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Abstract: Continuously operated pharmaceutical manufacturing lines often consist of a wet granulation
unit operation, followed by a (semi-) continuous dryer. The operating conditions of the dryer are crucial
for obtaining a desired final granule moisture. Commercially available dryers lack of a thorough
online measurement of granule moisture during the drying process. However, this information could
improve the operation of the equipment considerably, yielding a granule moisture close to the desired
value (e.g., by drying time and process parameter adjustments in real-time). The paper at hand
proposes a process model, which can be parameterized from a very limited number of experiments
and then be used as a so-called soft sensor for predicting granule moisture. It utilizes available
process measurements for the estimation of the granule moisture. The development of the model
as well as parameter identification and validation experiments are provided. The proposed model
paves the way for the application of sophisticated observer concepts. Possible future activities on that
topic are outlined in the paper.

Keywords: continuous manufacturing; soft sensor; process modeling; continuous drying

1. Introduction

In continuous “from powder to tablet” pharmaceutical wet granulation lines, an intermediate
drying step is needed to ensure appropriate granule moisture [1,2]. The granule moisture content
(further denoted by ‘loss on drying’ or LOD) after the drying step is typically considered an intermediate
critical quality attribute of the final drug product [3]. Depending on the type of dryer and its operating
mode, the variability of material attributes and process disturbances can lead to varying LOD after
drying. Such variations can be mitigated by the implementation of feedback control [4]. However,
the realization of feedback control for LOD requires the knowledge of the actual LOD value, which is
not easily accessible via real-time measurements.

In common semi-continuous dryers [1,2], multiple separated cells are sequentially filled and used
for drying the granules in each cell, such systems have, for example, been implemented by GEA, Bohle
or Glatt. In order to measure the LOD in the individual cells, multiple sensors, such as near infrared
(NIR) probes or microwave resonance technology (MRT) sensors [5], would be needed. These types
of sensors are typically expensive, and therefore, their installation in all dryer cells is not feasible.
However, in most systems, standard process sensors capturing the air and material temperatures,
the air volume flow and pressure, and the air humidity are implemented. A recent study has used this
information to estimate the granule LOD from energy and mass balances [3]. Although a technique
is introduced to approximately model dynamic changes of the dryer parameters, e.g., dryer rotation
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speed or inlet material mass flow, a more rigorous mechanistic modeling approach would be needed to
predict the impact of these dynamic parameter changes accurately. The potential of applying a process
model for optimizing the startup procedure of pharmaceutical drying units is demonstrated in [6,7].
The process model used in these studies is not based on first principles but on statistically obtained
factor–response relationships. This approach offers the advantage of using simple models but has the
drawback of needing an extensive experimental effort to obtain the model parameters.

Models that are based on a mechanistic understanding of the process can reduce this experimental
effort. Therefore, our study aimed at providing a process model, which is based on a mechanistic
understanding of the drying process. Nevertheless, any underlying process model (PM) should be kept
as simple as possible for two reasons: First, the computational effort for performing simulations should
be kept low, allowing the execution of the simulation in parallel with the real process, as required
for model-based control strategies. A real-time execution of the PM is then considered a soft sensor
for predicting LOD. Specifically, measured process inputs are the input for the PM, which computes
estimates of the LOD. Second, the simple structure of the model should allow the development of
observer concepts [8,9] in the future. Such concepts use the measured system inputs and system
outputs, as well as a mathematical model of the system to compute an estimate of non-measured
system states.

The present work outlines the development of such a PM, which is then used as a straightforward
soft sensor. The proposed soft sensor uses available process data of an industrial GEA ConsiGmaTM-25
powder-to-tablet wet granulation line in order to predict the LOD of the granules in the dryer.

The next section introduces the plant setup, the available process data acquisition, and details on the
proposed soft sensor approach and the parametrization. Validation results of the soft sensor approach
are provided in Section 3. Section 4 concludes the paper and gives an outlook on future activities.

2. Materials and Methods

2.1. Process Setup and Problem Statement

A schematic of the process units—feeding, wet granulation, and drying—is shown in Figure 1.
A pre-blend and a granulation liquid are fed into a twin-screw wet granulator and the produced wet
granules are then transported to the fluid bed dryer by a pneumatic transport system.

