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The lens is a relatively special and simple organ. It has become an ideal model to

study the common developmental characteristics among different organic

systems. Lens development is a complex process influenced by numerous

factors, including signals from the intracellular and extracellular environment.

Reactive oxygen species (ROS) are a group of highly reactive and oxygen-

containing molecules that can cause endoplasmic reticulum stress in lens cells.

As an adaptive response to ER stress, lens cells initiate the unfolded protein

response (UPR) to maintain normal protein synthesis by selectively increasing/

decreasing protein synthesis and increasing the degradation of misfolded

proteins. Generally, the UPR signaling pathways have been well

characterized in the context of many pathological conditions. However,

recent studies have also confirmed that all three UPR signaling pathways

participate in a variety of developmental processes, including those of the

lens. In this review, we first briefly summarize the three stages of lens

development and present the basic profiles of ROS and the UPR. We then

discuss the interconnections between lens development and these two

mechanisms. Additionally, the potential adoption of human pluripotent

stem-cell-based lentoids in lens development research is proposed to

provide a novel perspective on future developmental studies.
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1 Introduction

The lens is a unique structure in the eyeball. With the main function of adjustably

refracting light, the lens must be transparent, refractive, and elastic (Hejtmancik et al.,

2015). To generate this sophisticated component, an organism needs an orchestrating

embryonic developmental process that turns a mass of cells, namely, the lens placode, into
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what we know as the crystalline lens (Bassnett and Sikic, 2017).

To some extent, lens development is simple. Only two kinds of

cells are involved in this process: lens fiber cells (LFCs) and their

antecedents, lens epithelial cells (LECs) (Bassnett and Sikic,

2017). This simplicity allows biologists and geneticists to use

the lens as a perfect model to study complicated tissue formation

and organization. However, lens development is also complex.

Lens cell fate determination, precise cell migration, and timely

organelle degradation all require a finely tuned gene regulatory

network, which has attracted scientists interested in deciphering

the underlying mechanism within this “black box.” In the past

two decades, tremendous progress at the cellular and molecular

levels has been made in understanding how lenses are formed.

These studies have generated a complex yet incomplete picture

describing factors that influence lens development from different

perspectives. Signals from the extracellular microenvironment

are among these factors. Human lens development involves the

formation and degradation of the arteria hyaloidea, causing a

microenvironmental shift favorable for lens formation (Ko et al.,

1985). This process refers to the level change in an important

factor that participates in the vast majority of physiological

processes: oxygen. In 2019, three outstanding scientists were

honored with the Nobel Prize in Physiology or Medicine for their

contribution to cellular oxygen sensing, highlighting the

significance of discovering the physiological and pathological

influence of oxygen.

Oxygen not only participates in aerobic metabolism but also

serves as the major coordinator in determining the cell fate

(Mohyeldin et al., 2010). As the “byproduct” of oxygen,

reactive oxygen species (ROS) are canonically regarded as the

driving factors of many pathological conditions (Spector, 1995;

Andersen, 2004). However, in the last two decades, growing

evidence has clearly confirmed the important physiological

mediating roles of ROS (Weidinger and Kozlov, 2015),

including the regulation of normal development processes.

Generally, low levels of ROS contribute to the maintenance of

the stemness of stem cells, while relatively high levels contribute

to the promotion of cell differentiation (Bigarella et al., 2014).

ROS are also capable of causing endoplasmic reticulum stress,

which initiates the unfolded protein response (UPR) (Koumenis

et al., 2002; Romero-Ramirez et al., 2004; Koritzinsky et al., 2006;

Zhang et al., 2019). The proapoptotic roles of the UPR in

pathological processes have been widely studied. However, as

an adaptive response, the UPR plays positive roles in

physiological processes. Recent studies have also found

evidence of its participation in normal organ development.

Since human lens development may undergo a switch in

microenvironmental oxygen concentration due to the

formation and degradation of the arterial hyaloidea, we

speculate that ROS/UPR may also participate in the cell fate

determination of lens cells. Moreover, current studies were

mainly founded on animal models that are profoundly

different than humans. This review briefly summarizes the

intrinsic characteristics of lens development and their possible

relationship with the ROS/UPR and proposes possible future

solutions to better understand the influence of the ROS/UPR

during human lens development.

2 Major steps to form the lens and the
corresponding molecular mechanism

Broadly speaking, lens development spans from the

formation of zygotes until postnatal growth. Here, the review

mainly discusses the development in the narrow sense, which is

embryonic lens morphogenesis. The process comprises three

general phases: the specification of lens progenitor cells and

the formation of the lens placode, the invagination of the lens

placode, and the differentiation of LFCs (Cvekl and Ashery-

Padan, 2014).

2.1 Formation of lens placode

When a neural plate is formed, the anterior part of the neural

plate “border,” which lies between the neural ectoderm and the

nonneural ectoderm, is subsequently specified and known as the

anterior preplacodal region (aPPR) (Litsiou et al., 2005; Grocott

et al., 2012; Cvekl and Ashery-Padan, 2014). The aPPR is a

sensory placode that contains a mixture of progenitor cells,

including lens progenitor cells (Bailey and Streit, 2005; Sato

et al., 2010). Growing evidence has shown that aPPR has a

unique molecular signature (Sato et al., 2010). Upon specific

signaling, progenitor cells within the aPPR migrate and converge

into the adenohypophyseal, olfactory, and lens placodes (Cvekl

and Ashery-Padan, 2014). Interestingly, all these placodes are

initially specified as lenses, and only when the restriction of lens

specification emerges can the formation of adenohypophyseal

and olfactory placodes be promoted (Bailey et al., 2006). The

molecular signals that drive the initial phase are combinatory

actions driven by different pathways, mainly FGF, BMP, and

Wnt. The FGF family plays a crucial role in the induction of the

first PPRs (Ahrens and Schlosser, 2005; Litsiou et al., 2005). It

was proposed that FGF family members promote the expression

of “preneural” genes and regulate PPR-specific transcription

factors (Grocott et al., 2012; Patthey and Gunhaga, 2014).

During this stage, the expression level of BMP signaling first

increases and then decreases (Kwon et al., 2010), but Wnt

signaling remains consistently repressed (Litsiou et al., 2005;

Patthey and Gunhaga, 2014). However, all progenitor cells within

the aPPR have the ability to express PAX6. In a study of mice,

deletion of Pax6 caused the failure of lens placode formation in

mice embryos, indicating the critical status of PAX6 in

subsequent lens placode formation (Huang et al., 2011).

Similarly, FGF and BMP signaling is indispensable for specific

PPR formation into the lens placode. Conditional deletion of
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Fgfr1 and Fgfr2 in mice resulted in the formation of small lenses,

while conditional deletion of both Bmpr1a and Fgfr2 prevented

lens formation (Garcia et al., 2011). More importantly, in another

study of mice, deletion of Bmp4, a member of the BMP family,

completely blocked the formation of lens placodes (Furuta and

Hogan, 1998). Some other factors, including SIX3, OTX2, and

PAR3, although not typically specific to this region, also

participate in lens placode formation (Purcell et al., 2005;

Ogino et al., 2008; Melo et al., 2017). However, during this

stage, Wnt signaling can inhibit the establishment of aPPR and

promote neural crest formation (Saint-Jeannet and Moody,

2014). Taken together, the specification of lens progenitor

cells within the aPPR and the subsequent formation of lens

placodes under specific signals and critical factors are the

intrinsic properties of the initial phase of lens development.

