAR3.

The bias of the missing-indicator method under MNAR3 (when missingness depends on treatment (T) and
treatment-by-covariate interaction (T*Z)), can be understood as follows: As argued by Groenwold et al,6 when the
missing-indicator method is used in the analysis model to adjust for an incomplete covariate, the estimated association
between the outcome and treatment is a weighted average of two associations: (1) the association between the treat-
ment and outcome, adjusted for all covariates, using only CC; (2) the association between the treatment and outcome,
adjusted only for complete covariates, using only cases for which the incomplete covariate was missing (IC). Now, when
missingness is driven by T*Z interaction, this induces an association between covariate (Z) and treatment (T) in both
subgroups, the CC and the IC, making Z a confounder for estimating the treatment effect within each subgroup. In the
subgroup of CC, the bias due to confounding is removed, since the confounder Z is fully observed and is included in
the analysis model. However, in the subset of patients with missing covariate (IC), the estimate of the treatment effect
is biased because the (unmeasured) confounder Z cannot be included in the model. Consequently, the weighted average
of the treatment effect estimates from the CC and the IC subgroups is biased.

However, this explanation raises a new question, namely, why mean imputation gave much less bias than the
missing-indicator method under MNAR3, even though both methods come down to a weighted mean of CC and IC
analyses and the latter (IC) suffers from confounding. The explanation for the much smaller bias of mean imputation is
that, in a linear covariate effect model (which is the only option for a 0/1 covariate Z), persons with missing and thus
mean imputed Z get much less weight in the analyses than persons with observed Z = 0 or Z = 1 (cf the linear contrast
in polynomial trend analyses in regression). To test that explanation, we added as predictor to the analysis model the
quadratic term Z2 after using mean imputation because, given that Z has 3 distinct values after mean imputation (0, 1,
mean imputed), combining Z and Z2 gives a full account of possible effects of Z on Y, equivalently to using dummy cod-
ing of Z with 2 dummies, or to using the missing-indicator method (which also has two predictors to represent the
covariate, namely, Z itself and the missing indicator). Indeed, extending the analysis model after mean imputation with
Z2 gave the same bias and coverage as the missing-indicator method under MNAR3 (results not shown).

Finally, concerning the bias of MI under MNAR3, that may be due to misspecification of the imputation model,
which did not include the interaction (TZ). In fact, such inclusion is impossible if Z itself is missing.

We acknowledge that covariate missingness dependent on treatment (ie, our MNAR3, MNAR2, and MAR) can only
occur if the baseline covariate is measured postrandomization. This practice is not considered acceptable in drug trials,
but is unfortunately sometimes encountered in RCTs in other health domains, for instance, in mental and public health
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(see Kole-Snijders et al,25 Brug et al,26 and Peters et al27), and in cluster randomized trials (see Kraag et al23 and Slok24).
We therefore included this type of missingness as a relevant extension of the articles found in the scoping review. The
results, especially for MNAR3, are a clear warning against measuring covariates after randomization and thus further
support for a dominant practice in drug trials.

Regarding the choice of methods for handling missing data, the following recommendations can be given for the
present case of a single binary covariate and a continuous outcome: UA if the covariate effect is weak and missingness
is at least 60%, and CCA if missingness is low (less than 20%). The advantage of both methods is the ease of performing
the analysis. Mean imputation overall (I, WI) is a valid method in all respects and can be used under all missingness
mechanisms. The missing-indicator method overall (M, WM) is also good in all respects, but only under non-MNAR3
mechanisms. Furthermore, unless the covariate effect is very strong, imputation without weighting is preferable in
practice for ease of implementation. Mean imputation per treatment with or without missing-indicator are not advised
because they are inferior in many respects. MI (preferably overall) is acceptable under non-MNAR3, but not under
MNAR3 because it shows some bias. MI per treatment is discouraged because it requires more work compared with MI
overall. The choice between MI with logistic regression and MI with PMM should be a matter of convenience, as these
methods provide similar results.

When comparing the simulation results in the case of time-to-event outcome to the case of continuous outcome in
the present article, all methods except CCA and MI per treatment performed differently from how they performed for
continuous outcome under non-MNAR3. Specifically, only CCA and MI per treatment give no or negligible bias with
good coverage for the treatment effect estimate (β̂1) in all scenarios as in the case of a continuous outcome. MI overall
performs similarly to their per treatment counterparts only for modest covariate effect. For strong covariate effect, they
show some bias. This agrees with White and Royston.35

Mean imputation and missing-indicator methods give substantial bias and undercoverage if the covariate effect (β2)
is strong. This can be understood as follows: For generalized linear regression models (at least the logistic and Cox
models), the treatment effect estimate (β̂1) conditional on a covariate is always moved away from zero compared with
the unconditional one.32,33,37 As the correlation between the outcome and covariate (and so the covariate effect) is
weakened by replacing a missing Z with the mean, the methods shift from estimating the conditional effect of treat-
ment (β1) to estimating the unconditional one (ie, without covariate Z) and, thus, produce bias toward zero for β̂1 in
generalized linear models.21 For the same reason, mean imputation and missing-indicator methods suffer from low cov-
erage of the conditional treatment effect estimate wherever they have substantial downward bias.

Comparison of precisions in the presence of bias is tricky. Nonetheless, unlike for a continuous outcome where sim-
ple imputation methods are less precise than the REF method, they are for a time-to-event outcome almost as precise
as REF for modest covariate effect and more precise than REF for strong covariate effect. This also makes sense: Not
conditioning on a (nonconfounding) covariate in generalized linear models (at least logistic and Cox models) results in
smaller SEs (and so higher precision) than conditioning.21,37 Simple imputation methods reduce the covariate-outcome
correlation (and so the covariate effect) and thus have the same effect on SEs (precision) as when there is no condition-
ing on Z, but smaller.

Under MNAR3, all methods except simple imputation methods perform as under non-MNAR3. Simple imputation
methods give even worse bias and undercoverage under MNAR3 than under non-MNAR3.

Regarding the choice of methods for dealing with missing data in a binary covariate for time-to-event outcome in
the context of our simulation, the following recommendations can be given. CCA is a good method in terms of bias and
coverage, but is acceptable in terms of precision only if missingness is low (less than 20%). Mean imputation overall
(I, WI) and the missing-indicator method overall (M, WM) are preferable to their counterparts per treatment (IT, WIT)
and (MT, WMT). They are acceptable in all respects, but only under non-MNAR3 if the covariate effect is modest
(β2 = 1). MI per treatment (MIT_p, MIT_l) are the best methods in all respects and all scenarios. MI overall (MI_p,
MI_l) are suitable and perform like their per treatment counterparts if the covariate effect is modest (β2 = 1).

This article is, and so the findings thereof are, limited to RCTs. But things will be different in observational studies
which are beyond the scope of this article. Readers interested in the topic of missing predictors/covariates in observa-
tional studies can see White and Carlin,5 Qu and Lipkovich,,14 and Leyrat et al.15 Furthermore, this article is limited to
RCTs with a continuous outcome and a missing binary covariate, with some results for time-to-event outcomes. How-
ever, scenarios with more covariates are common in practice. For example, a trial with a binary covariate and a contin-
uous outcome which is measured both pre- and post-randomization. A possible extension of the current study would
then be to consider joint missingness of two or three of these variables, which would give rise to more missingness
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mechanisms to investigate. Another possible extension would be to consider binary instead of continuous outcomes, or
to extend the present work on time-to-event data.
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