The dryer used in the ConsiGmaTM-25 line (GEA Pharma Systems, Wommelgem, Belgium)
consists of 6 cells, which are sequentially filled with wet granules (stage 1). An air handling unit (AHU)
provides a defined air volume flow at a controlled temperature to the dryer and the granules are dried
(stage 2). After the drying process in one cell is finished, the respective cell is emptied pneumatically
(stage 3). Depending on the required drying time, a certain number of cells is filled with material at a time.

During stage 1, a constant air mass flow from the granulator to the dryer,
.

mp
a , is used to transport

the granules into the dryer. Every 180 s, the outlet of this transport line is switched from one cell to the
next cell. All air masses and air mass flow rates refer to dry air. The mass / mass flow rate of humid air
is obtained by multiplication with (1 + xa), where xa is the corresponding water content in kg of water
per kg of dry air. The air temperature and relative humidity of the ambient air are denoted by Ta

a and ϕa
a,

respectively. Subscripts are used for indicating the material, e.g., air, superscripts denote the location,
e.g., ambient. A “t” in the superscript refers to the total mass flow, in contrast to individual mass
flows of specific cells. Air pressure is denoted by p. The dry mass of granules in the dryer is denoted
by mg, the water mass in the granules is given by mw. The drying—taking place during stage 2—is

accomplished by means of inlet air coming from the air handling unit (total inlet air mass flow
.

mi,t
a , inlet

air temperature Ti
a, and inlet air humidity ϕi

a). The air properties at the outlet of the dryer are denoted
by superscript “o”. During emptying in stage 3, which takes 30 s, an intermittent air flow (denoted
.

m f
a ) is injected into the respective filter to clean the filter from dust via blow-back. This intermittent

air flow is active for 10 s in a pulse-wise fashion during the emptying phase. The emptying itself is
achieved by a pneumatic transport system. During the emptying phase, part of the inlet air mass flow
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.
mi,t

a and part of the filter blow-back air mass flow
.

m f
a exits the dryer as emptying air mass flow

.
me

a.
In standard operation mode, the drying time of all cells is fixed at a constant time interval. Changes
in the inlet material properties and process parameters, such as the initial LOD (wp) of the pre-blend
material, liquid to solid ratio at the granulation unit, granule mass flow rate (composed of dry granule
mass flow

.
mi

g and mass flow of water contained in the granules
.

mi
w), dryer inlet air temperature Ti

a and

humidity ϕi
a, and dryer inlet air mass flow

.
mi,t

a , are influencing the LOD (wg) of the granules.

1 
 

 
Figure 1 
 

 

Figure 2 
 

Figure 1. Schematic of the process setup including the process variables. A loss in weight feeder and
a liquid pump are used for feeding raw materials into the twin-screw granulator. After granulation,
the wet granules are transported to the dryer via pneumatic transport (stage 1). After the drying (stage 2)
has been finished in the dryer, the dried material is transported to the downstream unit operations via
another pneumatic transport (stage 3). See the nomenclature section for a variable description.

Cell number 5 of the dryer is equipped with a Lighthouse ProbeTM by GEA (LHP) that enables the
use of an NIR spectrometer (NDC FP710e, NDC Infrared Engineering, Maldon, Essex, United Kingdom).
The measurement signal is indicating the LOD of the granules in cell 5. In all of the six cells, a PT100
temperature sensor (JUMO PT 100—type 902044, JUMO GmbH & Co. KG, Fulda, Germany) is installed,
which captures the material/air temperature close to the bottom of the dryer. Note that the granules
form a shallow fluidized bed and therefore, it is a valid assumption that the temperature in the bed
is uniform. Furthermore, the inlet and outlet air temperature (Ti

a, To
a) and humidity (ϕi

a, ϕo
a), as well

as the total inlet air volume flow rate
.

V
i,t
a , are measured. A sketch of the dryer is shown in Figure 2.

As indicated in that figure, the air condition (To,t
a , ϕo,t

a ) of the total dryer outlet air, which is a mixture
of the individual cell’s outlet air, is measured. However, no information on the individual cell outlet
air temperature or humidity is available.