2.2 Invagination of lens placodes

After the lens placode is formed, the invagination process is

initiated and is synchronized with the invagination of the optic

vesicle to form the optic cup. If induction of the lens cells is the

principal event in the first phase, then lens cell proliferation and

morphological construction are the core events in the second

phase. The cells within the lens placode proliferate to increase its

thickness and simultaneously accumulate extracellular matrix to

confine the “area” of the lens (Cvekl and Ashery-Padan, 2014).

When reaching a certain number, these columnar placodal cells

elongate and transform into conical-shaped cells (Sawyer et al.,

2010) and begin invaginating to form lens vesicles. This

transformation process, also known as apical constriction or

cell wedging, is an important process in epithelial invagination

during organ development, including lens development

(Chauhan et al., 2015). Studies of mice show that

circumferential contraction of the actomyosin cytoskeleton in

lens cells, which requires RhoA, Rho-kinase, Shroom3, and p120-

catenin, ultimately decreases the apical bicellular junctional

length and results in lens invagination (Plageman et al., 2010;

Lang et al., 2014). Among these molecules, Shroom3 is necessary

for the apical localization of F-actin and myosin Ⅱ, which are

critical components for apical constriction. Additionally, the

expression of Shroom3 is regulated by PAX6, the crucial

transcription factor in lens induction, as mentioned earlier

(Plageman et al., 2010), indicating the indispensable role of

Shroom3 in the second phase of lens development. Recently, a

study of mice showed that the formation of multicellular

actomyosin cables is essential for the invagination of lens

placodes (Houssin et al., 2020). These contractile factors

converge into mechanical forces and promote the invaginating

process (Hosseini and Taber, 2018). However, as invagination

continues, a Rho GTPase, CDC42, antagonizes the contractile

function that is promoted by Shroom3 and ensures the

elongation of lens cells in a study of mice (Muccioli et al.,

2016). Additionally, the core member of the Par complex,

PAR3, was found to reduce the junctions of actomyosin

contraction and to play an actomyosin-activation-regulation

role in the lenses of mice (Houssin et al., 2020). In summary,

the orchestration of these opposing processes under

comprehensive cellular and molecular factors carefully pushes

the invagination of the lens placode forward to form lens vesicles

and guarantees its strict direction, which is the core event in the

second phase of lens development.

2.3 Differentiation of LFCs

Characterized by both transparency and refractive power, the

crystallin lens mainly consists of mature LFCs that contain a large

amount of crystallin proteins and few organelles. Thus, once the

invagination is complete, the lens pit closes to form the lens

vesicle, which is a hollow structure containing lens progenitor

cells. The anterior cells form LECs, and the LECs exit the cell

cycle and undergo the initial LFC differentiation process toward

the posterior part of the vesicle, which is the core event in the

following developmental stage (Audette et al., 2017). RNA-

sequence analysis revealed profound differences in gene

expression in LECs and LFCs (Zhao Y. et al., 2018), indicating

a complex transcriptional transition during LFC differentiation.

Notably, there are two phenotypes but different LFC

differentiation statuses. Primary LFC differentiation is

undertaken by posterior embryonic lens progenitor cells,

which later form the lens nucleus, and secondary LFC

differentiation transpires with equatorial LECs, which later

form the lens cortex (Cvekl and Zhang, 2017). Both LFC

differentiation mechanisms contain three major processes: lens

cell elongation (Rao and Maddala, 2006), crystallin protein

production, intracellular organelle degradation (Bassnett,

2009), and cell-to-cell communication establishment (Martinez

and de Iongh, 2010). A study of chicken embryos showed that

microtubules play crucial roles in lens differentiation, mainly

influencing elongation processes by interacting with actomyosin

and N-cadherin junctions (Logan et al., 2018). (Please refer to the

concise review (Audette et al., 2017).) FGF signaling also plays a

very important role in LFC differentiation. It is widely accepted

that a low dose of FGF mainly promotes the proliferation of

LECs, but a high dose promotes LFC differentiation (Lovicu and

McAvoy, 2005; Cvekl and Ashery-Padan, 2014; Audette et al.,

2017; Cvekl and Zhang, 2017). Abundant studies of mice and rats

have reported the specific mechanisms of FGF signaling. FGF

facilitates LFC elongation through the CRK/FRS2/SHP2/

GRB2 complex (Collins et al., 2018), Hippo–Yap signaling

(Dawes et al., 2018), and the MAPK pathway (Lovicu and

McAvoy, 2001; Upadhya et al., 2013). This effect can be

antagonized by SPRY and SPREAD, negative regulators of the

RTK-mediated MAPK pathway (Zhao G. et al., 2018). FGF

signaling also promotes the synthesis of the crystallin protein
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(West-Mays et al., 2010). The proto-oncogene c-Maf binds to a

distal enhancer of αA-crystallin (Cyraa), DCR1, and regulates the
expression of CYRAA (Yang et al., 2006). Further research shows

that FGF signaling can upregulate c-Maf through c-Jun and Etv5/

ERM, an AP-1 factor and an Ets factor, respectively, in a study of

embryonic chick lenses (Xie et al., 2016). Similarly, in a study of

chicks, BMP participated in LFC differentiation, with two BMP

family members, namely, BMP4 and BMP7, being particularly

active and endogenously expressed by lens cells (Boswell et al.,

2008). BMP signaling acts as the intermediate regulator of FGF

and crystallin genes, as indicated by abolishing BMP2/4/

7 signaling by noggin impeding FGF-induced crystallin gene

expression (Boswell et al., 2008). In addition, since cellular

organelles, including the endoplasmic reticulum, Golgi

apparatus, mitochondria, and nuclei, can interfere with lens

transparency, organelle degradation is necessary. This

degradation process is synchronized with the production of

large amounts of crystallin protein in LFCs, which indicates

well-established coordination of these two contradictory

procedures. Apoptosis, autophagy, nucleophagy, and

mitophagy pathways are all involved in organelle degradation

(Wride, 2011; Costello et al., 2013). Wnt signaling also

participates in LFC differentiation; in contrast to its role in

the first stage, Wnt activation favors the differentiation of

LFCs from LECs in this stage (Stump et al., 2003; Cain et al.,

2008), indicating the positive role of Wnt in LEC

transdifferentiation. A recent study of mice showed that a

protein that targets mitochondria for elimination during

erythrocyte formation, called BCL2-interacting protein 3-like

(BNIP3L/NIX), is indispensable and participates in the

formation of the lens organelle–free zone (Brennan et al.,

2018). In summary, LFC differentiation is an integrated

process that involves different normal cellular and molecular

functions to maintain ongoing development.

Lens development is a stepwise process influenced by

ubiquitous but stage-specific cellular and molecular

mechanisms. Although tremendous progress has been made in

deciphering lens morphogenesis, the evidence is fragmented and

disconnected. The remaining gaps need to be filled before the

completed blueprint of lens development can be precisely

constructed. Based on the knowledge discovered to date,

studies now focus on the interactions between molecular

pathways at the microlevel and the corresponding

coordination among different organelles at the cellular level.