Although the cells are geometrically identical, there might be cell-to-cell variation in terms of the
air volume flow and air temperature, because the inlet air is entering radially—in a non-symmetric
manner—from one side of the dryer. This construction could ultimately induce different air volume
flows and temperatures in the single cells. However, the temperature differences between the cells
measured in the empty dryer at the nominal air flow were in the range of only a few degrees Celsius.
Therefore, for the paper at hand, these effects were neglected (see the assumption in Section 2.3.1).
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Figure 2. Sketch of the dryer cells and the airflow distribution. Airflows needed for granule transport
and for filter blowback are omitted for the sake of simplicity. Dry mass of granules and the corresponding
water content (wet basis) in cell k are denoted by mg,k and wg,k, respectively.

The proposed soft sensor should be capable of estimating the LOD of the granules in the respective
dryer cell k, i.e., wg,k =

mw,k
mg,k+mw,k

× 100% from the available process data. Possible applications of the
developed soft sensor for the estimation of the individual cells’ LOD could be to establish a redundancy
to the LHP or even act as a low budget replacement of the LHP. The availability of the LOD information
could further be used for improving the operating performance of the dryer, see Section 4. In the
remainder of the paper, the cell index k is omitted, because the presented equations are valid for each
of the cells.

For model parametrization and validation of the soft sensor approach, experiments were conducted.
The model formulation given in Table 1 was used.

Table 1. Used model formulation.

Material wt. %

Lactose (GranuLac® 200, MEGGLE, Wasserburg am Inn, Germany) 72
Corn starch (Maisita, Native Maisstärke, Agrana, Vienna, Austria) 24

Povidon PVP (Kollidon® 90 F, BASF/BTC Europe GmbH, Monheim am Rhein, Germany) 4

2.2. Process Data Acquisition

Two sets of experiments were executed. The first set was used to identify the model parameters,
the second set provides validation data. The process data were acquired via SIPAT [10], which is
connected to the SCADA system of the ConsiGmaTM line via OPC DA. All the data were captured
“as is”, except for the LHP readings on the granule LOD, where a calibration of the LOD data was
done. Granules at different LOD were produced and presented to the LHP in a suitable small bucket.
Subsequently, the LOD was determined by means of an LOD scale (Mettler Toledo Moisture Analyzer
HC103, Mettler-Toldeo GmbH, Vienna, Austria), which was configured by a switch-off criterion of
1 mg/90 s. The values indicated in Figure 3 were measured and the calibration curve:

LODLHP = 2.0218× LODLHP,raw − 1.571 [%], (1)
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was fitted, as shown in Figure 3. As suggested in the manual of the ConsiGmaTM line [11], a linear
calibration curve was used. The linearity of the calibration curve was validated in internal studies
in the past, and therefore, in the current paper, the two extreme values (measured in triplicate) were
assumed to be sufficient information for defining the calibration curve. 

2 

 

Figure 3 
 
 

 
Figure 4 
 
 

Figure 3. Calibration curve Lighthouse ProbeTM (LHP).

2.3. Soft Sensor

The proposed soft sensor is based on a dynamic model of the dryer. First, a mathematical model
of one dryer cell is developed, which is based on energy and mass balances. Then, six of those models
are interconnected in order to model the ConsiGmaTM dryer.

2.3.1. Model of One Dryer Cell

The following assumptions and simplifications are made for modelling one dryer cell:

• The overall air flow entering the dryer is equally distributed between the 6 cells, independent of
their granule fill level, i.e.,:

.
mi

a =

.
mi,t

a
6

. (2)

• The total inlet air mass flow
.

mi,t
a of dry air is obtained from the measured volume flow of air

.
V

meas
a and the measured inlet air temperature, humidity, and pressure. The computation of the

mass balance of the dryer from the captured process data revealed minor inconsistencies between
the measured air humidity gain (from dryer inlet to dryer outlet) and the expected humidity
gain computed from the inlet air humidity and the granule water content decrease. They are
likely linked to measurement uncertainties of the volume flow meter. For their compensation,

a correction factor kV is introduced in the computation of the total air volume flow
.

V
i,t
a from its

measured value, i.e.,:
.

V
i,t
a = kV

.
V

meas
a . (3)
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This correction factor is considered as a parameter to be identified, see Section 2.3.2. From the

inlet air flow rate
.

V
i,t
a , the inlet air water content xi

a, and the partial water pressure pi
v (which are

computed via Equations (15)–(17)), the inlet air mass flow of dry air is computed with the help of
the specific gas constant of water vapor Rv via [3]:

.
mi,t

a =
pi

v
.

V
i,t
a

xi
a Rv (Ti

a + 273.15 K)
. (4)

• During emptying of the dryer cell, a constant portion αin,e of the inlet air mass flow exits the dryer
via the pneumatic transport system used for emptying. Furthermore, it is assumed that part α f ,e
of the blowback air exits the dryer via the same route, i.e.,:

.
me

a = αin,e
.

mi,t
a + α f ,e

.
m f

a . (5)

The values of αin,e = 1/35, α f ,e = 0.13 and filter blowback volume flow
.

V
f
a = 20 m3/h were

selected manually during the parameter identification procedure. Filter blow back air mass flow
.

m f
a was computed from

.
V

f
a using the ambient air condition.

• For modelling the heat transfer from the air in the dryer to the environment, the heat capacity of
the outer dryer wall is neglected. The heat flow is assumed to be proportional to the temperature
difference between air in the dryer and ambient air.

• Heat transfer to neighboring cells through the separating walls is neglected.
• Outlet air flows of the individual cells are assumed to be perfectly mixed before they reach the

outlet air temperature and humidity sensor.
• The influence of the air temperature Ta on the air density and consequently on the air mass ma

inside the dryer cells is neglected, i.e., it is assumed that ma is constant. Furthermore, space
occupied by the granules that would reduce ma is neglected.

• Air condition (temperature, humidity, and pressure) of the filter blowback air and of the granule
transport air are assumed to be the ambient air condition.

The inputs and outputs of the model are shown in Figure 4. The implementation of the model
was done as shown by the blocks in Figure 4: The mixing of dryer inlet air flow, pneumatic transport
air flow, and filter blowback air flow to compute the net inlet air flow and air condition (indicated
by a “∼”) was implemented in a dedicated mixing block (denoted by III). Information on cell filling
and emptying, which is also needed in order to determine all inputs of the mixing block, is derived
from line operation data. The sections denoted by I and II are implemented in another dedicated
block. Equations (1)–(14) are evaluated in this block. The software Matlab®/Simulink®, Release 2018b
(The MathWorks, Inc., Natick, MA, USA) was used to implement the dryer model.

The mass balances for the granules, the water and the air in (I) and (II), are given by:

d mg

dt
=

.
mi

g −
.

me
g, (6)

d mw

dt
=

.
mi

w −
.

me
w −

.
mw , (7)

d ma

dt
= 0 =

.
m̃

i
a −

.
mo

a, (8)

d (ma xa)

dt
= ma

d xa

dt
=

.
m̃

i
ax̃i

a −
.

mo
axa +

.
mw. (9)
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Please see Figure 4 for the meaning of the variables used in Equations (6)–(9). The terms −
.

me
g and

−
.

me
w in Equations (6) and (7) are non-zero during emptying of the dryer. As the emptying is finished

within a few seconds, i.e., in a time span much shorter than one drying cycle (see Section 3), mw and
mg are set to zero during emptying. This procedure offers the advantage that the actual values of
−

.
me

g and −
.

me
w are not needed in order to perform the simulation. To obtain the required inputs of the

model (I) and (II) from the available process data, ideal mixing and energy conservation was assumed

in block (III). The net inlet mass flow of dry air
.

m̃
i
a and its corresponding temperature T̃i

a and water
content x̃i

a are computed under this assumption the energy balances in (I) and (II) are given by:

dUgw

dt
=

.
mi

gcgTi
g +

.
mi

wcwTi
g −

.
mwcwTg −

.
me

gcgTg −
.

me
wcwTg +

.
Qag, (10)

dUav

dt
=

.
m̃

i
ãhi

a −
.

mo
aha +

.
mwcwTg −

.
Qloss −

.
Qag =

.
m̃

i
a (̃h

i
a − ha) +

.
mwcwTg −

.
Qloss −

.
Qag. (11)

 

2 

 

Figure 3 
 
 

 
Figure 4 
 
 

Figure 4. Energy and mass transfer, model inputs, and model outputs. The left part of the figure shows
the boundaries of the considered sub-systems, the right part of the figure shows the blocks that were
used for model implementation, i.e., the mixing (sub-system III) was implemented as one separate
block, whereas air and granule mass and energy balances (sub-systems I and II) are implemented in a
separate block.