For instance, the negative regulation of PTEN on FGFR

signaling during lens development was recently confirmed in

mice (Padula et al., 2020). It has been discovered that hedgehog

signaling (Taira et al., 2020), the ETV family (Garg et al., 2020),

the SPREAD family (Wazin and Lovicu, 2020), and heat shock

factors (Evans et al., 2007; Cui et al., 2020) are involved in lens

development. Notably, these results were obtained from models

of avian embryos, CHO cells, mice, and embryonic zebrafish.

Although direct molecular regulation during lens development is

important, the effects of the developmental microenvironment

are also drawing increasing attention. In the following sections,

common chemicals produced during multiple biological

activities, ROS, and their related cellular and molecular

influence on lens development are discussed.

3 ROS and the UPR

ROS, including superoxide anion (O2
−), hydrogen peroxide

(H2O2), and hydroxyl radical (HO•), are mainly generated

during mitochondrial oxidative metabolism (Murphy, 2009)

and other cellular processes in response to exogenous

substances (Ray et al., 2012). They participate in ubiquitous

activities ranging from physiological to pathological

conditions. The development of multicellular organisms is one

of the processes involving ROS. The balance between the

proliferation and differentiation of stem cells determines the

direction of development and can be dramatically influenced by

ROS (Schippers et al., 2012). The cellular ROS concentration is in

dynamic equilibrium, which requires the harmonious

cooperation of both ROS production and their consumption

by antioxidants, resulting in a delicate balance between the

proper redox state and oxidative stress.

3.1 Main sources of cellular ROS

Cellular ROS can be generated in both the cytosol and

organelles (Figure 1). Several soluble components, including

flavins, thiols, catecholamines, and hydroquinones, can produce

ROS during redox reactions (Freeman and Crapo, 1982).

Additionally, during their catalytic activities, several ROS-

producing cytosolic enzymes, such as xanthine oxidase, produce

ROS (McCord et al., 1985). However, a large proportion of

intracellular ROS originate from organelles, including

mitochondria, peroxisomes, and the endoplasmic reticulum (ER).

Mitochondria serve not only as the major energy-producing

“factories” in aerobic cells but also as continuous ROS-generating

“machines.”The transport of electrons along the respiratory chain is

accompanied by the production of ROS (Sena and Chandel, 2012).

In addition, several oxidoreductases located in mitochondrial

membranes participate in ROS generation (Andreyev et al.,

2005). Peroxisomes are organelles involved in the cellular

metabolism of H2O2, a species that can be generated by urate

oxidase and xanthine oxidase within peroxisomes (Angermuller

et al., 1987; Fritz et al., 2007). Another important ROS-generating

organelle is the ER, which is involved in multiple functions, such as

protein synthesis and protein folding, calcium storage, and lipid

metabolism (Koch, 1990; Groenendyk and Michalak, 2005). The

electron transport chain in the smooth ER is sustained by xenobiotic

metabolism and unsaturated fatty acid production. ROS can be

produced during these activities (Di Meo et al., 2016). Additionally,
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the ER stabilizes proteins through the oxidative protein folding

(OPF) reaction, for which molecular oxygen is the source of the

oxidizing equivalents necessary to form intramolecular disulfide

bonds. OPF is the most common posttranslational modification

undertaken in the ER and is a major source of H2O2 therein

(Malhotra and Kaufman, 2007; Qin et al., 2015). It has been

estimated that oxidative protein folding within the ER accounts

for up to 25% of cellular ROS production (Tu andWeissman, 2004).

Moreover, membrane contact sites (MCSs) between organelles

contribute to ROS generation. In mammals, more than 90% of

peroxisomes and 20% of mitochondria contact the ER (Valm et al.,

2017). Vesicle-associated membrane protein (VAMP)-associated

proteins (VAPs) are one kind of MCS between the ER and other

organelles (Murphy and Levine, 2016). Studies have shown that

there are close connections between VAPs and the UPR signaling

pathways (Kamemura and Chihara, 2019). It has been

demonstrated that ROS production occurs at ER–mitochondria

contact sites, which are conducted by calcium channels, namely,

inositol 1,4,5-trisphosphate (IP3) receptors (Booth et al., 2016).

These results indicate that MCSs between the ER and mitochondria

or peroxisomes can contribute to the interplay between the UPR

and OS. Additionally, a feedback loop exists between ROS and the

UPR. Excessive production of ROS can lead to the accumulation of

misfolded proteins in the ER and subsequent UPR activation.

Interestingly, prolonged UPR activation promotes the

accumulation of ROS (Haynes et al., 2004; Malhotra and

Kaufman, 2007). The results showed that UPR-deficient cells

under sustained ER stress are unable to accumulate ROS;

however, cells with a functional UPR accumulate ROS, resulting

in cell death (Haynes et al., 2004). The generation of ROS induced

by the UPR in age-related cataracts is reported to be related to

ERO1-Lα, ERO1-Lβ, and protein disulfide isomerase (Periyasamy

and Shinohara, 2017). Metabolic processes also generate ROS, and

the primary function of NADPH oxidases is to produce ROS.

NADPH oxidases are composed of membrane-bound subunits

and catalyze molecular oxygen reduction. When NADPH

oxidases are activated, NADPH transfers its electrons to flavin

adenine nucleotides. Subsequently, the electrons are passed to

two heme groups bound to the N-terminal domain, which

finally pass the two electrons to two molecular oxygen atoms on

the opposite side of the membrane, forming superoxide anions

(Bedard and Krause, 2007; Brieger et al., 2012).

3.2 Roles of ROS in development

In addition to directly producing biological effects, generated

ROS can serve as signaling molecules that trigger active cellular

responses. These responses are involved in the development of

primitive embryos and subsequent organs (Coffman and Su,

FIGURE 1
ROS generation and subsequent UPR activation in lens cells. There are five main ROS sources, including enzymes, soluble components,
mitochondria, peroxisomes, and the endoplasmic reticulum (ER). ER stress and UPR can also generate ROS. There are membrane contact sites
between ER andmitochondria as well as ER and peroxisomes. Three UPR signaling pathways are activated following ER stress, including ATF6, PERK,
and IRE1. The dimerization and heterodimerization of key factors could lead to differential gene regulation. These UPR pathways might further
influence lens development through action on the FGF, BMP, and Wnt pathways.

Frontiers in Cell and Developmental Biology frontiersin.org05

Gao et al. 10.3389/fcell.2022.820949

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.820949


2019; Lin and Wang, 2020). A recent study showed that early

cleavage of Xenopus embryos is promoted by an increase in

mitochondrial ROS levels (Han Y. et al., 2018), indicating the

early intervention of ROS during embryogenesis. Considerable

evidence has established that ROS participate in many processes

during neurogenesis (Borquez et al., 2016; Oswald et al., 2018).