For the terms −
.

me
gcgTg and −

.
me

wcwTg in Equation (10), the same argumentation as given in the
paragraph above was applied. Consequently, during emptying, the internal energy of granules Ugw

was initialized to zero. During drying, it is assumed that the water contained in the granules is
transferred to the air, where it immediately evaporates. The internal energy of air and granules is
computed according to:

Ugw = mgcgTg + mwcwTg, (12)

Uav = ma(cp,aTa + xa
(
cp,vTa + ∆he

))
. (13)

Equations (12) and (13) are rearranged to compute Tg and Ta, respectively. The specific enthalpy
ha of the humid air, but based on the dry air mass ma, is computed by:

ha = cp,aTa + xa
(
∆he + cp,v Ta

)
. (14)
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The conversion from relative humidity ϕa to water content xa and vice versa is done via the
relations provided in [12,13]:

ϕa =
pv

pv,s
, (15)

xa = 0.622
pv

p− pv
, (16)

pv,s = 611× exp
(
−1.91275× 10−4 + 7.258× 10−2

× T − 2.939× 10−4
× T2 + 9.841× 10−7

·T3
− 1.92× 10−9

× T4
)
. (17)

Here, the conversion factor of 0.622 refers to the conversion of molar fractions to mass fractions.
The pressures p, pv, and pv,s denote the total pressure, the partial pressure of water vapor, and the
partial pressure of saturated water vapor, respectively. The outlet air condition of the dryer in terms of
temperature and humidity is obtained from the outlet air conditions of the individual cells via:

.
mo,t

a =
∑6

k=1

.
mo,k

a , (18)

xo,t
a =

1
.

mo,t
a

∑6

k=1
xo,k

a
.

mo,k
a , (19)

To,t
a =

∑6
k=1

.
mo,k

a ha,k − xo,t
a ∆he

.
mo,t

a
.

mo,t
a (cp,a + xo,t

a cp,v)
. (20)

The terms describing energy and mass transfer,
.

Qag,
.

Qloss, and
.

mw, respectively, are approximated by:

.
Qag =

[(
(1− k1)T̃i

a + k1Ta
)
− Tg

]
kag, (21)

.
Qloss =

[(
(1− k1)T̃i

a + k1Ta
)
− Ta

a

]
kloss, (22)

.
mw = km mw(pv,s − pv)

.
m̃

i
a. (23)

In Equation (23), the computation of the partial saturation pressure of water vapor pv,s and the
partial pressure of water vapor pv is based on the inlet air-temperature, -humidity, and -pressure.
By this simplified computation of the water transfer from the granules to the drying air, the outlet
air of the individual cells takes relative humidity values above 100% for some operating conditions.
After mixing the individual air streams of the six cells, the mixed air has a relative humidity below
100% for all the investigated operating conditions. For the sake of model simplicity, which is beneficial
for the intended application to the observer design, and due to the sufficient prediction quality of the
measured outputs (see Section 3.2), this behavior of the model was accepted.

In the literature [14,15], more detailed models on the energy and mass transfer are given, which
might improve the model accuracy. However, as the prediction performance of the presented model
was satisfactory, and in order to keep the model simple, the strongly simplified phenomenological
approach given by Equations (21)–(23) was chosen.