Promoting the differentiation of stem cells and maintaining the

stemness of neural precursors are two important roles of ROS

(Wang et al., 2013; Chaudhari et al., 2014). In addition, ROS can

shape the polarity of neurons. A study has shown that the ROS

level is increased in polarizing cerebellar granule neurons but is

decreased under depolarizing conditions (Olguin-Albuerne and

Moran, 2015). Cytoskeletal modifications have also been shown

to be linked to ROS, as reflected by the influence of cysteine and

methionine residues on β-actin upon redox signaling (Lassing

et al., 2007). ROS can also alter the ubiquitination of Yap, which

is closely related to organ size, during neurogenesis (Ji et al.,

2017). All of these aspects, the differentiation of progenitor cells,

the establishment of polarity, the modification of the

cytoskeleton, and the expansion of cell volume, play roles not

only in neurogenesis but also in lens development (Donaldson

et al., 2009; Muccioli et al., 2016; Cheng et al., 2017). Although

the regulatory effect of ROS on lens development is currently

unknown, experience from the redox-regulating factor

glutathione provides some evidence about the influence of

ROS on lens development. A recent study confirmed that

impairing the biosynthesis of glutathione can disrupt eye

development, including lens development (Thompson et al.,

2021). In this way, we hypothesize that ROS also play roles in

lens development, the details of which require future studies to

determine.

3.3 The link between ROS and UPR

The homeostasis state of ROS in the ER is vital. Although

OPF requires an oxidative environment to function effectively,

excessive accumulation of ROS or excessive oxidative stress can

disrupt homeostasis and lead to the accumulation of misfolded

proteins in the ER, which causes ER stress (Tu and Weissman,

2004; Malhotra and Kaufman, 2007). In turn, under conditions of

ER stress, the induced activity of the ERO1 (ER oxidoreductase

1)-PDI (protein disulfide isomerase) system accelerates the

production of ROS by transferring electrons to molecular

oxygen (O2) and producing H2O2 (Cao and Kaufman, 2014;

Zeeshan et al., 2016). Perturbation results in UPR induction and

initiates the activation of a series of subsequent signaling

pathways that restore ER equilibrium (Figure 1) (Gardner

et al., 2013).

3.3.1 Initiation and modulation of the UPR
There are three UPR sensors distributed in the ER

membrane, namely, activating transcription factor 6 (ATF6),

protein kinase RNA-like endoplasmic reticulum kinase

(PERK), and inositol-requiring protein 1 (IRE1) (Figure 1)

(Zhang et al., 2019). ERO1 in the ER utilizes O2 to power the

oxidization of PDI and generate H2O2, and this process forms a

disulfide bond. However, when the concentration of H2O2

exceeds the threshold, redox homeostasis in the ER can be

damaged. The OPF process is blocked and leads to the

accumulation of unfolded proteins, which are seized by these

three sensors to trigger different signaling pathways (Higa et al.,

2014). Specifically, ATF6 is transported to the Golgi apparatus,

where it is cleaved by two Golgi-resident proteases (Ye et al.,

2000). Cleaved ATF6 (ATF6f) is further transported into the

nucleus and acts as a transcription factor to promote the

expression of activating transcription factor 4 (ATF4) and

X-box-binding protein 1 (XBP1) (Yamamoto et al., 2007).

PERK undergoes oligomerization and autophosphorylation

when the UPR is initiated (McQuiston and Diehl, 2017) and

then phosphorylates eukaryotic translation initiation factor 2α
(eIF2α), which leads to selective expression of ATF4 (Rowlands

et al., 1988). ATF4 is not only able to regulate adaptive genes that

relieve ER stress but can also promote the expression of the

CAAT/enhancer-binding protein homologous protein (CHOP),

which participates in cell death induction (Rowlands et al., 1988;

Han et al., 2013). After its autophosphorylation, IRE1α serves as

an RNase and splices an intron of downstream XBP1 mRNA,

which is then translated into the potent transcription factor

XBP1 and initiates the transcription of ER-quality-regulation

genes (Maurel et al., 2014). Activation of the UPR signaling

pathway can restore ER viability and is vital for cell growth and

survival (Bertolotti et al., 2000). Normally, no UPR activity is

triggered until ER homeostasis is challenged by ER stress-causing

chemicals, such as excessive ROS. However, these UPR-

mediating genes also participate in developmental behaviors

in a number of species (Mitra and Ryoo, 2019), suggesting

that the UPR can also function in normal physiological

processes. Under conditions of ER stress, the UPR induces the

expression of these genes to restore ER equilibrium.

The over- or prolonged activation of the UPR can have a

harmful effect. Proper modulation of the UPR helps to neutralize

detrimental effects. For example, in neurodegenerative diseases,

research has proven that dysregulated UPR signaling is a major

pathogenic mechanism. However, genetic modulation of the

PERK axis in animal models can prevent neurodegeneration

(Hughes and Mallucci, 2019). Interestingly, both inhibition and

activation of the PERK pathway were found to be beneficial in

neurodegenerative disease models (Shacham et al., 2021). In

diabetes mellitus, overactivation of IRE1α triggered the

apoptosis and degeneration of islet β-cells. Several IRE1α-
inhibiting small molecule compounds spared β-cells from

death (Ghosh et al., 2019). These results indicate that

modulating the activation status of the UPR through genetic

interference or compound addition can have advantages for

disease treatment. Moreover, modulation of the UPR can help
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elucidate the exact interaction between ROS and the UPR. In a

study using human osteosarcoma cells, ROS generation was

downregulated after adding the PERK inhibitor GSK2606414

(Wang et al., 2019), indicating a ROS generation-promotion

effect of the UPR in this model. In contrast, by using a

curcumin derivative to produce ROS in cultured human

amniotic mesenchymal stem cells, researchers found that the

ROS level was further elevated after adding the PERK inhibitor

GSK2656157 (Wang et al., 2021), indicating an adaptive response

from UPR activation.

3.3.2 Roles of ROS and the UPR in development
All three UPR branches are activated by the accumulation

of misfolded proteins and/or the overload of unfolded

proteins in the ER. The development of organisms is

accompanied by an abundant synthesis of proteins, which

requires the ER to operate under high loads. On the one hand,

this load results in a dramatic increase in OPF, followed by the

elevation of H2O2 levels. On the other hand, massive protein

synthesis is more likely to lead to misfolded protein

accumulation and the overload of unfolded proteins.

Commonly, either situation can easily cause ER stress and

UPR initiation signaling in developing cells. However, the

roles of ROS and the UPR in development are far from clear.

We currently know only the effect of core factors in the UPR

signaling pathway.