2.3.2. Parametrization of the Dryer Model

For model parametrization, the dryer model is fed with experimental data obtained from the
ConsiGmaTM-25 line. The identification of the model parameters km, kag, kloss, k1, ma, kV, and ksep is
accomplished by solving the following optimization problem:

F1 =
∑tend

t=tstart

[
0.25 (To,t

a − T̂o,t
a )

]2
, (24)

F2 =
∑tend

t=tstart

[
1000

(
xo,t

a − x̂o,t
a

)]2
, (25)
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F3 =
∑tend

t=tstart

∑6

k=1

[
Tg,k − (ksepT̃i

a +
(
1− ksep

)
T̂g,k

]2
, (26)

F4 =
∑

t∈“drying”

[
2 (wg,5 − ŵg,5)

]2
, (27)

min
km, kag, kloss,k1,ma,kV ,ksep

max
i

Fi. (28)

In Equations (24)–(27), the signals denoted by a hat indicate the model output, the other signals
show the measurements. The weighting factors of 0.25, 1000, 1, and 2 for the individual terms were
selected empirically. Their choice is based on the idea that (i) the error of the outlet air water content
should be in the same numerical range as the temperature errors, (ii) that the outlet air temperature
error is weighted less compared to the individual cell temperature errors, and (iii) that the LOD error
is weighted stronger, since it is the quantity of primary interest. Via Equation (28), the maximum value
of F1 to F4 should be minimized by adjusting the model parameters.

The considered time interval defined by tstart and tend was selected based on the available
identification data, see Section 3.1. The interval denoted by “drying” refers to the time, where LOD
measurements of cell number 5 are available, see Figure 5. The convex combination of T̃i

a and T̂g,k via
ksep, which is introduced in Equation (26), is needed, because the temperature sensors installed in the
individual cells do not solely measure granule temperature, but a combination of the air temperature
and granule temperature. The value of ksep was obtained during parameter identification. Furthermore,
the simulated granule temperatures were filtered by a first-order low pass filter with a time constant of
30 s, approximating the temperature sensor dynamics. The identified parameters are summarized
in Table 2. 

3 

 
Figure 5 
 

 

 
Figure 6 
 

 

Figure 7 
 

 

Figure 5. Measured and predicted LOD in cell 5—parameter identification run.

Table 2. Model parameters.

Parameter Value

k1 0.381
kag 3.22 J/(K·s)
kloss 0.353 J/(K·s)
km 1.77 × 10−5 1/kg
ma 0.197 kg
kV 0.807
ksep 0.1

2.3.3. Application of the Model as a Soft Sensor—Trivial Observer

A so-called trivial observer can be constructed by using a one-to-one copy of the system model
proposed above. Solely, the information on the inlet air temperature, humidity, and air volume flow,
as well as the information on the granule properties at the dryer inlet are used for predicting the
LOD. In addition, the plant model is also capable of predicting the individual cell temperatures Tg,k.
The application of this type of soft sensor is demonstrated in Section 3.2.
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3. Results

3.1. Parametrization Experiments

To parameterize the soft sensor, experiments at different process conditions were conducted.
The drying time, inlet air temperature, and inlet air volume flow were varied. Table 3 summarizes the
selected process settings of the identification run. The time interval from 10:27–12:56 was used for
parameter identification. The time from 10:02–10:27 was ignored, because this interval was considered
as the heat-up phase of the granulation line.

Table 3. Parameter identification—experiments. Bold values indicate changes in process conditions.
Note the different units compared to the nomenclature. They were used in this table for better readability
of the numbers.

Time
.

mp
.

ml Ta,in
.
V

meas
a tdry

hh:mm kg/h g/min ◦C m3/h s

10:02–10:20 20 40 50 300 680
10:20–10:28 20 40 50 300 580
10:28–11:00 20 40 45 300 580
11:00–11:39 20 40 45 300 480
11:39–12:33 20 40 45 400 580
12:33–12:56 20 40 45 400 480

A comparison of the measured and predicted LOD values and granule temperatures is given
in Figures 5 and 6, respectively. The predicted LOD matches the measured one quite well, after the
start-up phase of the line (10:42) is completed. The prediction of the granule temperatures shows
a good agreement after 11:40. The fluctuations in the measured temperatures before that time are
caused by material sticking to the sensors due to non-optimal fluidization. As this effect is unmodeled,
the deviations between measurement and simulation are explainable.

 

3 

 
Figure 5 
 

 

 
Figure 6 
 

 

Figure 7 
 

 

Figure 6. Measured and predicted granule temperatures—parameter identification run.

3.2. Validation Experiments

In order to validate the created process model, another set of experiments was performed as
shown in Table 4.
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Table 4. Validation—experiments. Bold values indicate changes in process conditions. Note the different
units compared to the nomenclature. They were used in this table for better readability of the numbers.