There are two ATF6 species in vertebrate species, namely,

ATF6α and ATF6β. Double knockout of Atf6α and Atf6β is lethal
at the early embryonic stage, but single knockout of either type

leads to more viable organisms (Yamamoto et al., 2007). Double-

knockout mice present more severe malformations than mice

with other types of UPR molecule knockouts, including Ire1α,
Xbp1, Perk, or Atf4, indicating a broad role for the Atf6 gene in

vertebrate development (Yoshida et al., 2000; Yamamoto et al.,

2007). ATF6 participates in various developmental processes,

including lens development (Firtina and Duncan, 2011; Clark

et al., 2020), neurodevelopment (Saito et al., 2012; Naughton

et al., 2015), mesoderm differentiation (Kroeger et al., 2018),

osteogenesis and chondrogenesis (Maeda et al., 2015; Guo et al.,

2016), adipogenesis and lipogenesis (Lowe et al., 2012), and the

formation of the female reproductive system (Yang Y. et al., 2015;

Xiong et al., 2015). Hyperactivation of ATF6 in human

embryonic stem cells (hESCs) not only promotes the ER

network but also facilitates mesodermal differentiation

(Kroeger et al., 2018). In contrast, loss of ATF6 impedes the

mesodermal fate of hESCs (Kroeger et al., 2018). In human eyes,

mutation of ATF6 leads to defects in the macular central fovea,

which results in achromatopsia, an ocular disease characterized

by a lack of cone photoreceptor function (Ansar et al., 2015; Kohl

et al., 2015). Additionally, ATF6 mutation can lead to cone-rod

dystrophy. Patients suffering from this disease will gradually lose

cone function followed by loss of rod function (Skorczyk-Werner

et al., 2017). By using patient-specific iPSCs and retinal

organoids, a recent study also showed that ATF6 is essential

for the formation of human cone photoreceptors (Kroeger et al.,

2021). All the evidence confirmed the important character of

ATF6 during retinal development. Further studies confirmed

that many different functions of ATF6, such as misfolded protein

detection ability, were impaired upon ATF6 mutation (Chiang

et al., 2017; Tam et al., 2018). ATF6 also participates in lens

development, which is discussed in the following section.

Nevertheless, how the ATF6 gene generally regulates the

development of these ocular cells remains unclear.

Another UPR core organic macromolecule, PERK, also

participates in the process of development. Loss-of-function

mutation of PERK leads to a disease known as

Walcott–Rallison syndrome, which is characterized by

infantile-onset diabetes, exocrine pancreas dystrophy, and

other problems in the bone, liver, and kidney (Durocher et al.,

2006). Compared with that in adult tissues, the activation pattern

of PERK/eIF2a is elevated in the brains of mouse embryos,

indicating the participation of PERK during embryonic brain

development (Zhang et al., 2007). PERK can affect miRNA

networks associated with stemness and differentiation to

determine the fate of myoblast differentiation. In one study of

Perk knockdown in mice, myoblasts changed to stem-like cells

with a marked transformation from a fusiform to a rounded

morphology (Tan et al., 2021). A study in Perk-mutant β-islet
cells showed that anterograde trafficking from the ER to the Golgi

and retrotranslocation from the ER to the cytosol were impaired,

as indicated by the reduced expression of ER chaperones (Gupta

et al., 2010). In addition, a genome-wide association study

(GWAS) revealed a set of human PERK variants in patients

with progressive supranuclear palsy (PSP), which is characterized

by abnormal tau deposits (Höglinger et al., 2011). However, the

mechanism of PERK-mutant PSP is unclear because tau is not a

secreted protein; thus, modification in the ER is unlikely. As the

downstream factor of PERK, Atf4 deficiency can cause

developmental defects, including pancreatic hypertrophy, in

mice (Iida et al., 2007). Atf4-knockout mice also show defects

in lens development. The details are discussed in the following

section. However, the underlying mechanism by which PERK/

ATF4 influences organ development remains unknown.

XBP1, generated by IRE1, is an important regulator during

development. Mutation of Ire1 or Xbp1 in Drosophila is lethal at

early larval stages. However, reintroduction of wild-type genes

can reverse this effect (Huang et al., 2017). Xbp1-knockout

(Xbp1−/−) mice die during embryogenesis because of liver

dysfunction, indicating the requirement for XBP1 in liver

development (Reimold et al., 2000). A study confirmed the

requirement of spliced XBP1 (XBP1s) for the precise secretion

of digestive enzymes in the Drosophila digestive tract (Huang

et al., 2017). In fish, XBP1 is highly expressed in high-secretion

cells, including those in the glands, notochord, and tail (Bennett

et al., 2007; Ishikawa et al., 2017). XBP1s has been reported to be

a differentiation factor required for hatching gland development
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(Bennett et al., 2007). In addition, XBP1s is the key factor for the

growth and development of medaka fish because defects

observed in XBP1-knockout or IRE1-knockout medaka are

fully rescued by constitutive expression of XBP1s (Ishikawa

et al., 2017). XBP1 also participates in the immune system

response. Xbp1−/− mice fail to control infection with the

B-cell-dependent polyoma virus because of the absence of

plasma cells (Reimold et al., 2001). IRE1 shares some

common features with XBP1 during development. Ire1α-
knockout mice present with defects in the liver and pancreas

and salivary gland cells, similar to Xbp1−/−mice (Iwawaki et al.,

2010; Zhang et al., 2011). However, IRE1 also shows apparent

differences with respect to XBP1. The development of the

placenta in mice can be significantly influenced by IRE1α loss

of function, while the developmental defects of the placenta in

Xbp1−/− mice are moderate compared with those of Ire1α−/− mice

(Iwawaki et al., 2009). This difference may result from the

regulated IRE1-dependent decay (RIDD) of mRNA, which

helps to maintain ER homeostasis by reducing the load of ER

client proteins or inhibiting protein synthesis (Maurel et al.,

2014). More importantly, IRE1 is active in early photoreceptors

and is required for normal ER differentiation during the

development of Drosophila photoreceptors (Xu et al., 2016).

In addition, IRE1/XBP1 has been shown to be linked to

retinitis pigmentosa (Chiang et al., 2015), indicating a

connection between photoreceptors and IRE1 signaling. Since

the generation of XBP1s can alleviate the protein-folding load in

the ER, we hypothesize that the development-regulating effect of

the IRE1–XBP1 axis might be part of a “production control”

system. However, little is known about the underlying molecular

mechanism.

In summary, the three UPR signaling pathways participate in

developmental processes. Although some characteristics of

different core factors in the UPR have been revealed, there is

still a long way to go before the development-regulation blueprint

of the UPR or the mutual relationship between the UPR and

other canonical signaling pathways involved in development can

be precisely outlined.

4 ROS and the UPR in lens
development

As mentioned earlier, ROS play important roles in

development, including the regulation of the proliferation and

differentiation of stem cells (Holmstrom and Finkel, 2014). It has

been shown that ROS are able to reduce the stemness of hESCs,

promote their neural differentiation, and enhance the expression

of PAX6 (Hu et al., 2018), an important factor that regulates lens

development. ROS also directly influence the intracellular

localization of PAX6. In corneal cells, PAX6 exhibits apparent

nucleocytoplasmic shuttling following H2O2 treatment (Shukla

and Mishra, 2018). Based on these results, we hypothesize that

there might be a potential connection between ROS and lens

development.

4.1 ROS and LECs

As an important type of lens cell, LECs may be closely related

to ROS. Previous studies have shown that low levels of ROS can

be generated following platelet-derived growth factor (PDGF)

treatment of LECs (Chen et al., 2004; Wang and Lou, 2009).