Time
.

mp
.

ml Ti
a

.
V

meas
a tdry

hh:mm kg/h g/min ◦C m3/h s

11:06–11:28 20 40 40 260 680
11:28–12:06 20 40 40 300 680
12:06–12:46 20 40 40 300 580
12:46–13:40 20 40 40 400 680
13:40–14:20 20 40 40 400 580

Figures 7 and 8 show the comparison between predicted and measured data. As it was done
during the parametrization run, the process inlet conditions were varied throughout the experiment.
Nevertheless, the validation dataset differs from the parametrization dataset in terms of the inlet
air temperature. A different inlet air temperature was used to demonstrate the applicability of the
proposed model to adapt to different process settings. As in the parameter identification dataset,
the LOD is predicted well after the startup phase of the line (11:45). The temperature fluctuations
in the granule temperature measurement visible in Figure 8 can again be explained by non-perfect
fluidization for lower air flow rates. However, at the air volume flow of 400 m3/h, the agreement of
the measured and predicted temperature is quite good.
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Figure 7. Measured and predicted LOD in cell 5—validation experiment. Two drying cycles are
highlighted (filling in green, drying in red).
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Figure 8. Measured and predicted granule temperatures—validation experiment. Two drying cycles
are highlighted (filling in green, drying in red).

Figure 9 shows a more detailed view of the estimation errors ew,5 = ŵg,5 − wg,5 and eTg,5 =

(ksepT̃i
a +

(
1− ksep

)
T̂g,k) − Tg,5 (LOD and granule temperature in cell 5) in the time interval between

13:05 and 13:40. The estimation error for LOD is between 0% and 1%, and for the granule temperature,
it is in the range of ±2.5 ◦C during drying. The short-term increase of the error during filling of the cell
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is not a big issue for the concept presented in the paper, because the main interest is the estimation of
the mentioned quantities during the actual drying phase, which starts after the chamber is totally filled.
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Figure 10 

Figure 9. Detailed view of the two drying cycles highlighted in Figures 7 and 8. Estimation error of
granule moisture and temperature in cell 5—validation experiment.

A simulation scenario that covers a time of 3 h was executed on an Intel XEON E3-1245V2, 3.4 Ghz
with 16 GB of memory workstation. The execution took approximately 25 s, i.e., 0.23% of the simulation
scenario time. Therefore, the model is—in contrast to most CFD or DEM simulation models—well
suited for real-time execution.

4. Discussion and Conclusions

The ability of predicting the granule moisture in the ConsiGma 25TM dryer was successfully
demonstrated by the proposed dynamic process model. Its performance—when being used as a
soft sensor in the form of a so-called trivial observer (i.e., only plant inputs are used for predicting
state variables, see Figure 10, left)—reveals its applicability for monitoring the LOD in the individual
dryer cells.
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Figure 10 Figure 10. Trivial observer (left), state observer (right).
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Furthermore, it was shown that the temperature of the granules in the cells could be predicted
reasonably well, too. One might not be interested in predicting that temperature, since it is directly
available by measurement. However, as this is the only measurement that is directly related to the
state of the granules in the individual cells, the implementation of observers using this information for
improving LOD prediction seems promising. Such observer concepts utilize the available measured
outputs in order to improve the estimation of unknown states [9,16,17]. For the investigated dryer,
the output would be the individual cell temperature, while the LOD is computed from the state
variables mw and mg to be estimated, see Figure 10, right. Future work will focus on the development
of such observers.

The obtained LOD values could further be used as an LOD-based drying end point detection, i.e.,
the drying can be stopped at the predicted granule moisture instead of using a constant drying time.
This approach could significantly reduce the variability in the batch to batch granule quality. It is well
known that in dryers, a certain variability exists, since the airflow in the chamber likely is not always
identical between cells. Thus, end-point detection could eliminate the variability.

Approaches exist that use available process data for drying end-point detection. However, these
approaches often use indirect parameters (e.g., temperature increase during drying) [18] as a criterion
for drying end-point detection. With the proposed soft sensor, the drying end point can be directly
specified by the desired LOD value, which is advantageous compared to approaches based on indirect
parameters [19].