PDGF is a mitogenic factor that can promote the proliferation of

LECs, in which ROS serve as signaling transducers to activate a

series of downstream signaling pathways, including the MAPKs,

ERK1/2, and JNK (Chen et al., 2004). It was confirmed that the

upstream components of the PDGF receptor kinase, Src-family

kinases, PI3K, RAC, RAS proteins, and arachidonic acid are

required for ROS production and subsequent cell proliferation

following PDGF treatment (Zhang et al., 2006; Chen et al., 2007).

In addition, ROS are also involved in the cell-proliferation-

promoting effect on other growth factors, including EGF and

bFGF, in LECs (Ohguro et al., 1999). Importantly, these growth-

factor-related proliferation-stimulating effects may be eradicated

upon inhibition of ROS (both removal and blockade of ROS)

(Zhang et al., 2008). Endogenous H2O2 is generated in LECs

under basal conditions during lens development (Basu et al.,

2014). We speculate that there is a basal developmental-

regulatory role of ROS in LECs, which requires confirmation

in future studies.

However, ROS can also contribute to cataract formation. We

now understand that the homeostasis of the redox state in LECs is

closely related to the transparency of the crystallin lens. The

imbalance of free radical and antioxidant systems results in

oxidative stress and subsequent cataracts (Wilhelm et al., 2007;

Bai et al., 2013). Heme oxygenase-1 (HO-1) deficiency in LECs is

an example of a stress-inducing condition. It has been shown that

Ho-1 mutant transgenic mice display cataracts 12 weeks after

birth, and this phenotype can be extended into adulthood

(Zhou et al., 2011). Our previous work confirmed that HO-1

can reduce ROS levels and increase antioxidant levels in LECs,

which inhibits the apoptosis of LECs (Ma et al., 2016). As the

major byproduct of HO degradation, carbon monoxide (CO)

confers a protective effect similar to that of HO-1 on LECs

following ROS treatment, as indicated in our recent study

(Huang et al., 2018a). Pretreatment with CO can be used to

target mitochondria in LECs and promote the return of normal

redox homeostasis (Huang et al., 2018b). The detailed molecular

mechanism of the interaction between ROS and HO-1 in LECs

remains unknown. However, the major regulator of HO-1, nuclear

factor erythroid 2-like 2 (NRF2), attracted our attention. NRF2 is a

transcription factor that is critical for the regulation of redox

reactions and antioxidants in mammalian cells (Kensler et al.,

2007). Under physiological conditions, NRF2 is sequestered by the

inhibitor protein Kelch-like ECH-associated protein 1 (KEAP1).
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When oxidative stress occurs, NRF2 is released from KEAP1,

translocates to the nucleus, and initiates the expression of a series

of genes, includingHO-1 (Baird andDinkova-Kostova, 2011). Our

recent research showed that the expression level of NRF2 in LECs

increased significantly following ROS treatment, and transfecting

LECs with the NRF2 gene enhanced the protective effect of

NRF2 against oxidative damage (Ma et al., 2018). More

importantly, NRF2 was found to interact with a UPR signaling

pathway and the PERK pathway, by binding to the downstream

factor ATF4. An increase in the NRF2-ATF4 complex level can be

detected when the environmental H2O2 concentration increases,

which facilitates NRF2-conferred protection (Ma et al., 2018). In

summary, these results suggest a close relationship between ROS

and LECs. Unfortunately, there is no direct research focusing on

the potential effect of ROS on lens development, and future work is

required to reveal the possible effect.

FIGURE 2
Dynamic distribution of three UPR pathways during the third phase of lens development. “Blue” refers to lens cells; “red,” “yellow,” and “green” in
A, B, and C refer to ATF6, XBP1, and PERK expression, respectively. (A1–A2): ATF6 expression level increases sharply in LFCs and gradually diffuses to
LECs. By the end of lens development, the highest expression level of ATF6 is detected around the transition zone. (B1–B2): XBP1 expression is initially
increased in LFCs. It then decreases in LFCs but increases in LECs. By the end of development, the highest expression level of XBP1 is found in
LECs adjacent to the corneal epithelium. (C1–C2): PERK expression level first appears at the apical tips of all LFCs and then accumulates
predominantly in newly born LFCs while declining to nothing in central LFCs as development proceeds. LECs: lens epithelial cells; LFCs: lens fiber
cells.
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4.2 Cross-talk between components of
the UPR and lens development

As an adaptive response to ROS, the UPR is established in the

lens. The mechanism responsible for the activation of all three

UPR pathways is highly conserved among vertebrates (Cvekl and

Zhang, 2017), including mammals and fish (Ishikawa et al.,

2011). These model animals are frequently used to study the

influence of the UPR. There is considerable evidence showing

UPR-related cataract formation (Torres-Bernal et al., 2014; Yang

et al., 2015a; Yang et al., 2015b; Lyu et al., 2015) in these animals.

However, in this situation, the UPR is highly activated, which

induces apoptosis of both LECs and LFCs (Ikesugi et al., 2006). In

contrast, moderate activation of the UPR was shown to influence

normal lens development (Firtina et al., 2009). A study confirmed

that all three UPR pathways are activated during mouse lens

development but exhibit relatively different patterns (Firtina and

Duncan, 2011).

ATF6, IRE1, and PERK are all expressed at low levels after the

formation of lens vesicles (phase 2) in mice (Firtina and Duncan,

2011). As development continues, the ATF6 expression level

increases sharply in LFCs and gradually diffuses in LECs.

Through the end of lens development, the highest expression

level of ATF6 is detected near the transition zone (Figures 2A1-

A2) (Firtina and Duncan, 2011). To better investigate

ATF6 activity during development, an ATF6-eGFP reporter

was recently created for use in zebrafish (Clark et al., 2020).

After injecting the reporter plasmid into zebrafish embryos, the

highest eGFP expression was observed in the lens and skeletal

muscle. The expression in skeletal muscle decreased as

development continued, while the expression in lens remained

relatively consistent (Clark et al., 2020). This exciting result

indicates the full participation of ATF6 during lens

development. However, current studies only provide us with

correlative evidence. To further speculate on the underlying

mechanism, we referred to the molecular function of ATF6. A

previous study has shown that ATF6 is closely linked to tolerance

to chronic stress (Wu et al., 2007). The subunit activity of

ATF6 also plays important roles in maintaining tissue

homeostasis (Hillary and FitzGerald, 2018). During the late

stage of lens development, LFCs undertake extensive crystallin

protein synthesis. Simultaneously, the elongation of LFCs

requires multiple microtubules to promote dramatic

deformation (Audette et al., 2017). The differentiation from

LECs to LFCs at the transition zone is accompanied by a

series of changes in gene expression patterns. As massive

protein synthesis, microtubule movements, and changes in

gene expression patterns might disturb homeostasis within

lens cells, we hypothesize that the expression pattern of

ATF6 during lens development could guarantee the relative

stabilization of the internal microenvironment.

The expression level of XBP1, the downstream factor of

IRE1, is also increased in LFCs during development (Firtina and

Duncan, 2011). It then decreases in LFCs but increases in LECs

during the middle stage (phase 3). By the end of development,

the highest expression level of XBP1 is found in LECs adjacent

to the corneal epithelium (Figures 2B1-B2) (Firtina and Duncan,

2011). Unfortunately, how the IRE1 branch actually influences

lens development is far from clear. We presume that the role of

IRE1 is linked to protective effects. Deletion of Xbp1 in

epithelial cells dramatically inhibits cell proliferation and

differentiation as well as characteristic protein synthesis in

mice (Hasegawa et al., 2015), indicating the necessity of

XBP1 in epithelial growth. In Drosophila, a study confirmed

the physiological stress resolution characteristics of the

IRE1–XBP1 axis during normal development (Huang et al.,

2017). More specifically, IRE1–XBP1 was strongly activated in

neuropil and peripheral glia in Drosophila and the counterparts

of oligodendrocytes and Schwann cells in mammals, providing

protective and homeostasis-maintaining effects to nervous

systems (Sone et al., 2013). Additionally, activation of

IRE1 was related to the activation of the proapoptotic JNK

pathway, which can lead to apoptosis (Urano et al., 2000). As

LECs are located at the frontal surface of the lens and directly

face the aqueous humor and corneal epithelium, we hypothesize

that the accumulation of IRE1 in LECs might protect cells

against apoptosis and help maintain homeostasis in lens

development.

The participation of PERK starts in the third phase of lens

development. The PERK expression level first appears at the

apical tips of all LFCs and then becomes predominant in new

LFCs but is completely abolished in the central LFCs as

development proceeds (Figures 2C1-C2) (Firtina and Duncan,

2011). As a downstream factor in the PERK pathway, ATF4 has

also been shown to play an important role in lens development.

Atf4-knockout mice display impaired secondary LFC formation,

while their primary LFCs and normal retinal development seem

to be unaffected (Tanaka et al., 1998). Histological analysis

showed that LFCs undergo apoptosis as development

proceeds. The failure of secondary LFC formation ultimately

results in microphthalmia (Tanaka et al., 1998). To further

determine whether Atf4 gene expression in the lens is

essential for LFC differentiation, the Atf4 gene was transferred

downstream of the αA-crystallin promoter in Atf4−/− mice. The

microphthalmia defect was fully ameliorated in transgenic mice

(Tanaka et al., 1998). In addition, a study based on

transcriptomic analysis revealed the potential controlling role

of eIF2 during lens development (Zhao Y. et al., 2018). These

results are in agreement with the characteristics of the PERK

activation pattern during lens development. In contrast to

ATF6 and IRE1, which both induce a transcriptional response

to relieve stress conditions, PERK mainly causes a rapid

reduction in global rates of protein translation (Hughes and

Mallucci, 2019). The conversion of LECs into LFCs is coupled

with the elongation of the cell body together with the synthesis of

crystallin protein. We hypothesize that PERK-ATF4 activation
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might help to stop irrelevant protein synthesis and minimize

energy consumption.

Currently, there are no direct studies showing the influence of

the UPR on signaling pathways that participate in lens development.

However, the UPR is connected to these signaling pathways in other

types of cells. As mentioned in the second section, FGF, BMP, and

Wnt serve as core molecular regulators in three lens development

stages. A study found that UPR activation is an inducer of FGF1 and

FGF2 expressions inmelanoma cells and is positively correlated with

the activity of the ATF6 and PERK signaling pathways (Eigner et al.,

2017). During angiogenesis, PERK kinase and its downstream factor

ATF4 are drivers of FGF2 expression (Wang et al., 2012; Philippe

et al., 2016). Additionally, moderate UPR activation can lead to the

expression of FGF21 and its receptor FGFR1 in cardiomyocytes

FIGURE 3
Three-stage protocol to form LBs from human PSCs using two improvedmethods. The black arrow indicates themain route of the three-stage
protocol. The blue arrow indicates the ROR1+ LPC aggregationmethods. The red arrow indicates the “fried egg”method. LBs generated under these
protocols can be used to study the mechanism of cataract formation, to apply drug screens, and to investigate lens development. PSCs, pluripotent
stem cells; NECs, neuroectodermal cells; Abs, antibodies; LPCs, lens progenitor cells; D-cells, differentiating cells; S-cells, supporting cells; LBs,
lentoid bodies.
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(Liang et al., 2017). The IRE1α–XBP1 pathway directly activates the
transcriptional expression of Fgf21 (Jiang et al., 2014). However, in

contrast to typical ROS-mediated UPR activation, hypoxia-induced

UPR activation reduces FGF signaling in cardiac progenitor cells

(Shi et al., 2016), indicating that hypoxia-induced UPR plays a

different role than that of the ROS-mediated UPR. For BMP signals,

an interconnected regulatory loop is established with XBP1 and

BMP4 in Xenopus that synergistically participates in mesodermal

and neural tissue development (Cao et al., 2006). However, studies

are now focused more on BMP signaling as an upstream factor that

initiates activation of the UPR during osteogenesis, not the

downstream effector (Li et al., 2014; Tanaka et al., 2014). We

speculate that BMP signals might also play a regulatory role

through UPR signaling pathways during lens development, for

which further studies are needed for verification. Wnt has also

been linked to the UPR. In osteocytes, genome-wide RNA

sequencing indicates a regulatory effect of upstream XBP1 on

Wnt signaling (Zhou et al., 2018), and UPR activation may result

in active Wnt signaling (Chan et al., 2017). In stem cell

differentiation studies, UPR activation drives endodermal cell fate

via the β-catenin signaling pathway (Xu et al., 2014). ATF4 and

ATF6 were found to be linked with the β-catenin pathway during

osteogenesis and adipogenesis, respectively (Nakamura et al., 2013;

Yu et al., 2013). In some cancer cells, IRE1α–XBP1 plays a positive
regulatory role in the Wnt signaling pathway (Hua et al., 2013;

Rodvold et al., 2017). Based on the relevant evidence, we hypothesize

that there might be a positive correlation between the UPR andWnt

signaling in lens development.

Taken together, the data indicate that the three branches of

the UPR may participate in lens development and display

potential interconnections with the signaling pathways

involved. However, current evidence is still fragmented. Only

several core molecules of the UPR have been demonstrated to

participate in lens development. Since some factors, such as

ATF4, are multifunctional, studies based on individual factors

within the UPR cannot illustrate the precise mechanism by which

the UPR influences lens development. Additionally, lens

development is a continuous process that occurs in fetuses in

the uterus. It is relatively difficult to acquire direct and timely

morphological and molecular evidence to better understand

developmental processes. Because of ethical problems, current

knowledge is largely based on model animals that are profoundly

different from humans. Although capturing the blueprint of the

UPR molecular regulation pattern and finding direct evidence of

human lens development are of great importance, selecting an

appropriate model seems to have become a priority.

5 Future directions

Great progress has been made in recent regenerative medical

studies. hESC- and human-induced pluripotent stem cell (hiPSC)-

based 3D tissue generation has shed light on developmental biology.