The performance gain of a fluid bed dryer via implementation of feedback control (i.e., adjustment
of process parameters like air volume flow, inlet air temperature) was demonstrated by [4,20].
The successful implementation of the observer concepts mentioned in the paragraph above would pave
the way to develop feedback control based on the estimated LOD values for this type of six-segmented dryer.
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Nomenclature

cp,a J/(kg·K) specific heat capacity of dry air: cp,a = 1005 J/(kg·K) [12] (p. 289)
cp,v J/(kg·K) specific heat capacity of water vapor: cp,v = 1863 J/(kg·K) [12] (p. 289)
cw J/(kg·K) specific heat capacity of water: cw = 4191 J/(kg·K) [12] (p. 289)

cg J/(kg·K)
specific heat capacity of granules (computed from specific heat of lactose [21]
(p. 20), corn starch [22] (p. 10) and Povidon PVP [23] (p. 120)): cg = 1321 J/(kg·K)

∆he J/kg evaporation enthalpy of water at T = 0 C: ∆he = 2501× 103 J/kg [12] (p. 289)
k1 - factor used to obtain “mean” air temperature across cell height
kag J/(K·s) proportional factor describing heat transfer from air to granules
km 1/kg proportional factor describing evaporation rate
kloss J/(K·s) proportional factor describing heat transfer from air to ambient
ksep - factor used to obtain cell temperature sensor value from T̃i

a and T̂g,k
ma kg dry air mass in one dryer cell
mg,k kg dry granule mass in dryer cell k
mw,k kg water mass in granules in dryer cell k
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.
me

a kg/s dryer emptying air mass flow
.

mi
a kg/s dryer inlet mass flow of dry air into one dryer cell coming from AHU

.
m̃

i
a

kg/s net inlet mass flow of dry air into one dryer cell
.

mi,t
a kg/s total dryer inlet mass flow of dry air coming from AHU

.
m f

a kg/s mass flow of dry air for filter blowback
.

mo,t
a kg/s total dryer outlet mass flow of dry air

.
mo,k

a kg/s dryer cell k outlet mass flow of dry air
.

mp
a kg/s mass flow of dry air for granule transport

.
mp kg/s mass flow of pre-blend
.

mi
g kg/s mass flow of dry granules during filling

.
mi

w kg/s mass flow of water (in wet granules) during filling
.

me
g kg/s mass flow of dry granules during emptying

.
me

w kg/s mass flow of water (in wet granules) during emptying
.

ml kg/s mass flow of granulation liquid
.

mw kg/s mass flow of water from granules to air
p Pa air pressure
p̃i Pa air pressure of inlet air into one dryer cell
pv Pa partial pressure of water vapor
pv,s Pa partial saturation pressure of water vapor
.

Qloss J/s heat flow between dryer and surroundings (heat loss)
.

Qag J/s heat exchange between air and granules
Rv J/(kg·K) specific gas constant of water vapor: Rv = 461.53 J/(kg·K) [12] (p. 286)
ϕa % relative humidity of air
ϕa

a % relative humidity of ambient air
ϕe

a % relative humidity of air while emptying
ϕi

a % relative humidity of air coming from the AHU
ϕo,t

a % relative humidity of total dryer outlet air
ϕo,k

a % relative humidity of cell k outlet air
Tg,k C temperature in one dryer cell k
Ta C air temperature
Ta

a C ambient air temperature
Te

a C air temperature emptying
Ti

a C air temperature of air coming from AHU
T̃i

a C air temperature of net air entering one dryer cell
To,k

a C air temperature outlet of cell k
To,t

a C air temperature dryer outlet
Tg C measured granule temperature
Ti

g C granule temperature of granules being filled
Uav J internal energy of humid air
Ugw J internal energy of wet granules
wg,k % LOD of granules (wet basis) in dryer cell k (wg,k =

mw,k
mw,k+mg,k

× 100 %)

wp % initial LOD of pre-blend (wet basis)
xa kg/kg water content based on dry air mass, i.e., kg water per kg dry air
xi

a kg/kg water content of air coming from AHU
x̃i

a kg/kg water content of net air entering one dryer cell
.

Va m3/s volume flow of air
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