These tools not only provide new ways to elaborately study both

morphological andmolecular details during human organ formation

but also serve as ideal models to study diseases and screen drugs

(Rossi et al., 2018). Currently, using hESCs or hiPSCs, stem cell

technology is applied to generate organ-like structures (organoids),

including the optic cup, cerebrum, cerebellum, intestine, colon, liver,

lung, and kidney (Eiraku et al., 2008; Spence et al., 2011;Nakano et al.,

2012; Fordham et al., 2013; Takebe et al., 2013; Takasato et al., 2014;

Muguruma et al., 2015; Dye et al., 2016). Cultivated tissues show

organizational structures, cell composition, and functional

characteristics similar to those of the original organs. Based on

the 3D cultivation system, in our previous studies, we successfully

analyzed the influence of microenvironmental changes during retinal

development (Gao et al., 2016) and recently isolated a group of

promising therapeutic cell sources to treat retinal degenerative

diseases (Zou et al., 2019).

Due to the special construction of the lens, the ideal 3D

cultivation method for generating intact and functional human

lenses has not yet been developed. However, efforts are being

made to form lens-like (lentoid) bodies or microlenses from

hESCs and hiPSCs (Figure 3). Yang et al. (2010)first reported a

three-stage system to differentiate hESCs into lens progenitor

cells that subsequently formed small lentoid bodies

(approximately 1,000 bodies per 30-mm well). Considering

this result, Murphy et al. (2018)successfully generated

microlenses with light-focusing ability, the characteristic

function of the lens, from both hESCs and hiPSCs by

aggregating ROR1+ LECs from induced lens progenitor cells.

Later, the antibody isolation method was simplified through

research and development of the cell strainer method (Dewi

et al., 2020). The cells generated with this method showed RNA

expression profiles similar to those of ROR1+ LECs and could

also generate lentoid bodies with light-focusing ability (Dewi

et al., 2020). A “fried egg” method was created by Fu et al.,

(2017a) in 2017. In this protocol, hiPSCs were induced into lens

progenitor cells and lentoid bodies. This method significantly

increased the induction efficiency and volume of the lentoid body

(diameter approximately 3 mm). Further transcriptional analysis

confirmed that the expression profiles of both the hESC- and

hiPSC-derived lentoid bodies generated with the “fried egg”

protocol were comparable (Ali et al., 2019) and mimicked the

early stage of lens development (Ali et al., 2020). Nevertheless,

the “fried egg” method may be regarded as an upgrade of the

three-stage protocol, as the induction time window and

induction supplement are relatively identical. In contrast,

Nanog-negative peripheral cells were isolated at the end of the

first step in the “fried egg” method. Both the ROR1+ cell

aggregation and “fried egg” methods are enriched in LEC

progenitor cells at second-stage induction, which contributes

to lens fate establishment from ESCs and iPSCs.

These models were proven to be excellent for exploring cataract

formation mechanisms (Murphy et al., 2018; Qin et al., 2019) and

studying autophagy during lens development (Fu et al., 2017b).
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More importantly, as they are more disposable and because the

results are easier to monitor than in vivo models, these models are

ideal by their nature for studying the influence of specific signaling

pathways during human lens development (Figure 3). By using the

“three-stage” protocol, a study confirmed the lens differentiation-

promoting effect of the noncanonical Wnt pathway (Han C. et al.,

2018). As the UPR is also involved in signaling pathway activation,

these models can be similarly used to study the UPR influence. The

pathological effects of the UPR have already been discovered using

kidney, lung, and intestinal organoids (Dvela-Levitt et al., 2019;

Bampi et al., 2020).

Additionally, progress in other technical areas also helps the study

of lens development. Emerging high-throughput methods, including

microarrays, RNA-sequencing, and tandem mass spectrometry,

provide us with better approaches to understand the gene

regulatory network and generate a global protein expression profile

during lens development (Anand and Lachke, 2017; Aryal et al.,

2020). Advances in single-cell transcriptomics further expand

research tools. Using this technology, Dylan et al. discovered the

temporospatial expression patterns of three crystallin proteins and

examined the expression dynamics related to cytoskeletal, RNA-

binding, membrane-associated, and transcription factor genes in

the zebrafish lens (Farnsworth et al., 2021). With this technical

progress, the technology of 3D tissue generation can be better

used for future research on lens development.

In summary, it is foreseeable that lentoids derived from

hESCs or hiPSCs will be able to provide a new and relatively

direct understanding of the UPR in lens development and may

become a momentous tool for development biology research.

6 Conclusion

Lens development and UPR signaling pathways have been

elaborately investigated in recent decades. The former is usually

considered a normal physiological process, while the latter is

often studied under pathological conditions. However, growing

evidence has demonstrated that some core factors of the UPR are

also important during developmental processes, although errors

in the UPR function can turn “physiological” into “pathological.”

To date, there is still a large gap in understanding the effects of

the UPR during lens development. Current studies only provide

correlative evidence based on individual factors in the UPR. The

detailed interrelations as well as the specific influence on each

developmental stage will require extensive efforts to develop the

precise blueprint. Indeed, the number of developing lens cells is

small, in addition to unknown processes during lens

development, which both become critical challenges faced by

future research. As the novel 3D cultivation method continues to

be developed, there is reason to believe that dramatic progress

can be made with this technological advance. More importantly,

the orchestrating but concise construction, simple cellular

constitution, and easy monitoring methods make the lens a

perfect model for deciphering developmental codes. Thus,

determining the ROS and UPR mechanisms in lens

development is of great value not only within the

ophthalmological field but also for developmental research.
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Glossary

aPPR anterior pre-placodal region

ATF4 activating transcription factor 4

ATF6 activating transcription factor 6

BMP bone morphogenetic protein

BNIP3L BCL2-interacting protein 3-like

CHOP CAAT/enhancer-binding protein homologous protein

CO carbon monoxide

CRYAA αA-crystallin
DCR distal control region

eIF2α eukaryotic translation initiation factor 2α
ER endoplasmic reticulum

ERK1/2 extracellular signal-regulated kinases 1 and 2

ERO1 endoplasmic reticulum oxidoreductin 1

F-actin filamentous actin

FGF fibroblast growth factor

FSR2 fibroblast growth factor receptor substrate 2

GRB2 growth factor receptor-bound protein-2

GWAS genome-wide association study

hESC human embryonic stem cell

hiPSC human induced pluripotent stem cell

HO-1 heme oxygenase-1

IRE1 inositol-requiring protein 1

JNK c-Jun N-terminal kinase

Keap1 Kelch-like ECH-associated protein 1

LEC lens epithelial cell

LFC lens fiber cell

MAPK mitogen-activated protein kinase

MCS membrane contact site

NADPH nicotinamide adenine dinucleotide phosphate

NRF2 nuclear factor erythroid 2-like 2

OPF oxidative protein folding

OTX2 orthodenticle homeobox 2

PAR3 partitioning defective protein 3

PAX6 paired box protein 6

PDGF platelet-derived growth factor

PDI protein disulfide isomerase

PERK protein kinase RNA-like endoplasmic reticulum kinase

PI3K phosphoinositide 3-kinase

PSP progressive supranuclear palsy

PTEN Phosphatase and tensin homolog

RhoA Ras homolog family member A

RIDD regulated IRE1-dependent decay

ROR1 receptor tyrosine kinase-like orphan receptor 1

ROS reactive oxygen species

RTK receptor tyrosine kinase

SHP2 Src homology 2 domain-containing protein tyrosine

phosphatase 2

UPR unfolded protein response

XBP1 X-box-binding protein 1

Yap Yes-associated protein.
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